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Abstract

Compositional image retrieval (CIR) is a multimodal
learning task where a model combines a query image with
a user-provided text modification to retrieve a target im-
age. CIR finds applications in a variety of domains includ-
ing product retrieval (e-commerce) and web search. Ex-
isting methods primarily focus on fully-supervised learn-
ing, wherein models are trained on datasets of labeled
triplets such as FashionIQ and CIRR. This poses two sig-
nificant challenges: (i) curating such triplet datasets is la-
bor intensive; and (ii) models lack generalization to un-
seen objects and domains. In this work, we propose SCOT
(Self-supervised COmpositional Training), a novel zero-
shot compositional pretraining strategy that combines ex-
isting large image-text pair datasets with the generative ca-
pabilities of large language models to contrastively train
an embedding composition network. Specifically, we show
that the text embedding from a large-scale contrastively-
pretrained vision-language model can be utilized as proxy
target supervision during compositional pretraining, re-
placing the target image embedding. In zero-shot settings,
this strategy surpasses SOTA zero-shot compositional re-
trieval methods as well as many fully-supervised methods
on standard benchmarks such as FashionIQ and CIRR. Our
code and models are available at https://github.
com/yahoo/SCOT.

1. Introduction
The field of image retrieval is advancing rapidly, with

growing interest in multimodal queries that incorporate both
images and text. Compositional Image Retrieval (CIR) is a
recently proposed task that aims at retrieving images us-

1*Work done during research internship at Yahoo Research.

Figure 1. Compositional image retrieval methods typically require
domain-specific image-text-image triplets for training and cannot
generalize to unseen domains. In contrast, SCOT uses existing
large noisy captioned image datasets for compositional training
and demonstrates zero-shot generalizability to new domains.

ing a query composed of both an image and text [14, 37].
The query or reference image defines some initial desired
elements, while the text describes the relative modification
that a user would like to see in the retrieved images. CIR
provides users with a versatile way to communicate their in-
tent through iterative query refinement, which is potentially
valuable in a broad range of real-world tasks such as prod-
uct retrieval in e-commerce and fine-grained web search.

CIR can be framed as a multimodal fused representation
learning task in which the goal is to train an effective feature
fusion network. This sits in contrast to other well-studied

https://github.com/yahoo/SCOT
https://github.com/yahoo/SCOT


vision-language tasks such as image-text matching, image
captioning, and visual question answering, as CIR uniquely
learns a representation to jointly capture visual cues and text
descriptors that match the target image of interest. Most
CIR methods [9,12,19,37] are trained in a fully-supervised
manner using curated human-annotated datasets of triplets,
with each triplet consisting of a reference image, a user-
provided modification text, and a target image.

Current supervised CIR approaches do not generalize
well to unseen domains or zero-shot scenarios, as illustrated
in Fig 1. They are dependent on the availability of large
datasets of image-text-image triplets, which are typically
domain-specific and have limited applicability to open-
world settings. Manual labeling for new triplet datasets is
also labor-intensive. To overcome these challenges, a re-
cent line of work explores zero-shot CIR using textual inver-
sion [2,6,31,35], e.g., using image-text pairs to learn to map
images into text token embeddings. An image-derived to-
ken embedding—which can be thought of as corresponding
to a pseudo-token)—can then be combined with text token
embeddings from the modification text and encoded as text
to produce a composite embedding for retrieval. These ap-
proaches do not require annotated image-text-image triplets
and can adapt to new domains thanks to the generalizability
of contrastively-pretrained image-text encoders.

In this work, we propose a novel pretraining strat-
egy for zero-shot CIR (ZS-CIR) which we name SCOT
(Self-supervised COmpositional Training). This approach
does not require human-annotated triplets and demon-
strates open-world generalizability by using captioned im-
ages from large and varied datasets. We specifically ex-
ploit the proximity of visual and textual representations of
the same concept in the embedding space of large-scale
contrastively-pretrained vision-language models, which en-
ables the use of target text embeddings instead of target im-
age embeddings for supervision. Given an image and its
caption, we first generate a training example by feeding the
caption into a large language model (LLM) and prompting
it to output a creative modification text and a correspond-
ing modified caption. A CIR model is then trained by using
the reference image and the generated modification text as
input, with the generated modified caption as the target.

SCOT models are trained to compose reference images
with modification texts by optimizing a contrastive image
retrieval loss. This differs from inversion-based techniques,
which do not directly train a composition model but rely on
the composition capabilities of existing frozen pretrained
image-text encoders. SCOT pretraining is agnostic to the
choice of composition model, which can include unfrozen
encoders [25] and early image-text fusion [21]. Compre-
hensive experiments show that SCOT surpasses current ZS-
CIR techniques and nears fully-supervised performance on
FashionIQ [40] and CIRR [26] without domain-specific

training. The key contributions of this work are:
1. We introduce a novel compositional pretraining strat-

egy that requires only image-text pairs, using LLMs
to create image-text-text triplets and pretrained vision-
language models to encode both images and text.

2. We demonstrate zero-shot generalizability on domain-
specific (FashionIQ [40]) and open-world (CIRR [26])
compositional retrieval datasets, showing that SCOT
outperforms existing zero-shot approaches.

3. Through quantitative and qualitative experiments, we
evaluate the impact of various parameters such as
training dataset size, sample distribution, backbone
and supervision type on zero-shot generalizability.

2. Related Work
Compositional Image Retrieval (CIR): Numerous

methods have been proposed to learn composite representa-
tions of visual and text features for retrieval. Most research
lies within the supervised setting [3, 4, 8, 9, 12, 17, 19, 21,
26,27,36,37], with earlier work relying on fashion datasets
containing human-annotated triplets [15, 40]. The DCNet
approach [19] jointly trains feature extractors with a com-
position and correction network on FashionIQ [40]. CoSMo
[20] uses content and style modulator networks to combine
the image and text representations. FashionVLP [12] is a
recently-proposed multimodal Transformer trained with a
variety of fashion image inputs including crops, landmarks
and ROIs. The need to go beyond fashion products and mo-
tivate research in open-world interactive retrieval led to the
creation of open-domain annotated datasets: CIRR [26] (us-
ing images from NLVR2 [34]), CIRCO [2], and LaSCo [21]
(the latter two using images from MS-COCO [24]). De-
spite this progress, the zero-shot generalizability of tradi-
tional fully-supervised models has been limited.
Zero-Shot Compositional Retrieval (ZS-CIR): To over-
come these limitations, recent work [2,5,6,13,18,25,31,35]
has developed zero-shot annotation-free strategies for CIR.
One line of work [2, 6, 31, 35] adopts textual inversion,
which had previously found success in the text-to-image
generation literature [11]. Recently, Saito et al. [31] pro-
posed Pic2Word wherein an MLP is trained to map a picture
to a pseudo-token, which the text encoder can then combine
with the modification text to produce a composite embed-
ding. Baldrati et al. [2] present SEARLE, which involves a
two-stage process for training a textual inversion network.
The first stage runs Optimization-based Textual Inversion
(OTI) with CLIP [30] image and text encoders to find a text
token embedding that corresponds to a given image encod-
ing. In the second stage, those token embeddings are used
as targets to learn a textual inversion network. Note that
textual inversion approaches focus on learning how to in-
vert the image into token embeddings, while taking advan-
tage of the existing composition capabilities of pretrained



Figure 2. SCOT pretraining and inference. Left: The composition function fc is trained using existing image-caption datasets, a frozen
image-text encoder (such as CLIP), and a frozen large language model (LLM). The LLM generates the modification text m and a modified
caption u. The reference image embedding V and the modification text embedding Tm are passed to fc to get the composed embedding
Vc. We optimize the parameters of fc to draw Vc towards the modified caption Tu and away from the original caption T . The full loss also
pushes Vc away from the embeddings of other (non-matching) modified captions within each batch (not illustrated here). Right: During
inference, we compute the similarity between the composed embedding and the embeddings of gallery images to retrieve the target image.

text encoders. In contrast, our approach directly optimizes
a contrastive loss by training with triplets that closely mimic
those of the CIR task. It can thus use any choice of compo-
sition model (including unfrozen encoders), and can be eas-
ily fine-tuned further with domain-specific data. A variety
of other ZS-CIR approaches have been recently proposed.
Gu et al. [13] train a denoising Transformer for image-text
composition on 18M synthetic images along with 2B cap-
tioned images from LAION [32]. Karthik et al. [18] intro-
duce CIReVL, a training-free approach that involves cap-
tioning the reference image, modifying the caption using
an LLM and retrieving the target image using the modi-
fied caption. Chen and Lai [5] propose masking-augmented
contrastive pretraining for visual and textual encoders to
recover masked visual information through text prompts.
Jang et al. [17] train a model to generate the modification
text given a pair of images. The model is sued for gener-
ating synthetic training data, resulting in a semi-supervised
approach. In concurrent work, Liu et al. [25] propose an
approach for automatic construction of image-text-image
training triplets. They source captioned images from the
LAION-COCO dataset [33] and use either text templates
or LLMs to generate modification texts and corresponding
modified captions. Modified captions are then used to re-
trieve images to serve as supervision targets. The authors
note that this approach of retrieving supervision target im-
ages from a corpus can be problematic due to the even-
tual absence of suitable images and/or retrieval errors [25].
In Section 4.4, we show example triplets illustrating these
issues and present a controlled experiment demonstrating

that SCOT’s use of semantically-relevant text targets signif-
icantly outperforms the use of retrieved image targets.

3. Method

This section describes SCOT, a ZS-CIR technique re-
quiring only captioned image datasets. The approach is out-
lined in Fig. 2. We review contrastively pretrained image-
text encoders in Section 3.1. Sections 3.2, 3.3 and 3.4 detail
our pretraining strategy, loss function, and inference.

3.1. Large-Scale Contrastive Pretraining

Following previous work, we use image and text rep-
resentations from large-scale contrastively-pretrained mod-
els: CLIP [30], BLIP [23] and BLIP-2 [22]. CLIP (Con-
trastive Language-Image Pretraining) [30] aims to jointly
learn visual and textual representations that are semanti-
cally aligned. For a given image-caption pair (vi, ti), let
Vi = fθ(vi) denote the normalized image embedding from
image encoder fθ and Ti = fϕ(ti) denote the normalized
text embedding from text encoder fϕ. CLIP contrastively
enforces high similarity between positive pairs (Vi, Ti) and
low similarity between negative pairs (Vi, Tj) , ∀ i ̸= j.
This is implemented via a symmetric cross-entropy loss
over the similarity scores of image and text embeddings Vi
and Tj . The image-to-text part of the loss is defined as:

Li2t = −
1

N

N∑
i=1

log
e⟨Vi,Ti⟩/κ∑N
j=1 e

⟨Vi,Tj⟩/κ
(1)



Figure 3. LLM-generated text triplet samples, showing appro-
priate modifications over different image domains.

where ⟨·, ·⟩ is the dot product, N the batch size and κ the
temperature parameter.

BLIP [23] and BLIP-2 [22] are other pretraining ap-
proaches that demonstrate strong performance on bench-
marks for image-text retrieval. BLIP-2 employs a
lightweight trainable Querying Transformer (Q-Former)
module whose image features come from a frozen pre-
trained CLIP encoder. The initial training stage performs
representation learning by jointly optimizing three objec-
tives that include an image-text contrastive loss as in CLIP.

3.2. Self-Supervised Compositional Pretraining

Our approach is primarily motivated by the fact that
contrastively-pretrained models are able to align related vi-
sual and textual representations in the embedding space.
This enables us to use the aligned textual representation as a
proxy for an image representation, thereby eliminating the
need for a target image during training. For inference, we
can search across gallery images by encoding them using
the the contrastively-paired visual encoder.

The goal of this method is to train a composition opera-
tion fc to combine the representations from a user-provided
image and modification text. We rely on contrastively-
paired image and text encoders, denoted respectively as fθ
and fϕ. Given a captioned image dataset D = {(vi, ti)}Mi=1,
we compute the image embeddings Vi = fθ(vi) and corre-
sponding caption embeddings T i = fϕ(ti).

We prompt a large language model (LLM) to generate
a modification text mi given an original caption ti. The
modification text will be used as one of the inputs to the
composition function fc during training. To provide the su-
pervision signal for the predicted composed representation,
we use the same LLM to generate a modified caption ui,
which should be similar to ti but with modification mi ap-
plied. Fig. 3 contains samples of LLM-generated triplets.

Next, we compute the embeddings for mi and ui using fϕ.

mi, ui ← LLM(ti) (2)

T i
m, T i

u = fϕ(mi), fϕ(ui) (3)

We pass the modification text representation T i
m and the

image representation Vi through the learnable composition
function fc to obtain the composed image representation
Vi
c = fc

(
Vi, T i

m

)
. We use the recently proposed Combiner

network [3] to implement fc. Briefly, it performs a learn-
able weighted fusion of the image and text embeddings. We
encourage readers to refer to [3] or the supplementary ma-
terial of this paper for details on the Combiner network.

3.3. Training Objective

We minimize a modified contrastive loss in order to
pull the predicted composed embedding Vi

c towards the
generated target text embedding T i

u for an input sample
(vi, ti) while pushing it away from target text embeddings
T j
u , ∀j ̸= i from other examples within its batch. Let

S(x, y) denote the cosine similarity between vectors x and
y, i.e., S(x, y) = x·y

∥x∥2∥y∥2
. We define:

Lpos = − log

N∑
i=1

eS(V
i
c,T

i
u) (4)

Lneg = log

N∑
i,j

eS(V
i
c,T

j
u )·(1−δij) (5)

where δij is the Kronecker delta function, which is 1 when
i = j and 0 otherwise.

Previous work in traditional cross-modal retrieval [10,
39] has demonstrated the effectiveness of hard-negative
mining. To improve the robustness of our embeddings,
we follow [10, 38] and adopt a margin-based hard-negative
mining strategy. Let λ be a fixed scalar margin, then we
define:

Sλ(x, y) = S(x, y) ·Θ(S(x, y) > λ) (6)

where Θ is the Heaviside step function, which is 1 if the
condition inside is true and 0 otherwise. This is used in
Eq. 5 resulting in an updated negative loss.

L′
neg = log

N∑
i,j

eSλ(Vi
c,T

j
u )·(1−δij) (7)

For stronger supervision, we also include the original un-
modified caption embeddings T j ∀j ≤ N as hard negatives
for Vi

c. This moves the composed representation away from
the original caption and closer to the desired modified cap-
tion, ensuring it does not retain features from the original
sample that are absent in the target caption. We use all the



original captions in a batch as negatives for that batch, re-
sulting in the following combined loss for negatives.

L′′
neg = L′

neg + log

N∑
i,j

eSλ(Vi
c,T

j) (8)

Using Eqs. (4, 8) we minimize the following final loss with
respect to the parameters of the composition function fc:

L = αpos · Lpos + αneg · L′′
neg (9)

where αpos and αneg are positive and negative scaling fac-
tors respectively. In summary, the composition function is
trained to apply the LLM-generated modification text to the
reference image such that the resulting composed represen-
tation lies close to the embedding of the modified caption.

3.4. Inference

As shown in Fig. 2, all gallery images for retrieval are
encoded with the image encoder fθ. During inference, we
combine the embeddings of the reference image and user-
provided modification text using the learned composition
function fc, as in training. This composite representation is
used to retrieve the most similar gallery images by comput-
ing cosine similarity with their image embeddings.

4. Experiments
We now turn to quantitative and qualitative evaluations

of SCOT for ZS-CIR. Additional results are in the appendix.

4.1. Datasets

We train on three datasets of captioned images: MS-
COCO [24] (189K pairs), Flickr30K [41] (45K pairs), and
ABO [7] (58K pairs), totaling 290K image-text pairs. Fol-
lowing previous works [2, 25, 31], we assess zero-shot ca-
pabilities on FashionIQ [40] and CIRR [26], two composi-
tional retrieval datasets with annotated triplets. Here, Fash-
ionIQ assess zero-shot generalizability in the fashion do-
main and CIRR on open-world retrieval setting.

4.2. Implementation Details

Encoders. Unless otherwise stated, we use BLIP-21 as a
frozen2 image and text encoder.
Textual triplet generation. To generate modification texts
m and modified captions u, we use the instruction-tuned
Falcon-7B LLM [1]. As directly prompting this model pro-
duces noisy and inconsistent generations on our task, we
generate 4K text triplets from the better-performing GPT-4
model [29] and use them for LoRA fine-tuning [16] of 4-
bit quantized Falcon-7B [1]. Finally, we generate a dataset

1We use BLIP-2 with EVA-CLIP ViT-G/14 backbone from LAVIS.
2While encoders can also be finetuned with SCOT, we keep them frozen

to compare fairly with prior work, most of which uses frozen encoders.

of over 290K text triplets using the finetuned Falcon-7B,
which can be reused in subsequent training runs. SCOT is
not reliant on any specific LLM, so newer or stronger mod-
els can also be used to refine and expand the triplet dataset.
Other training details. We train with AdamW [28], batch
size 1024 and learning rate 1x10−4. In the loss (Sec. 3.3),
we set positive scaling factor αpos = 10 and negative scaling
factor αneg = 0.1, and margin λ = 0.2. For the Combiner,
we use the same hyperparameters as the original work [3].
Training and inference uses 2 NVIDIA A100 GPUs.

4.3. Comparison with state-of-the-art methods

Evaluation metrics. We present a quantitative compari-
son against the state-of-the-art on the FashionIQ [40] and
CIRR [26] datasets. The evaluation metric for FashionIQ
is the average recall at rank K (R@K). Following prior
work [2, 25, 31] we present R@10 and R@50 on the val-
idation set. For CIRR, we follow the authors’ proposed
protocol to report Recall@K at four different ranks, i.e.,
K ∈ {1, 5, 10, 50}, along with Recallsubset@K, which uses
small subsets with fully labelled negatives for each query
image [26]. We show results for existing zero-shot ap-
proaches and fully-supervised approaches.
Baselines. As reference, we present results of retrieving us-
ing just the image embedding (Image-Only), just the modi-
fication text embedding (Text-Only), or the sum of the two
(Image+Text). For a fair comparison against prior zero-
shot methods such as Pic2Word [31] and SEARLE [2],
which rely on frozen backbones, we include results from
TransAgg [25] with frozen backbones. Baldrati et al. [2]
present two variants of their approach: SEARLE-OTI,
which requires inference-time optimization, and SEARLE,
which trains a textual inversion network to reproduce the
OTI outputs in a single forward pass. Here, we use the re-
ported results for SEARLE and its larger version SEARLE-
XL. Finally, we note that existing methods use different
backbones, amounts and types of data, fusion architectures,
and pretraining strategies. For instance, Pic2Word [31] uses
3M images with a frozen CLIP L/14 backbone within a tex-
tual inversion-based approach, whereas TransAgg [25] uses
32K synthetic triplets with BLIP and a Transformer-based
fusion method. We provide results segregated by backbone
in Tables 1 and 2, and further analyze the importance of
different contrastively-trained backbones in Section 4.4.
Results on FashionIQ. From Table 1, the best-performing
SCOT model improves by 11.78% on R@10 and by 13.8%
on R@20 over SEARLE-XL [2]. SCOT also demonstrates
notable data efficiency: utilizing only 290K image-text
pairs for training, in contrast to the 3M images used in
Pic2Word’s training with Conceptual Captions, we achieve
13.75% improvement over Pic2Word on R@10. The zero-
shot performance of SCOT exceeds many fully-supervised
methods, such as DCNet [19], CLIP4Cir [3], and Fashion-

https://github.com/salesforce/LAVIS


Backbone Method Average Dress Shirt Top/Tee

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50
Su

pe
rv

.
Multi MAAF [9] 24.3 48.8 23.8 48.6 21.3 44.2 27.9 53.6
Multi DCNet [19] 30.44 58.29 28.95 56.07 23.95 47.30 30.44 58.29
Multi FashionVLP [12] 34.27 62.51 32.42 60.29 31.89 58.44 38.51 68.79
CLIP L/14 CLIP4CIR [3] 38.32 61.74 33.81 59.40 39.99 60.45 41.41 65.37
BLIP BLIP4CIR [27] 43.49 67.31 42.09 67.33 41.76 64.28 46.61 70.32

Z
er

o-
Sh

ot

CLIP B/32

Image-Only 5.88 13.19 6.96 14.08 4.46 11.89 6.22 13.61
Text-Only 18.41 36.28 14.92 33.81 19.77 34.69 20.55 40.33
Image+Text 13.36 27.51 12.44 28.55 12.61 24.82 15.04 29.16
PALAVRA [6] 19.76 37.25 17.25 35.94 21.49 37.05 20.55 38.76
SEARLE [2] 22.89 42.53 18.54 39.51 24.44 41.61 18.54 39.51
TransAgg [25] 23.91 44.68 19.44 42.04 25.37 42.69 26.93 49.31
SCOT (Ours) 24.14 43.44 19.73 41.24 25.51 42.93 27.18 46.14

CLIP L/14

Image-Only 7.97 17.43 5.25 13.63 10.54 20.65 8.10 18.01
Text-Only 19.01 35.26 15.22 33.01 19.82 33.31 21.87 39.46
Image+Text 18.12 33.17 14.27 31.33 19.13 32.28 20.95 35.90
Pic2Word [31] 24.7 43.7 20.0 40.2 26.2 43.6 27.9 47.4
SEARLE-XL [2] 25.56 46.23 20.48 43.13 26.89 45.58 29.32 49.97
TransAgg [25] 28.57 48.29 23.85 44.57 29.54 47.79 32.33 52.52
SCOT (Ours) 28.27 47.44 23.69 45.06 29.09 47.01 32.02 50.33

BLIP

Image-Only 6.65 15.40 5.05 12.19 7.55 17.76 7.34 16.26
Text-Only 24.01 42.73 20.03 39.96 24.63 41.02 27.38 47.22
Image+Text 8.06 18.16 6.14 19.78 9.37 19.87 8.66 19.78
TransAgg [25] 26.95 46.10 21.67 41.89 28.07 45.63 31.11 50.79
SCOT (Ours) 30.68 51.33 26.42 49.23 30.91 49.65 34.72 55.12

BLIP-2

Image-Only 7.53 17.93 4.21 11.89 10.59 23.51 7.81 18.41
Text Only 24.68 43.59 20.77 41.64 25.95 42.83 27.33 46.31
Image+Text 29.21 50.05 23.30 45.61 32.82 53.09 31.51 51.45
SCOT (Ours) 38.45 60.03 32.78 55.91 41.42 61.09 41.15 63.10

Table 1. Results on FashionIQ. Zero-shot results from our proposed approach compared against existing zero-shot methods (bottom)
presented alongside some fully-supervised approaches (top). For fair comparisons, SEARLE results are from the inversion model and
TransAgg results are using frozen backbones. See supplementary material for more results.

VLP [12], while approaching that of BLIP4CIR [27].
Results on CIRR. From Table 2, SCOT exhibits im-
provements of 12.58% at R@1 and 10.86% at R@5 over
SEARLE-XL. We also see that Text-Only performance
is significantly higher than Image-Only performance on
CIRR, and that naively adding image features to text de-
grades performance. This is explained by a known short-
coming of CIRR —also noted in prior work [2]—that mod-
ification texts often describe the target image completely,
with reference images providing no additional information.

4.4. Discussion

1. Qualitative analysis. In Fig. 4 (Top) we present zero-
shot qualitative retrieval results on FashionIQ, illustrating
domain-specific behavior. The figure shows that SCOT ef-
fectively composes images and text to retrieve the most ac-
curate product image. The second row is particularly inter-
esting: all methods retrieve a gray tank top, but only SCOT
specifically retrieves one with the Adidas logo, which was
also present in the reference image. We evaluate the qual-
itative performance on open-world images using CIRR in
Fig. 4 (Bottom). As discussed earlier, often in CIRR the

Figure 4. Qualitative retrieval results on validation sets. Top:
FashionIQ [40]. Bottom: CIRR [26]. A green box indicates the
correctly retrieved image. For CIRR, the rightmost column illus-
trates the corresponding modality weight learned by SCOT for that
example. (Best viewed in color.)
modification text can be informative enough to retrieve the
correct target image. The learned dynamic scalar scores of
the Combiner network are shown in the last column. In



Method Backbone Recall@K Recallsubset@K

K = 1 K = 5 K = 10 K = 50 K = 1 K = 2 K = 3

Su
pe

rv
. Multi MAAF [9] 10.31 33.03 48.30 80.06 21.05 41.81 61.60

OSCAR CIRPLANT [26] 19.55 52.55 68.39 92.38 39.20 63.03 79.49
CLIP L/14 CLIP4CIR [3] 33.59 65.35 77.35 95.21 62.39 81.81 92.02
BLIP BLIP4CIR [27] 40.15 73.08 83.88 96.27 72.10 88.27 95.93

Z
er

o-
Sh

ot

CLIP B/32

Image-only 6.94 22.94 33.71 59.18 21.06 41.01 60.34
Text-only 21.16 45.35 57.40 81.06 62.26 81.08 90.75
Image+Text 10.46 32.41 46.39 75.11 30.09 54.24 73.20
PALAVRA [6] 16.62 43.49 58.51 83.95 41.61 65.30 80.94
SEARLE [2] 24.00 53.42 66.82 89.78 54.89 76.60 88.19
TransAgg [25] 24.46 53.61 67.54 89.81 57.81 78.17 89.54
SCOT (Ours) 22.80 53.18 66.22 89.64 53.25 75.45 88.31

CLIP L/14

Image-only 7.47 23.88 34.07 57.57 20.87 41.95 61.13
Text-only 22.00 45.79 57.57 79.59 61.71 80.26 90.43
Image+Text 10.55 32.70 45.71 74.26 31.06 55.69 73.93
Pic2Word [31] 23.9 51.7 65.3 87.8 - - -
SEARLE-XL [2] 24.24 52.48 66.29 88.84 53.76 75.01 88.19
TransAgg [25] 25.04 53.98 67.59 88.94 55.33 76.82 88.94
SCOT (Ours) 24.36 53.52 67.37 89.35 51.47 74.24 87.90

BLIP

Image-only 7.23 25.78 37.35 62.34 20.60 40.96 61.35
Text-only 34.19 61.68 71.74 87.83 72.34 87.97 94.79
Image+Text 8.24 28.96 41.23 68.07 23.64 45.35 66.29
TransAgg [25] 34.89 64.75 76.24 92.22 66.34 83.76 92.92
SCOT (Ours) 36.31 66.19 77.37 92.96 64.73 83.20 92.15

BLIP-2

Image-only 7.59 24.43 35.56 61.42 20.74 40.67 61.08
Text-only 33.52 61.50 71.35 88.31 72.53 88.02 94.87
Image+Text 19.69 49.98 64.39 90.01 45.69 71.18 85.83
SCOT (Ours) 36.82 64.34 74.48 93.42 75.73 88.70 94.84

Table 2. Results on CIRR. Zero-shot results from our proposed approach compared against existing zero-shot methods (bottom) presented
alongside some fully-supervised approaches (top). For fair comparisons, SEARLE results are from the inversion model and TransAgg
results are using frozen backbones. See supplementary material for more results.

cases where the modification text completely describes the
target image—such as in the third row—SCOT assigns a
high weight to the text representation. In last row, it can be
observed that the dog breed can only be inferred through the
reference image; consequently SCOT assigns nearly equal
weight to both image and text representations.

2. Impact of image-text alignment backbones. Using text
embeddings as a proxy for image embeddings requires the
image and text embedding spaces to be well-aligned. Here,
we study the behavior of SCOT and other methods as we
vary the encoder backbones. To recall, based on previous
results [22,23,30], the relative ranking of the backbones we
experimented with is CLIP-B/32 < CLIP-L/14 < BLIP <
BLIP-2. From Table 1, with CLIP B/32, SCOT gets an aver-
age R@10 of 24.14% on FashionIQ [40]. With CLIP L/14,
we observe 28.27%, nearly 4% higher. With BLIP, we ob-
serve another 2% improvement at R@10, while TransAgg
produces a drop of 1.6%. Finally, for SCOT with BLIP-
2, we see the largest improvement, of 8% over BLIP. On
CIRR, as seen in Table 2, when using the CLIP B/32 back-
bone, SCOT is behind both TransAgg and SEARLE. SCOT
then surpasses SEARLE when using the CLIP L/14 back-
bone, and surpasses TransAgg when switching to the BLIP

backbone. Thus, as with FashionIQ, the relative perfor-
mance of methods changes with different backbones, with
SCOT’s advantage increasing as the backbones improve.
This can be more clearly seen in Fig. 5 where we present the
relative gains of different methods with respect to the ‘Text-
Only’ baseline. We define relative gain ∆R@K as the dif-
ference between Recall@K of a given method and that of
the ‘Text-Only’ baseline with the corresponding backbone.
On both FashionIQ and CIRR, Fig. 5 shows that as we im-
prove the backbones, the relative gain of SCOT increases.
Thus, not only does SCOT benefit from better backbones
as represented by the performance of the ‘Text-Only’ base-
line on those backbones, but its gain over that baseline also
increases. Of note, with the BLIP backbone, SCOT has rel-
ative gains that are 2-3 larger than that of TransAgg with
BLIP, showing that SCOT is unique in obtaining higher rel-
ative gains with better backbones.

3. Impact of dataset distribution. In Fig. 6, we illustrate
how performance changes as we expand the training set. On
both FashionIQ and CIRR, recall increases when utilizing
larger subsets of the 189K MSCOCO image-caption pairs.
This trend continues with the addition of Flickr30K. While
both MSCOCO and Flickr30K contain generic real-world
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Figure 5. Gains relative to Text-Only. Difference in recall (∆R)
between methods and the backbone-matched Text-Only baseline.

Figure 6. Performance when changing the size and distribution
of the training set, evaluated on the (a) FashionIQ [40] validation
set across clothing types and (b) CIRR [26] test set.

images, we wanted to also evaluate improvements brought
by including domain-specific images. The Amazon Berke-
ley Objects (ABO) [7] dataset contains a variety of retail
products, such as phone cases and furniture, accompanied
by detailed captions. By including 58K image-caption pairs
from ABO, we see around a 1% improvement on Fash-
ionIQ’s average R@10, going from 37.21% to 38.45%.
Specifically for Shirt and Top/Tee, performance improves
by around 2% when adding ABO. On CIRR, as shown in
Fig. 6(b), incorporating ABO yields only a marginal gain
in R@1 and no improvement in Rsubset@1, likely due to the
differing image distributions between ABO and CIRR.
4. Text supervision vs retrieved image supervision. An
alternative way of using LLM-generated text triplets for ZS-
CIR involves using each of the generated modified cap-
tions as a query to retrieve an image from a large corpus.
Each retrieved image is then used as target supervision for

Figure 7. Examples from LAION-CIR-LLM [25] illustrating
the challenges of using retrieved images as target supervision.

Supervision Average Dress Shirt Top/Tee

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

Image [25] 29.02 50.49 22.65 45.06 33.21 53.28 31.20 53.13
Text (Ours) 35.17 56.16 29.54 50.96 36.45 57.26 39.52 60.27

Table 3. FashionIQ results with different supervision targets
when training on LAION-CIR-LLM [25] with a BLIP-2 backbone.
We observe that the use of text targets for supervision performs
significantly better than the image targets available in the dataset.

its corresponding reference image and generated modifica-
tion text. Concurrently to our work, Liu et al. [25] exper-
imented with this type of approach. Fig. 7 displays ex-
amples from the LAION-CIR-LLM dataset they proposed,
which is based on image-caption pairs taken from LAION-
COCO [33].3 As shown in the figure, the retrieved target
images often do not match the expected modified caption
due the absence of a relevant image in the corpus and/or re-
trieval errors. Table 3 presents an experiment comparing the
use of the retrieved image target supervision from LAION-
CIR-LLM [25] against text supervision using the dataset’s
modified captions. The experiment uses BLIP-2 [22] as im-
age and text encoder, and the Combiner [3] as composition
function. We see that using retrieved images as targets gives
an average R@10 on FashionIQ of 29.02%, whereas using
text targets as proposed in our approach achieves 35.17%.

5. Conclusion
We propose a novel approach towards annotation-free

ZS-CIR which leverages existing large captioned im-
age datasets, along with contrastively-pretrained vision-
language models. We demonstrate the zero-shot generaliz-
ability of this technique through extensive experimentation
on domain-specific and open-world datasets. Our proposed
approach, SCOT, achieves state-of-the-art performance in
zero-shot settings while being on par with various fully-
supervised approaches. We further substantiate this work
with qualitative and quantitative experiments to analyze the
impact of various components of our pretraining strategy.

3LAION-COCO (and by extension LAION-CIR-LLM) contains many
clothing and product images, resulting in good coverage over FashionIQ.
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