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ABSTRACT
In third generation (3G) wireless data networks, repeated requests
for popular data items can exacerbate the already scarce wireless
spectrum. In this paper we propose an architectural and protocol
framework that allows 3G service providers to host efficient con-
tent distribution services. We offload the spectrum intensive task
of content distribution to an ad-hoc network. Less mobile users
(resident subscribers) are provided incentives to cache popular data
items while mobile users (transit subscribers) access this data from
resident subscribers through the ad-hoc network. Since the partic-
ipants of this data distribution network act as selfish agents, they
may collude to maximize their individual payoff. Our proposed
protocol discourages potential collusion scenarios. In this architec-
ture the goal (social function) of the 3G service provider is to have
the selfishly motivated resident subscribers service as many data
requests as possible. However, the choice of which set of items to
cache is left to the individual user. The caching activity among the
different users can be modeled as a market sharing game.

In this work, we study the Nash equilibria of market sharing
games and the performance of such equilibria in terms of a so-
cial function. These games are a special case of congestion games
that have been studied in the economics literature. In particular,
pure strategy Nash equilibria for this set of games exist. We give a
polynomial-time algorithm to find a pure strategy Nash equilibrium
for a special case while it is is NP-Hard to do so in the general case.
As for the performance of Nash equilibria, we show that the price
of anarchy— the worst-case ratio between the social function at
any Nash equilibrium and at the social optimum — can be upper
bounded by a factor of 2. When the popularity follows a Zipf distri-
bution, the price of anarchy is bounded by 1.45 in the special case
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where caching any item has a positive reward for all players. We
prove that the selfish behavior of computationally bounded agents
converges to an approximate Nash equilibrium in a finite number
of improvements. Furthermore, we show that even with one im-
provement by each player, an O(log n) approximate solution can
be obtained. Our simulation scenarios show that the price of anar-
chy is 30% better than that of the worst-case analysis and that the
system quickly (1 or 2 steps) converges to a Nash equilibrium.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; C.2.2 [Computer-Communication Networks]:
Network Protocols

General Terms
Algorithms, Economics, Theory, Design, Performance

Keywords
3G Wireless Networks, Mobile Ad-Hoc Networks, Unified Archi-
tecture, Price of Anarchy, Nash Equilibrium

1. INTRODUCTION
Third-generation (3G) wide-area wireless networks have recently

experienced tremendous growth, with the number of subscribers
reaching more than 70 million worldwide [1]. Many 3G service
providers have started offering content-rich services such as sports
replays, news headlines, music videos, and movie trailers [1].

The 3G subscriber market can be categorized into groups with
shared interest in location-based services, e.g. the preview of movies
in a theater or the scene of the beach nearby. Since the 3G radio
resources are limited, it is expensive to repeatedly transmit large
quantities of data over the air interface from the base station (BS).
It is more economical for the service provider to offload such re-
peated requests on to the ad-hoc network comprised of its sub-
scribers where some of them recently acquired a copy of the data.
In this scenario the goal for the service provider is to give incen-
tives for peer subscribers in the system to cache and forward the
data to the requesting subscribers. Since each data item is large
in size and transit subscribers are mobile, we assume that the data
transfer occurs in a close range of a few hops.

We envision a system consisting of two groups of subscribers:
resident and transit subscribers. Resident subscribers are less mo-
bile and mostly confined to a certain geographical area. Resident
subscribers have incentives to cache data items that are specific to
this geographical region since the service provider gives monetary
rewards for satisfying the queries of transit subscribers. Transit
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subscribers request their favorite data items when they visit a par-
ticular region. Since the service provider does not have knowledge
of the spatial and temporal distribution of requests, it is difficult if
not impossible for the provider to stipulate which subscriber should
cache which set of data items. Therefore, the decision of what
to cache is left to each individual subscriber. The realization of
this content distribution system depends on two main issues. First,
since subscribers are selfish agents, they may collude to increase
their individual payoffs. Collusion can result in other subscribers
being cheated of their rewards. In this work we address the prob-
lem of colluding subscribers by providing a protocol framework
that discourages or prevents collusions. The second issue is that
the payoff of each item for each agent must be a function of the
number of cache requests it services. This in turn depends on the
number of agents who cache a given item since each agent has lim-
ited storage space (due to form factor, current 3G devices only have
a couple of MB flash memory [1]). Therefore, each selfish agent
may change the set of items it cached in response to the set of items
cached by others. This leads to a non-cooperative caching scenario
which we model as a market sharing game.

In the market sharing game, the primary questions are whether
the system converges, i.e., results in a pure strategy Nash equilib-
rium and how long it will take to converge. The goal of the service
provider is to offload as many cache requests as possible to the ad-
hoc network. We refer to this goal as the social optimum. However,
given the selfish behavior of the agents, it is unlikely to result in a
social optimum. Therefore, we would like to bound the ratio be-
tween the optimum solution and the outcome of the selfish behavior
of players. We refer to this ratio as the price of anarchy. Further-
more, when computing the selfish behavior of individual players it
is essential to consider the computational constraint on the individ-
ual subscribers. We model computationally bounded agents using
approximate algorithms and evaluate how fast the selfish behavior
of such agents will converge to an approximate Nash equilibrium
or arrive at an approximate solution to the social function.

The main contributions of this paper are as follows: First, we
study the applicability of non-cooperative caching in wireless net-
works and propose a detailed protocol that provides incentives for
selfish agents to service other agents while discouraging collusion
among participating agents. We model the caching game among the
different mobile users as a market sharing game. We show that this
is a special case of congestion games. It is known that pure strategy
Nash equilibria exist for these games. We give a polynomial-time
algorithm to find a pure strategy Nash equilibrium for the special
case of uniform market sharing games where all items are of the
same size. We know that it is NP-Hard to find such an equilibrium
in the general market sharing game. As for the performance of
Nash equilibria, we obtain the upper bound on the price of anarchy
for two different cases. In the general case where the popularity
of the items is arbitrary, the price of anarchy is upper bounded by
2. When the popularity follows a Zipf distribution we have an up-
per bound of 1.45 in the special case where caching any item has
a positive reward for all players. We give an example that shows
that the factor 2 is tight in the general case even with Zipf distribu-
tion. We also consider the case of computationally bounded agents
by modeling them using approximation algorithms. We prove that,
after each agent computes its response function once using a con-
stant factor approximation algorithm, the outcome of the game is
within a factor of O(log n) of the social optimum where n is the
number of selfish agents. We also show that this bound is tight up
to a constant multiplicative factor. We also evaluate our algorithms
using simulation scenarios and show that the price of anarchy in
our network setting is less than 70% of the worst-case analysis. We

also demonstrate that in most cases the system converges to a Nash
equilibrium in one or two steps of each player. Step is defined as
the greedy action of a player to change to a different set of items
given the actions of other players.

The rest of the paper is organized as follows. In section 2, we
propose a detailed protocol for offloading content distribution from
3G wireless networks to ad-hoc networks. In section 3, we discuss
our incentive mechanism and show that it prevents or discourages
collusion. In section 4, we formulate the non-cooperative caching
problem as a general market sharing game. In section 5, we ana-
lyze the price of anarchy of our market sharing game and in sec-
tion 6, we show that pure strategy Nash equilibrium exists, but it is
NP-complete to find such an equilibrium. We also provide a poly-
nomial time algorithm to find a pure strategy Nash equilibrium for
the special case when all the items have the same size. In section 7,
we model computationally bounded agents by approximation al-
gorithms and analyze the outcome of their selfish behavior. We
observe that such agents converge to an approximate Nash equi-
librium. We also show that, after one step of improvements the
outcome of the game is within an O(log n) factor of the optimum.
In section 8, we investigate the price of anarchy for a set of sample
instances and the convergence rate to exact and approximate Nash
equilibria. Related work is provided in section 9. A discussion on
our results and other relevant issues are described in section 10. We
conclude in section 11.

2. SYSTEM ARCHITECTURE, TRUST
MODEL AND PROTOCOLS

In this section, we briefly discuss the system architecture and the
trust model for distributed non-cooperative caching. We then out-
line the protocols required for offloading popular data items from
3G networks to the multi-hop ad-hoc network. Our architecture
is largely the same as UCAN [9]. In our system architecture we
assume the following:

� A service provider operates a 3G data network, e.g. 1xEV-
DO, CDMA2000-1X, etc. The cost of retrieving an item
from the service provider is assumed to be significantly higher
than obtaining the same item from the ad-hoc network.

� The mobile device of each subscriber has a 3G interface as
well as an IEEE 802.11 radio interface so that it can receive
data from the 3G data network and can participate in ad-hoc
forwarding.

� Users are selfish and act rationally. A user’s primary objec-
tive is to maximize its own utility. The utility is in terms of
obtaining the item of interest or monetary gains for forward-
ing or serving the requested item to another subscriber in the
network.

� Users trust the service provider network for correct account-
ing, authentication and packet transmission. We do not deal
with malicious users in this paper. However, users could col-
lude arbitrarily if they can benefit by doing so.

Each node u has a shared key Ku with the service provider.
When node u requests an item from the service provider, the provider
first checks whether the item has been cached by other local resi-
dent subscribers (subscribers keep the providers updated about the
items they cache). If there are no cached copies for the item, the
provider will service u directly. However, if the item is available
through a subscriber cache, the provider will instruct u to look
for the item in the ad-hoc network. Along with this response the
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Figure 1: Protocol Messages

provider also sends descriptive information regarding the item re-
quested, for example the item ID and the size. Alternatively, if a
node knows the item ID, it can request the item from the ad-hoc
network directly. Our protocol messages are illustrated in Figure 1.
The first message is optional if the node knows the item ID.

Node u then broadcasts a CacheReq message for the specific
item to all k neighbors in the ad-hoc network. Node u includes a
Message Authentication Code (MAC) in the CacheReq message.
See [9] for details on how to construct MAC codes. The CacheReq
message includes the address of u and the requested item ID. Upon
receiving the message any resident node that has the requested item
will send a CacheReply message to u and attach its MAC com-
puted using its shared key with the provider. The ad-hoc network
performs source routing and therefore the final message received
by the node u will contain a string of MACs or a layered MAC [19]
for all the intermediate hops.

Node u may receive multiple CacheReply messages. It may
choose to be serviced by the resident subscriber that has the mini-
mum number of hops. Node u asks the service provider to authen-
ticate the chosen route by sending an authenReq message. The ser-
vice provider in turn registers the transaction along with the route
used. When the BS receives the authenReq and sessionKeyRq mes-
sage, the BS constructs a RouteAuthen message. The message con-
tains a list of (Session ID (SID), source u, destination v, previous
hop, next hop, item size) encrypted using the shared key of each
node along the path. An intermediate node w forwards traffic for
session SID only if it can decode one (SID, u, v, previous hop,
next hop, item size) using Kw shared with the service provider.
Once the route authentication has been completed, node u sends
an itemGet message to the source node v. When node v receives
the itemGet message, it requests a session key Ks from the BS by
sending a sessionKeyReq message. This message contains the ses-
sion ID and the source ID v and destination ID u. The BS responds
with a session key encrypted using Kv .

Upon receiving the session key the data item is encrypted us-
ing this key. Node v appends a MAC to each packet of the data
item using key Kv and it then sends the packet on the ad-hoc net-
work. Each intermediate node w computes a MAC over the re-
ceived packet using key Kw it shares with the service provider. It
replaces the MAC in the received packet with this new MAC (for
details of MAC layering, see [19]) and sends the packet to the next
hop. During data transfer in the ad-hoc network each intermedi-
ate node monitors the packets that are being forwarded by the next
node in order to prevent misuse of the authenticated ad-hoc path.

When the entire file transfer has been completed node u requests
the session key from the BS to decode the data received. When
an intermediate relay node forwards data by more than a threshold
of the itemSize, it will inform the BS. Forwarding nodes also ran-
domly sample packets with a low probability and report the packet
along with its contents to the BS.

Our protocol is lightweight. For one item transfer we have at
most 6 short messages between the service provider and the nodes
involved plus a small percentage of random sampled packets re-
ported to the BS.

3. CREDIT ACCOUNTING AND AUDITING
In this section, we discuss mechanisms that aid in tracking the

credits for resident subscribers and mechanisms that prevent or dis-
courage cheating and collusion among the participants to gain false
credits. We also present schemes for charging and rewarding.

There are two types of monetary rewards (1) Ri for successfully
servicing the query for item i and (2) fi for forwarding the query.
Ri > fi and for a given item the total forwarding reward is fixed
and shared equally among the forwarding nodes. Both types of
rewards are a function of the file size of the item. The receiving
node is charged C0(i) if it obtains the item from subscribers in the
ad-hoc network. While if the data item is obtained from the service
provider the receiving node is charged CS(i). CS(i) is much larger
than C0(i). Participating nodes are charged or rewarded only if BS
determines that the item transfer is successfully completed. The
service provider can tune Ri and fi so that a critical number of
resident subscribers are willing to participate in caching the popular
items.

Our data transfer protocol proposed in the previous section pro-
vides no incentive for the following types of behavior.
Stealing reward from forwarding nodes:The repeated collusion
of the sender and receiver to leak the session key over a covert
channel thus cheating the forwarding nodes of their rewards is pre-
vented by the record keeping done by the base station. This record
keeping is accomplished by the random sampling of packets in the
intermediate nodes and the information obtained is used to black
mark source-destination pairs for attempting to cheat the forward-
ing nodes.
Refusal to pay by the receiver:The receiver u cannot refuse to
pay if it requires the session key from the base station in order to
decrypt the content. If it resorts to a covert channel between the
sender and receiver to obtain the session key, then BS can deter-
mine with high probability that the session is complete through the
sampled packets from forwarding nodes.
Impersonate the sender:There is no incentive to impersonate the
sender since a sender only gets paid if the receiver acknowledges
the service provider about a successful completion of the data trans-
fer. The provider will only pay the original sender that was regis-
tered in its database.
Packet dropping:There is no incentive for intermediate nodes to
drop packets since they are credited only if the item is transfered
completely and the credit is based on the size of the item, not
the amount of data relayed. If they try to implicate the sender
and receiver by selectively dropping packets, based on session fail-
ure statistics from other sessions which involves the same sender-
receiver pair, but not these intermediate nodes, the BS can deter-
mine with high probability that these intermediate nodes cheated.
Free riding: (1) Since intermediate nodes only forward traffic for a
session if it receives authentication from the BS, the source cannot
collude with the receiver such that the intermediate nodes do not get
paid. (2) The source node or any intermediate node cannot collude
with another intermediate node to piggyback data. The ”man-in-
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the-middle” victim knows the size of the item, and it can report this
to the provider. Although an individual node is not to be trusted,
if many nodes report the same problem with the source node, the
provider can punish the source. An intermediate node has no incen-
tive to implicate the source falsely since reporting to the provider
incurs a cost. However if all the intermediate relay nodes are col-
luding nodes, then they merely form a cooperative ad-hoc group.
In our protocol we require that intermediate nodes sample packets
and report them to the BS. If the BS cannot decrypt the packet cor-
rectly due to piggybacked extra data, the BS knows that someone
has changed the packet. (3) If a destination node colludes with an
intermediate node to get a free ride for their own data and drops le-
gitimate traffic, the destination will have a high session failure rate.
The BS can blacklist all such nodes with a high session failure rate.
In addition, due to the fact that packets are sampled to the BS, the
BS knows that the packet has been changed. (4) If two relay nodes
collude and get a free ride on their data and drop legitimate traf-
fic, monitoring by the previous hop node who sent legitimate traffic
will reveal that packets other than the one it sent got transmitted.
The monitoring node can then report this to the provider. Based
on such reports from many sessions, the provider can determine
a cheating node with high probability. In all the above cases, if
the BS knows that data has been tampered by intermediate nodes
from MAC decoding failure, the BS can take immediate actions,
e.g. asking the destination to locate another node with the item or
find an alternative route.
Suboptimal routes:There is less incentive for a node to add other
nodes in the route since a fixed reward is divided among all for-
warding nodes. In addition, since the receiver is likely to select the
shortest route there is no advantage to announcing a longer route.

4. PROBLEM FORMULATION
In this section, we formalize our caching problem abstractly in

terms of a competitive market sharing game.
We are given a bipartite graph G = (H [ U;E) where U is the

set of agents or players and H is the set of markets. There is an
edge between agent j and market i if market i is of interest to agent
j (we write j is interested in market i). Each market i 2 H has a
query rate qi, i.e. the rate at which market i is requested per unit
time. Each market i also has a cost Ci corresponding to the cost
for servicing this market. Each agent j has a total budget Bj . Each
agent should decide which subset of markets to service. Agent j
can service a subset Sj of markets, if the sum of the costs Ci of the
markets in Sj is less than or equal to Bj . Agent j gets a reward Ri
for providing service to market i. This reward for market i depends
on the number of agents that serve this market. More precisely, if
the number of agents that serve market i is ni then the reward Ri
is equal to qi

ni
. Observe that the total reward received by all players

equal the total query rate of the markets being serviced (by at least
one player). Let the number of players be n and the number of
markets be m, i.e, jU j = n and jHj = m.

We now define the necessary game theoretic notations to for-
mally describe the problem. The game is defined as the tuple (U;
fAjg; fPj()g) where U is the set of players or agents. Aj is the
set of actions or strategies for player j and Pj : �jAj ! R is
the payoff or utility function for agent j given the set of actions of
all the players. In our model, feasible actions are the set of mar-
kets that can be serviced under the given budget constraint. We
denote player j’s action by Sj . Thus, Sj is a feasible action ifP

i2Sj
Ci � Bj . Given the set, S , of actions for all agents, we

can find the number of agents ni that serve market i, and hence
find the reward of each market. The payoff or utility function of

player j is the sum of rewards it gets from the markets it serves,
i.e., Pj(S) =

P
i2Sj

qi
ni

where Sj is the set of markets j serves.
In this game, each agent wants to maximize its own payoff. The so-
cial function is the total amount of queries satisfied in the market,
i.e., 
(S) =

P
i2[j2USj

qi for S = (S1; S2; : : : ; Sn). Notice
that this is also the sum of the utility functions of all players. We
call the above game a market sharing gameand the special case of
uniform cost for all markets a uniform market sharing game.

It is obvious that, in a market sharing game, given the set of
actions of other players, the best action of an agent can be obtained
by solving a knapsack problem where the value of market (item) i
is equal to qi

ni
or qi

ni+1
depending on whether market i is currently

serviced by this player or not. The size of i in the knapsack instance
is Ci, and the knapsack capacity is equal to Bj .

Example: The subscriber caching game described in the intro-
duction is one example of a market sharing game. Agents or play-
ers correspond to subscribers and markets correspond to data items.
Query rate of market i is the query rate of item i. The cost Ci cor-
responds to the size of item i and the total budget Bj of agent j
corresponds to the available storage space on the subscriber’s de-
vice.

As mentioned above, in this market sharing game, a feasible ac-
tion Sj is a feasible solution to the knapsack problem of player
j. An action profile is a vector of actions of all players: S =
(S1; S2; : : : ; Sn). An action profile S is a pure strategy Nash
equilibrium, if for any player j, given the strategies of all other
players, j has no incentive to change its strategy Sj to any other
subset to improve its payoff. A mixed strategy Nash equilibrium is
a randomization over different pure strategies such that fixing other
players’ strategy, each player maximizes its expected payoff using
the current strategy. Nash equilibria characterize the set of can-
didate action profiles that selfish players will eventually converge
upon if at all. The general market sharing game described here is
a special case of congestion games [16]. These games have been
studied in the economics literature and the existence of a pure Nash
equilibrium has been established.

As mentioned earlier, we focus on market sharing games that
have a central authority with a social objective function to be ac-
complished by means of competitive market sharing. Therefore
given a social function, we want to bound the price of anarchy,
i.e., the worst-case ratio between the social function value at the
optimum and at any Nash equilibrium.

5. PRICE OF ANARCHY

5.1 General Distribution
Studying the outcome of games in terms of their price of anarchy

is a natural way to evaluate the outcome of a game. Valid games, in-
troduced by Vetta [21], is a set of non-cooperative games for which
Vetta proved upper bounds for their price of anarchy. We show that
the market sharing game is in this class of games which implies that
its price of anarchy is at most 2. In fact, this bound for the price of
anarchy can be obtained without referring to valid games and this
is done in the appendix as the proof of Corollary 5.5. The main
advantage of proving this bound using valid games is that it can be
generalized to more general variants of market sharing games. In
order to state this result, we need the following definitions.

DEFINITION 5.1. A function of the formf : 2H ! R is called
a set function. A set functionf : 2H ! R is submodular iff(;) =
0 and for any two setsA;B � H, f(A) + f(B) � f(A \ B) +
f(A [ B). This function is a non-decreasing function, if for any
X � Y � H, f(X) � f(Y ).
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Given an action profile S = (S1; : : : ; Sn), the set HS = f(k; i) :
1 � k � n; i 2 Skg is called the pair set forS . Given a function
f : �kSk ! R, the corresponding set function, fs, of f is a
set function of the form 2H ! R where H = f(k; i) : 1 �
k � n; 1 � i � mg and fs(HS) = f(S). In other words,
fs(K) = f((A1; A2; : : : ; An)) if Aj = fi : (j; i) 2 Kg.

DEFINITION 5.2. Let G(U; fSjg; fPj(�kSk)g be a noncoop-
erative game with social function
 : �kSk ! R. G is called a
valid game if it satisfies these properties:

� 
s, the corresponding set function of
, is submodular and
non-decreasing.

� The payoff of a player is at least equal to the difference in
the social function when the player participates versus when
it does not participate.

� The sum of the utility or payoff functions for any set of strate-
gies should be less than or equal to the social function.

THEOREM 5.3. [21] Let G be a valid game, then for any mixed
strategy Nash equilibrium, the social function at this equilibrium is
at least half the optimum social function, i.e., in a Nash equilibrium
A, 
(OPT) � 2E[
(A)].

THEOREM 5.4. A market sharing game is a valid game.

Proof: We need to show that our social function given by 
(S) =P
i2[j2USj

qi satisfies the three properties itemized above:

� First, it is clear that 
s is non-decreasing. To show its sub-
modularity, we use an equivalent definition of submodular
functions: A set function f is submodular if for any two
subsets A and B such that A � B and for any element
i =2 B, f(A [ fig) � f(A) � f(B [ fig) � f(B) (see
for example Lemma 2.2 of [15]). Thus, in order to prove
that 
s is submodular, it is enough to prove that for two
(possibly infeasible) action profiles S = (S1; : : : ; Sn) and
S 0 = (S01; : : : ; S

0
n) such that Sj � S0j for all j 2 U , by

adding a new market i to the action set of any player, j, the
increase in 
s for S is no less than the increase for S0. If
market i is not in [j2US0j , its addition to one of the S0j in-
creases 
s by qi. In this case, market i 62 [j2USj , because
[j2USj � [j2US

0
j . Thus, adding market i to S also in-

creases 
s by at least qi. If i is in [j2US0j , adding i will not
increase 
s. Thus in any case, the increase for S is no less
than the increase for S0.

� The difference in the social function when j plays Sj or
empty (does not play at all) is equal to

P
i2Sj :ni=1 qi and

this is indeed less than or equal to
P

i2Sj

qi
ni

.

� By the definition of our social function, we have
P

j2U Pj(S)

= 
(S) and therefore the third property is satisfied as well.
�

To deal with the situation in which agents only compute an ap-
proximate solution to the knapsack problem, we consider approx-
imate Nash equilibria. A �-approximate Nash equilibrium is an
action profile in which no player can increase its payoff by a factor
more than � by switching its strategy (while keeping other strate-
gies unchanged). As an extension of Theorem 5.3, Vetta proved that
the social value of a �-approximate Nash equilibrium is at most
� + 1 times the optimal social value [21]. Using this result and
Theorem 5.4, we have the following corollary:

COROLLARY 5.5. The social value of a�-approximate Nash
equilibrium is at most� + 1 times the optimum social function
value.

This corollary can be proved directly without referring to valid
games, see appendix. The proof based on valid games can be gen-
eralized for more general variants of market sharing game and is
discussed in Section 10.

5.2 Zipf Distribution
In the general case, we have a factor of 2 for the price of anarchy.

This provides an upper bound on the ratio and is a worst-case anal-
ysis. However we can prove better bounds for special cases. One
important special case is when query rates qi follow the power law
(Zipf) distribution, namely, qi = 1

i�
for a parameter 0 < � � 1.

These distributions are important, because it has been observed that
in many practical situations demand curves follow these distribu-
tions [3].

In this section, we prove that in a uniform market sharing game
if all players are interested in all markets, the price of anarchy is
less than 1:45 + o(1) in the worst case, where o(1) depends on n,
i.e. o(1) tends to 0 as n ! 1. Furthermore, for cases in which
the given bipartite graph is not complete or markets have different
costs, we prove that the factor 2 is tight.

THEOREM 5.6. In the uniform market sharing game, if the given
bipartite graph is complete and query rates are from a Zipf distri-
bution, then

� The price of anarchy is less than or equal to 1
(1��)1��

+o(1)

for any� < 1. In particular, it is less thane
1
e + o(1) <

1:45 + o(1) for any� < 1 and it tends to1 + o(1) when
�! 1.

� For � = 1, the price of anarchy is
�
1 + ln ln(n)

ln(n)

�
(1+o(1)).

Proof: Suppose the given bipartite graph is complete. Consider a
Nash equilibrium and let p be the least index such that the players
do not select p but select all markets 1 to p�1. No market beyond p
can be selected by any player, since otherwise such a player would
have an incentive to switch to market p, thus qi

ni
� qp or 1

nii
� �

1
p�

for 1 � i � p� 1. Summing over all markets 1 � i � p� 1,

we get
Pp�1

i=1
1
i�

� (
Pp�1

i=1 ni)
1
p�

. Letting Q�(k) =
Pk

i=1
1
i�

,
we get p�Q�(p� 1) � n. As OPT can at best serve all markets,
we have that the price of anarchy is at most Q�(n)

Q�(p�1)
.

We consider the two cases � = 1 and � < 1 separately. We
start with � = 1. We need to compute Q1(n)

Q1(p�1)
. From ln(n) �

Q1(n) � ln(n) + 1, it is not hard to see that p > n
ln(n)

, for suffi-
ciently large n. Therefore,

Q1(n)

Q1(p� 1)
�

ln(n) + 1

ln(n�ln(n)
ln(n)

)

�
ln(n) + 1

ln(n� ln(n))� ln ln(n)

= 1 + o(1);

where the last step can be proved using L’Hopital’s rule when
n!1.

We now consider the case � < 1. Let L�(k) = 1
1��

(k1���1),
then it is easy to see L�(k) � Q�(k) � L�(k) + 1. Using this
fact, we can bound the ratio limn!1

Q�(n)
Q�(p�1)

. Observing the facts
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that p!1 and L�(p� 1)!1 and � is a positive constant less
than 1, we can compute the bound as follows:

lim
n!1

Q�(n)

Q�(p� 1)

� lim
n!1

L�(n) + 1

L�(p� 1)

= lim
n!1

n1�� � 1

(p� 1)1�� � 1

� lim
n!1

(p�Q�(p� 1))1��

(p� 1)1�� � 1

� lim
p!1

(p�(L�(p� 1) + 1))1��

(p� 1)1�� � 1

� lim
p!1

p�(1��) 1
(1��)1��

(p1�� � 1)(1��)

(p� 1)1�� � 1

= lim
p!1

p(1��)� 1
(1��)1��

((p� 1)1�� � 1)�

= lim
p!1

1

(1� �)1��

�
p1��

(p� 1)1�� � 1

��

=
1

(1� �)1��

Now, one can observe that this bound is less than e
1
e for any � < 1

and is equal to 1 as � tends to 1. �

THEOREM 5.7. The factor 2 for the price of anarchy of uniform
market sharing game is tight even for Zipf distributions if the given
bipartite graph is not complete. Moreover, this bound is tight for
general market sharing game even if the given bipartite graph is
complete.

Proof: We give an example with qi = 1
i
. There are n2+n markets

and n2 players. Players are partitioned in n groups of size n. Play-
ers in group k are interested in markets k; kn+1; kn+2; : : : ; kn+
n. All budgets and costs are equal, i.e., for all 1 � i � n2 + n
and 1 � j � n2, Bj = Ci = c. Now, it is not hard to see
that there exists a Nash equilibrium in which all players of group
k provide market k. Thus, there exists a Nash equilibrium with
the social value Hn = 1 + 1

2
+ � � � + 1

n
. However the opti-

mum is to assign a new market to each player. As a result, all
markets are provided except n of them. The value of this assign-
ment is Hn2+n �

Pn
i=1

1
in+n

= Hn2+n �
Hn

n+1
. Thus the ratio is

H
n2+n

Hn
� 1

n+1
which is equal to ln(n2+n)

ln(n)
= 2 as n!1.

The proof that this bound is tight for general market sharing
games is based on an example similar to the above one. The given
graph is complete. The only difference is that the budgets of players
in group k are n�k. The cost of items k; kn+1; kn+2; : : : ; kn+
n� 1 is also n� k for 1 � k � n. The cost of the item kn+ n is
large. It can be shown that the same Nash equilibrium has the price
of anarchy 2. Details are omitted here. �

6. FINDING A NASH EQUILIBRIUM
Nash proved that any strategic game has a mixed Nash equilib-

rium [12]. However, there are strategic games that have no pure
strategy Nash equilibrium. Furthermore, the complexity of find-
ing a (mixed) Nash Equilibrium for strategic games is still an open
problem.

In the market sharing game, if we have only one player, finding
a Nash equilibrium corresponds to solving optimally a knapsack

problem. Thus, the problem of finding a Nash equilibrium in this
market sharing game is NP-hard. However, a Nash equilibrium
always exists. An existence proof comes from a general frame-
work defined by Rosenthal [16] for congestion games, as our mar-
ket sharing game is a special case of such games. In the appendix,
we sketch this proof.

THEOREM 6.1. [16] A pure strategy Nash equilibrium always
exists for the market sharing game.

In the rest of this section, we give a polynomial-time algorithm
for finding a pure strategy Nash Equilibrium for the uniformmarket
sharing game (and this will at the same time prove the existence of
such a Nash equilibrium). One main feature of the uniform vari-
ant is that it is easy for player j to determine its optimum strategy,
given the set of strategies for other players. Indeed, player j only
needs to solve an easy maximization problem corresponding to se-
lecting the kj most rewarding markets, where kj = b

Bj
C
c. We

could therefore let players repeatedly and optimally improve their
strategy, but the main issue is to show that such a process converges
to a Nash equilibrium in polynomial time. In fact, we will not an-
alyze this algorithm. Instead we analyze an iterative algorithm in
which each agent is restricted to a set of changes at each step. This
proves that if players changes according to these restrictions, they
will converge to a Nash equilibrium in polynomially many steps.
It would imply that Nash equilibrium can be found in polynomial
time. An iterative algorithm to find a Nash equilibrium navigates
the state graphdefined below.

DEFINITION 6.2. The state graph, D = (V; E), is a directed
graph. Each vertex inV corresponds to an action profile. There is
an arc from vertexS to vertexS0 with labelj if the only difference
betweenS andS0 is the action of agentj and the payoff of player
j in S is strictly less than her payoff inS0.

Any vertex in the state graph without any outgoing arc (a sink)
corresponds to a Nash equilibrium. Thus in order to prove that a
Nash equilibrium exists, we can show the existence of a sink in the
state graph. In the following theorem, we give a polynomial-time
algorithm to find such a vertex in the state graph.

THEOREM 6.3. For the uniform market sharing game, a pure
strategy Nash equilibrium always exists and can be found in poly-
nomial time. Furthermore, it can be obtained by traversing a path
of length at mostm2n in the state graph.

Proof: Our algorithm for traversing the state graph and finding
a sink proceeds in rounds. The first round starts at the vertex ;
corresponding to the set of empty actions. In each round, the first
arc traversed corresponds to a player, say j, switching from Sj to
S0j where S0j = Sj [ fig. In other words, player j only adds
precisely one market to its strategy. We refer to this first arc as an
addarc. After this first arc, subsequent arcs in a round are change
arcs. These correspond to a player, say j, replacing Sj by Sj [
fig n fkg, where i =2 Sj and k 2 Sj ; player j exchanges market
k for market i. Furthermore, given j and k, i is selected among all
possible markets i of interest to j and not currently in Sj in order
to maximize j’s payoff. A round finishes when there are no change
arcs out of the current vertex. Subsequent rounds start at the vertex
where the previous round finishes, unless this vertex has no addarc
outgoing from it in which case this is the last round.

First, observe that when the last round finishes, the current ver-
tex has no add or changearcs and therefore must be a pure Nash
equilibrium. This implicitly uses the fact that we are dealing with
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a uniformmarket sharing game and therefore any maximal strategy
for player j can be obtained from any other maximal strategy by
exchanging in and out two markets at a time. Furthermore, at the
end of each round, the current state has no changearcs outgoing
from it, which implies that it corresponds to a pure Nash equilib-
rium if we suitably modify the budgets of each player (so that they
cannot add markets).

As one player adds a market at the beginning of each round, the
number of rounds cannot be greater than mn. We now show that
each round ends, and in fact ends after traversing at most m � 1
changearcs (and one addarc).

Let us focus on one round and let ni be the number of players
servicing market i at the beginningof a round. For simplicity, we
assume that the markets are sorted in such a way that q1

n1+1
�

q2
n2+1

� � � � � qm
nm+1

. Consider any vertex in the round after the
first addarc. Let Sj be the markets currently served by j and let Tj
be the markets of interest to j (i.e. i with (j; i) 2 E) not in Sj . For
player j, let s(j) denote minfi 2 Tjg. We show by induction that
the following properties hold throughout the round:

1. For any player j, s(j) does not decrease during the round.

2. Every market i is covered by ni players, except one, denoted
by p which is covered by np + 1.

3. For any player j, any market i 2 Sj and any market k 2 Tj
we have qi

ni
� qk

nk+1
.

Properties 1 and 2 are obviously true after the first add arc corre-
sponding to player, say l, adding market p. Property 3 is also true
after the first addarc. Indeed, the condition reduces to the fact that
the last round ended in a pure Nash equilibrium except for the case
where j = l and i = p where it follows from the choice of p:
qp
np

>
qp

np+1
� qk

nk+1
.

We see now what happens when we traverse a changearc corre-
sponding to player l exchanging two markets. Condition 3 implies
that l leaves market p since all other markets do not increase l’s pay-
off. Thus property 2 is maintained after the change (with a different
value for p). Secondly, l will now serve market s(l) by definition of
s(l). This implies that qp

np+1
<

qs(l)

ns(l)+1
, i.e. s(l) < p. This means

that property 1 is also maintained. To verify that Property 3 is still
maintained, we only need to consider the cases in which j = l and
either k = p or i = s(l). If i = s(l), property 3 follows from the
definition of s(l):

qs(l)

ns(l)
>

qs(l)

ns(l)+1
� qk

nk+1
. If k = p, it follows

from qi
ni
�

qs(l)

ns(l)+1
>

qp
np+1

.

All three properties are maintained during the round. Further-
more, since player l replaces market p by market s(l) and s(l) < p,
we have that p decreases as we traverse changearcs. This implies
that we have at most m�1 changearcs in a round. This proves our
bound of nm2 on the length of the traversal we construct before
reaching a pure Nash equilibrium.

�

In order to run the algorithm, we actually do not need to construct
the entire state graph. We only need to be able to find the next arc
to traverse, and this can be done in O(m+ n) time, resulting in a
total running time of O((m+ n)m2n).

7. GREEDY BEHAVIOR ANALYSIS
Although we have proved that the price of anarchy for a Nash

equilibrium is upper bounded by 2, there are still two main issues
that are left unaddressed. First, converging to an exact Nash equi-
librium in a way described in Theorem 6.1 requires agents to solve
optimally an NP-complete knapsack problem in order to find their

best response. Considering the computational constraints of ratio-
nal agents, we consider agents that choose their action based on
an approximation algorithm for knapsack. The second issue is the
speed with which the agents can converge to a Nash equilibrium or
an approximate Nash equilibrium. We consider both issues in this
section.

In the proof of theorem 6.1 given in the Appendix, we see that if
agents improve their payoff, they will converge to a Nash equilib-
rium after finitely many steps (since the potential function can take
only finitely many values and increases with every improvement).
This result can be generalized to the setting in which each agent
chooses its action using a �-approximation algorithm for knap-
sack (keeping the actions of all the other players unchanged). A
�-approximation algorithm is a polynomial-time algorithm guar-
anteed to return a feasible solution of value (i.e. payoff) at least
1=� times the optimum value.

THEOREM 7.1. If all players rely on a�-approximation algo-
rithm to improve their actions, they will converge to a�-approximate
Nash equilibrium in finitely many steps.

From Corollary 5.5, we know that such a �-approximate Nash equi-
librium gives a social function value within a factor � + 1 of the
optimum social function value.

The proof of the above theorem is similar to that of Theorem
6.1. Using the same potential function, one observes that, after
finitely many steps, no agent will be able to improve its action, and
therefore, we will have reached a �-approximate Nash equilibrium.

The above theorem, as well as Theorem 6.1, do not bound the
number of steps needed for players to converge to an equilibrium.
In the remainder of this section, we analyze a greedy behavior of
the players, greedy upon arrival, in which players enter the game
one by one and select their first action by using a �-approximation
algorithm for knapsack for some constant �. We show that after the
players have selected their first action, i.e. after each player makes
just one decision, the resulting action profile has a social function
value within a logarithmic factor of the optimum social function
value.

THEOREM 7.2. If each player chooses its first action using a
�-approximation algorithm then the social function of the result-
ing action profile is at least 1

(�+1)Hn
of the optimum social value,

whereHn = 1 + 1
2
+ � � � + 1

n
� ln(n) + 1. Moreover, this

logarithmic bound is tight, up to a multiplicative factor.

Proof: For the purpose of the analysis, we consider the following
restricted multiple knapsack problem (RMKP) corresponding to an
instance of our market sharing game. In an instance of the RMKP
problem, there are m groups of n items each for a total of mn
items. The n items in group i all have size Ci, for 1 � i � m.
The values of items in group i are (qi;

qi
2
; qi
3
; : : : ; qi

n
). There are

n bins with capacities (B1; B2; : : : ; Bn). Bin j can get an item in
group i iff agent j is interested in market i ((j; i) 2 E(G)). We
are only allowed to place at most one item of each group in a bin,
and the goal is to place (some of the) items in bins so that the size
assigned to every bin is at most its capacity and the total value of
items assigned is maximized. Given the objective function, we can
focus our attention on algorithms for which an item of group i is
not assigned to any bin if a higher valued item of the same group is
not assigned to any bin. We prove our claims using the following
lemma:

LEMMA 7.3. Consider the following greedy algorithm forRMKP
problem: arbitrarily order bins, pack bins one at a time using a�-
approximation algorithm for the single knapsack problem instance
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for the current bin (considering only the highest valued item re-
maining for each group) and discard the packed items. Then the
resulting assignment is a� + 1-approximation forRMKP.

Proof: Let OPT be an optimum solution of RMKP. Let Aj be the
set of items in bin j in OPT which do not appear in the greedy
solution in any bin, and Xj their total value. Let Bj be the set
of items in bin j in the greedy solution, and Yj their total value.
Observe that if Aj and Bj each contain a (possibly different) item
of group i then the value of the item, say p, in Aj is no larger
than the value of the item, say q in Bj (since p does not appear in
the greedy solution in any bin). Since we use a �-approximation
algorithm for filling each bin, �Yj � Xj . Thus �

P
1�j�m Yj �P

1�j�m Xj � OPT�
P

1�j�m Yj , where by abuse of notation
OPT also denotes the value of the optimum solution. Thus, (� +
1)
P

1�j�m Yj � OPT as desired. �

We are ready to continue the proof of Theorem 7.2. If ni is the
current number of agents servicing market i, the current value of
this market is qi

ni+1
for a new agent. Equivalently, we can con-

sider a new market of value qi
ni+1

. In this way, we add different
copies of the same market with different query rates and the same
size. The only restriction is that no player can provide two mar-
kets of the same group. Now one can observe that after one step
of greedy behavior by each player, the resulting action profile is
equivalent to the assignment of the greedy algorithm from Lemma
7.3 for RMKP. Let the resulting assignment be G. Now we prove
that the sum of Yj’s over all players is at most Hn times the sum
of payoffs of players in G (where Yj is defined in Lemma 7.3). InP

j2U Yj , the sum of terms corresponding to markets of group i is
at most qi+

qi
2
+ : : :+ qi

n
= qi �Hn, while market i contributes to

the sum of payoffs in G as qi. Thus
P

j2U Yj � Hn

P
j2U Pj(G).

In an instance of RMKP there are extra markets. Therefore, the
optimum solution of RMKP, OPT0, is greater than or equal to the
optimum social function value, OPT. Thus,

(1 + �)Hn

X
j2U

Pj(G) � (1 + �)
X
j2U

Yj � OPT0 � OPT

as desired.
Furthermore, this bound is tight up to a multiplicative because

of the following example with n markets and n players: Let qi =
n
i
� � for all 1 � i � n where � is sufficiently small. Player

j is interested in item 1 and items j; j + 1; : : : ; n. All costs and
budgets are the same and are equal to 1. It is easy to check that
if players choose their initial action in the order 1; 2; : : : ; n then
in the resulting assignment after each player makes one decision
the only provided market is market 1. However, in the optimum
assignment all markets are provided. Thus, The ratio between the
optimum and the value of the resulting assignment is 
(log n) after
one step from each player. �

one can show that if �-approximate players continue optimiz-
ing their payoff after the first round, the outcome of the game will
remain within an O(log n) of the optimum.

8. EVALUATION
In this section we investigate the efficiency of our decentralized

caching scheme in a simulated network scenario. We are interested
in obtaining the price of anarchy and determining how quickly the
game converges to an exact or approximate pure strategy Nash
equilibrium. We investigate the advantages of the greedy behav-
ior in terms of the payoff function as well as evaluate how far it is
from the social optimum.

We generated 10 random networks, each with 100 nodes (resi-
dent subscribers). These nodes are randomly placed in a 800�800

rectangular region. Each node has an 802.11b interface and has a
maximum transmission radius of 115 units. Each item has a radius
of interest RI , i.e., only nodes within that radius of interest benefit
from caching the item. We vary this radius from 200 to 700. In
our simulation the effect of the transit subscribers is captured by
the query rate. We assume a query can originate from anywhere in
the network within the item’s radius of interest. We assume that we
have 1000 items whose popularity follows a Zipf distribution. We
vary the � parameter of the Zipf distribution. The items’ size is 1
unit for the uniform market sharing game and for the non-uniform
market sharing game it follows a lognormal distribution with mean
7.5 and standard deviation 1.5. Each resident subscriber can cache
at most 5 items in the uniform case, 20 units for the non-uniform
case. We focus our study on issues related to the impact of selfish
behavior on network performance and therefore, do not perform
packet level simulations. All our results are averaged over 10 ran-
dom networks.

8.1 Uniform Market Sharing Game
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Figure 2: Price of Anarchy and Number of Steps to Converge
to a Nash Equilibrium for Uniform Game

We would like to investigate the price of anarchy and how quickly
the players converge to Nash Equilibrium. Figure 2-a shows the
price of anarchy with respect to the item’s range of interest RI .
The larger RI is, the more edges in the bipartite graph between
items and resident subscribers. For Zipf distribution with � = 0:7,
the worst-case price of anarchy from our analysis is 1:45 and 2 for
complete and incomplete bipartite graphs respectively. The price of
anarchy �a from our simulation is between 1:30 and 1:36. There-
fore, �a is within 90% to 95% of 1.45 and 65% to 68% of 2. There-
fore, the price of anarchy is far from the worst case for the in-
complete bipartite graph case and close to the worst case for the
complete bipartite graph. Note that the price of anarchy function
�w = 1

(1��)(1��)
increases in interval [0 0.63] and decreases in

[0.63 1). However, according to [3], in the case of popular items, �
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is between 0:65 and 0:8. In this particular range of � we observed
that the price of anarchy �a increases only slightly as RI increases.
This is because popular items are within the range of more players
and as more players cache common items, �a increases. To see the
impact of � on the price of anarchy, we ran our simulation with
� = 0:8 and � = 1. The observations are similar to the case of
� = 0:7.

Number of Steps
1 2 3 4

percentage of Nodes 78% 20% 1% 1%

Table 1: Uniform Game: Percentage of Nodes with the Same
Number of Steps

Figure 2-b shows the average number of steps required of each
player to converge to the pure strategy Nash equilibrium. As we
can see, each player takes an average of 1.3 steps or less. Recall
that, by a step, we mean that the player changes to a different set
of items to cache in response to the action taken by other players.
Table 1 shows for a given network setting the percentage of nodes
requiring the same number of steps after an equilibrium is attained.
We see that, 78% of the players never change the set of items to
cache. 20% of them change once. Only 1% change twice and three
times. Table 2 shows the percentage of nodes with the same number
of cache replacements. We see that 78% of the players stay with the
original set of items. Only 19% replaced two items. 2% changed 4
items and 1% changed 6 items in the cache.

8.2 General Market Sharing Game
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Figure 3: The Approximate Social vs. Nash Payoff and Number
of Steps to Converge to a 2-approximate Nash Equilibrium for
General Market Sharing Game

For the general market sharing game, as finding the best re-
sponse for a player is NP-complete, we choose to investigate a 2-

approximate Nash equilibrium based on a simple 2-approximate
greedy algorithm. The algorithm [20] works as follows. Order
the items by payoff over size. Let the sorted order of objects be
a1; a2; � � � ; am. Find the lowest k such that the size of the first
k objects exceeds the cache space. Pick the more profitable of
fa1; a2; � � � ; ak�1g or fakg. We refer to the sum of the payoffs of
the items cached when the players reach this 2-approximate Nash
equilibrium as 2-approximate Nash payoff and denote it as 
N2 .

Computing the optimum social function involves solving a mul-
tiple knapsack problem. As this problem is also NP-hard, we choose
a simple 3-approximation algorithm [5]. The algorithm greedily
applies the 2-approximate knapsack algorithm for each knapsack.
We refer to sum of the payoffs of the cached items computed by
this algorithm as the 3-approximate social payoff and denote it as

S3 .

Number of Steps
1 2

percentage of Nodes 83% 17%

Table 3: General Market Sharing Game: Percentage of Nodes
with the Same Number of Steps

Number of Cache Replacements
0 1 2 3

percentage of Nodes 83% 7% 9% 1%

Table 4: General Market Sharing Game: Percentage of Nodes
with the Same Number of Cache Replacements

The performance of the approximate Nash payoff with respect
to the approximate social payoff is given by the ratio 
S3=
N2 .
Figure 3-a shows that this ratio is about 1.3 showing that the non-
cooperative caching is very efficient. Figure 3 also shows the num-
ber of steps it takes to converge to the 2-approximate Nash equi-
librium as the range of interest RI increases. Consider the specific
networking setting of RI = 200. Table 3 shows that 83% of the
players only take one step while the remaining 17% take 2 steps
to reach the approximate Nash equilibrium. Furthermore from Ta-
ble 4, we see that, 83% of players stayed with the initial set of items,
7% replaced just one item, 9% replaced two and 1% replaced three
items.

8.3 One Step of Greedy Behavior
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Number of Cache Replacements
0 1 2 3 4 5 6

percentage of Nodes 78% 0% 19% 0% 2% 0% 1%

Table 2: Uniform Game: Percentage of Nodes with the Same Number of Cache Replacements. Range of interest RI = 200

We would also like to see the payoff for one step of greedy be-
havior. Each player, when it decides to participate, caches items
according to the 2-approximate knapsack algorithm. Figure 4 com-
pares the corresponding one step greedy payoff 
K2 with the 3-
approximate social payoff 
S3 . We see that the behavior of this
payoff ratio is similar to the ratio 
S3=
N2 obtained in the previ-
ous section. In fact, the one step social payoff 
K2 is only at most
2% worse than the 2-approximate Nash payoff.

9. RELATED WORK
Caching has been widely studied in the context of wired net-

works [22]. Caching in wireless networks has recently become
a popular research area. Sailhan and Issarny [18] propose proto-
cols to enable cooperative caching in ad-hoc networks. They also
study cache management strategies that aim to reduce energy con-
sumption and network load. Xiang et al. [23] propose a coopera-
tive cache management scheme in cellular networks. They present
a simulation study of cache replication strategies in base stations
for streaming services. Nuggehalli et al. [14] present an energy-
efficient cache placement scheme. Our work studies caching in
a non-cooperative environment. The problem of non-cooperative
caching is fundamentally different from its cooperative counterpart.

The problem of how to stimulate cooperation among selfish nodes
in ad hoc networks and multi-hop cellular networks has received
significant attention recently. Zhong et al. [24] propose a credit-
based system which relies on a central authority to collect receipts
from forwarding nodes. Charges and rewards are based on the re-
ceipts. They assume the availability of public and private keys to
compute message signatures as receipts. We cannot directly apply
their scheme since we use symmetric keys rather than asymmetric
keys in our integrated 3G and ad-hoc networks. Salem et al. [19]
propose a charging and rewarding scheme to make collaboration ra-
tional for selfish nodes. Their solution is based on symmetric cryp-
tography. However, they require all data packets to go through the
base station. Since our goal is to offload the data distribution from
the base station as much as possible, their scheme cannot be ap-
plied directly in our context. Jakobsson et al. [7] propose a micro-
payment scheme for multi-hop cellular networks that encourages
collaboration in packet forwarding. The sender attaches a payment
for each packet. In our context, the sender gets paid by the re-
ceiver through the base station. In addition, it is natural to charge
per session in our context. Therefore, their scheme does not apply
directly. Reputation-based schemes such as [4] is not intended in
our context since it cannot deal with certain collusion scenarios in
our context, e.g. collusion between the sender and receiver where
forwarding nodes do not get remunerated.

Recently game theory has been found to have applications to
wireless networks [6, 2, 8]. Anderegg and Eidenbenz [2] applied
the VCG mechanism from mechanism design theory to design a
routing protocol that is guaranteed to find the most cost-efficient
path and every agent is truthful about their cost. Eidenbenz et al.
[6] proposed a topology control game that models user’s selfish
behavior in forming ad-hoc network topology. Lin et al. [8] used
game theory to propose an admission and rate control framework
for CDMA data networks. To the best of our knowledge, we are

the first to propose a game-theoretic study of caching in wireless
networks.

The issues of the efficiency of computing Nash equilibria and
considering computational constraints of the central authority and
selfish agents, and the outcome of the selfish behavior of these
agents have been investigated recently in computer science [15,
13]. The market sharing game is a special case of congestion games
introduced by Rosenthal [16]. In these games, each player chooses
a particular combination of factors out of a common set of factors.
The payoff from each factor is a function of the number of players
who have chosen this factor in their set. Milchataich [10] studied
more general settings and the length of best response paths in this
set of games. Congestion games are in a general class of poten-
tial games[11]. None of the these work considered the efficiency
of the outcome of the selfish behavior of agents or the speed of
convergence to an approximate solution or the computational con-
straints of selfish agents. We address all the above issues for the
special case of market sharing games. We consider a social func-
tion and the outcome of selfish behavior of players in terms of this
social function. Comparing the value of the social function in the
outcome of selfish behavior with the optimum value of the social
function is done via the notion of the price of anarchy. For exam-
ple, for a variant of non-atomic congestion games, Roughgarden
and Tardos [17] give some upper bounds on the price of anarchy.

10. DISCUSSION AND FUTURE RESEARCH
There are two main issues discussed in this paper. One is the

architecture for enabling mobile content distribution in ad-hoc net-
works, and the other one involves the game theoretic formulation
of the non-cooperative caching problem.

The architectural framework for mobile content distribution de-
scribed in this paper assumes that each player can determine the
amount of requests it will handle if it caches an item. In reality,
the player may not know this information. However, this infor-
mation can be estimated by observing the cache request and reply
messages of our protocol. We also assumed that only one player
changes the set of cached items at a given time. Once the change is
made, all other relevant players are assumed to become aware of the
changed payoff. In reality, multiple players may make decisions at
the same time. This issue can be addressed by using a random timer
to decide when to change thus preventing synchronization effects.
Using a timer would allow the effect of the change to stabilize be-
fore players respond to the new change. If the estimated payoff
changes continuously, the player will have no incentive to change
since replacing a cached item will incur a cost. The cost is incurred
since the player has to either request the changed item from the 3G
service provider or from some other players who have cached the
item. We assume the cost of changing cached items are amortized.
Therefore, players have an incentive to change if the payoff of an
item is stable and increases his utility.

In our current work we have used the market sharing game to
capture the essential issues of our caching application. There are
more general variants of the market sharing games such as assum-
ing that a market may have different costs for providing services
for different players. This problem can be formalized as a more
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general non-cooperative game which is still a special case of valid
congestion games. Thus, the factor 2 result for the price of anar-
chy and the existence of a pure strategy Nash equilibrium hold for
this more general setting as well. Another more general variant of
market sharing games can be defined by considering the capacity
constraint of individual players. Currently we have assumed that
the ad-hoc network has enough capacity to handle all the requests
it chooses to serve. If network capacity becomes limited, we can
formalize the game appropriately, and the result for the price of an-
archy should still hold. However the existence of a pure strategy
Nash equilibrium is very much dependent on the definition of the
game. Modeling and understanding these more general games is of
theoretical and practical interest and we leave it for future research.

We observed that players using a �-approximate algorithm also
converge to an approximate Nash equilibrium, but we do not bound
the number of steps for this convergence. Bounding the number of
steps by a polynomial bound is an open problem and is of theoret-
ical and practical interest. In particular, such a bound would give
a polynomial time algorithm to find an approximate Nash equilib-
rium.

Modeling computationally bounded agents by approximation al-
gorithms and proving bounds on the speed of convergence to an ap-
proximate social function or an approximate Nash equilibria is an
interesting area of research and can be applied to different sets of
games such as potential games, congestion games, and valid games.

11. CONCLUSION
In this paper, we propose a mobile content distribution architec-

ture to offload popular data items from a 3G network to its sub-
scriber based ad-hoc networks. We present a protocol to enable
decentralized caching and propose novel incentive mechanisms for
proper accounting and crediting. Our incentive mechanisms pre-
vent or discourage players from colluding for selfish gains at the
expense of other users.

We study the selfish behavior of the players involved in caching
and forwarding by using game theoretic approaches. We formulate
the caching problem as a general market sharing game. We observe
that pure strategy Nash equilibrium exists in this game and present a
polynomial time algorithm to find it in the case when item sizes are
the same. Finding a pure strategy Nash equilibrium for the general
game is NP-complete. We model computationally bounded agents
by using approximation algorithms and observe that they also con-
verge to an approximate Nash equilibrium. We show that after one
step of greedy behavior by the players, the social value of the re-
sulting assignment is within an O(log n) of the optimum. We show
that the price of anarchy is bounded by 2 for any arbitrary distribu-
tion of popularity of the cached items. For a special case where the
popularity of items is according to a Zipf distribution and caching
any item has a positive reward for all players, we obtain a bound of
1.45. Our simulation study investigates the price of anarchy and the
convergence of exact and approximate Nash equilibria. Our simu-
lations show that for most of real and practical instances of the
game, the price of anarchy is better than the worst case. Our results
also show that typically most players converge to the equilibrium
in one or two steps most of the time.
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APPENDIX
Proof of Corollary 5.5.

Proof: Let Yj be the payoff of player j in the approximate Nash
equilibrium. Let Xj be the sum of the qi’s over the set of markets
that player j serves in OPT but are not served by any agent in
the equilibrium being considered. By the definition of approximate
Nash equilibrium, we have �Yj � Xj . Otherwise, player j would
switch action. Furthermore,

P
j2U Yj � 
(OPT ) �

P
j2U Xj ,

as
P

j2U Xj is at least the total amount of query of the markets
serviced by OPT but not by the approximate Nash equilibrium.
Thus, 
(OPT ) � (� + 1)

P
j2U Yj , as desired. �

Proof of theorem 6.1.

Proof: The proof is based on defining a potential function and
proving that it decreases as agents improve their payoffs by chang-
ing their strategies. The potential function is

Pn

i=1

Pni
t=1

qi
t

. Con-
sider player i who changes her strategy from set S to S0. Let
A = S � S0 and B = S0 � S. Let F be the value of the po-
tential function when i plays S and F 0 be the value when i plays
S0. It is easy to see that F 0 � F =

P
i2B

qi
ni+1

�
P

i2A
qi
ni

. This
value is exactly the increase in the payoff of i. Assuming the fact
that i improves her payoff, we know F 0 > F . This shows that the
pure strategy that maximizes this potential function is a Nash equi-
librium, since if some player was able to increase her own payoff,
she would improve the potential function by the same amount.

�
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