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Abstract

Machine learning as a service (MLaaS) is imperative to the success of many companies
as they need to gain business intelligence from big data. Building a scalable MLaaS for
mission-critical and real-time applications is a very challenging problem. In this paper,
we present the scalable MLaaS we built for Uber that operates globally. We focus on
several scalability challenges. First, how to scale feature computation for many machine
learning use cases. Second, how to build accurate models using global data and account for
individual city or region characteristics. Third, how to enable scalable model deployment
and real-time serving for hundreds of thousands of models across multiple data centers.
Our technical solutions are the design and implementation of a scalable feature computing
engine and feature store, a framework to manage and train a hierarchy of models as a
single logical entity, and an automated one-click deployment system and scalable real-time
serving service.

Keywords: Machine learning as a service, feature store, big data, data streaming, Apache
Spark

1. Introduction

Machine learning (ML) and Artificial Intelligence (AI) have been rapidly transforming many
industries such as e-commerce, transportation and healthcare. ML and AT have been referred
to as the “new electricity” (Ng, 2017). ML and AI have traditionally been trained in a single
machine using tools such as Scikit-learn or R with trained models being deployed manually.
However, in the big data and on-demand real-time service era, this severely limits the scale
of application of ML. Recognizing a need, many companies such as Facebook and cloud
providers such as Microsoft, Amazon, and Google have been building machine learning
platforms to automate and scale machine learning.

ML is critical to Uber’s business in several ways. It finds wide applicability in predicting
supply and demand, recommending restaurants for UberEATS, mapping, and self-driving
cars, for example. To unleash the true power of machine learning, we have been building a
company-wide ML platform within Uber. The goal of the platform is to make it extremely
easy and fast for any engineer or data scientist to develop and deploy ML solutions in
production. This is particularly challenging for several reasons. First, Uber applications
interact with many people and businesses, such as restaurants, in real-time, which generate
a large amount of data. Training with big data needs to be scalable to enable fast iteration of
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model development and frequent model deployment: predictions need to happen in real-time.
Second, Uber operates in hundreds of cities and it is difficult to train and manage models
separately for each city. Third, Uber has diverse use cases which require many different kinds
of ML algorithms such as time series for demand forecasting, deep learning for mapping,
unsupervised learning to group drivers into cohorts, multi-armed bandit algorithms and
reinforcement learning for restaurant recommender systems and self-driving cars.

In this paper, we focus on addressing several of these key challenges and our solutions.
First, to make it easy to obtain features, we have built a feature store and its associated
computing engines. We scalably compute and aggregate spatial and temporal features for
batch training and real-time prediction. Second, we manage and train a hierarchy of models
as a single logical entity for all cities. Third, we automatically deploy and scale our model
serving service. Although the platform focuses on Uber’s use cases and integrates with Uber’s
internal data infrastructure and applications, we believe our design and lessons learned can
offer valuable insights to industries and the system community, especially the ML system
community, for two main reasons. First, Uber’s applications are mission-critical and interact
with people in real-time in the physical world. This trend will continue and ML will play
an essential role. Second, major components of our platform use open-source software such
as Spark (Zaharia et al., 2012), Cassandra (Apache) and Samza (Apache, 2017c).

The remainder of this paper is organized as follows: In Section 2, we present an overview
of our system architecture. In Section 3, 4, 5, we focus on three key scaling challenges and
solutions. We discuss lessons learned in Section 6, related work in Section 7 and conclude
in Section 8.

2. Overview of System Architecture
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Figure 1: UberEATS estimated time to delivery (ETD) feature
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We present the system architecture overview in the context of a typical ML workflow (See
Figure 2). A typical ML workflow involves getting the relevant data, engineering features,
training models, evaluating model performance, deploying, serving and monitoring models.

To be concrete, we illustrate our system with a ML use case for UberEATS. When a
customer opens the UberEATS app, it shows the estimated time to delivery (ETD) of a food
order for each restaurant (See Figure 1).

Users such as data scientists interact with our platform through the front end web UL
HTTP requests from the front end go to the API tier which communicates with both the
cluster scheduler and the software deployment infrastructure. The cluster scheduler kicks
off jobs preparing data, training models and making batch predictions and the software
deployment infrastructure deploys models to real-time service Docker containers. Systems
can also interact with our platform programmatically through the API tier.

2.1. Data Preparation

Data is collected continuously and stored in databases or distributed file systems. For
training, we need feature data and outcomes (or labels). We use SQL as the common
querying interface to all our data sources. The Uber query engine finds the best way to
execute these queries. For example, if features or outcomes involve data in our Hadoop data
lake, a Spark (Zaharia et al., 2012) job will be launched. Also, metadata is attached to all
data sources collected, so different use cases can share the same data preparation job.

GET DATA TRAIN MODELS EVAL MODELS DEPLOY MODEL & MONITOR

Prediction

Predictions. To Hive
& Kafka

HADOOP / YARN (Batch)

Figure 2: Overall system architecture

2.2. Feature Store

To speed up the process of building machine learning pipelines and enable real-time predic-
tions, we needed to address the general needs of feature computing and serving as they can
take significant time to compute.

We built a shared feature computation engine and feature store for both batch and real-
time machine learning pipelines. In the ideal case where all features can be pulled from the
Feature Store, the machine learning project’s data pipeline just needs to provide the UUIDs
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for the entities being modeled and all the features can be pulled by name from the Feature
Store.

The Feature Store enables real-time machine learning use cases by providing low latency
access to these same features in an online serving store - Cassandra (Apache). We provide
unified access via canonical names to these features for batch training and prediction, and
real-time prediction. This is critical because the same expressions used to retrieve features
in the batch environment during training need to work at prediction time when the model
is deployed as a real-time service.

2.3. Model Training

The platform needs to support a diverse set of ML algorithms such as linear regression,
gradient boosted trees, autoregressive integrated moving average (ARIMA) models, and
deep learning. Training needs to be scalable and reliable. For non-deep learning algorithms,
we use Spark MLIib (Meng et al., 2016) and XGBoost (Chen and Guestrin, 2016) because
they meet these requirements. For deep learning, we support Caffe (Jia et al., 2014) and
Tensorflow (Abadi et al., 2016).

2.4. Model Deployment and Management

As we operate in new cities and regions, we would like to apply machine learning to optimize
various aspects of user experience. For example, pricing to balance supply and demand, and
product recommendations. This raises two challenges: Firstly, for a city recently entered,
there may not be enough data to train an accurate model. In this case, we would like to fall
back to a model trained at regional scale. Secondly, to train and make predictions using one
separate model for each city is inefficient and hard to manage. Our solution is to organize
the models in a hierarchical structure. Instead of separately managed models per city, we
train a single hierarchical model for all cities and deploy the hierarchical model across all
countries. We also leverage Uber’s deployment infrastructure to enable one-click deployment
of models for batch serving and real-time serving.

2.5. Model Serving and Live Monitoring

Models should behave the same in both real-time and batch mode when serving predictions.
Our model serving core can be plugged into either a batch prediction pipeline or real-time
serving containers. In batch mode, we plug the serving core into Spark jobs. In real-time
mode, the serving core is hosted by Uber RPC services. The client sends Thrift (Apache,
2017d) requests via RPC to our online prediction service. In the request, basis features
and the model ID are included. Based on the request, the prediction service fetches extra
features from the feature store, performs feature transformation and selection, and invokes
the serving core to make the actual prediction, before returning the prediction to the client.
In both batch and real-time mode, all predictions are logged to Kafka (Apache, 2017b) for
diagnostics and monitoring.
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2.6. UberEATS Estimated Time to Delivery Use Case

Figure 3 illustrates how UberEATS ETD makes use of our platform. Both training and
prediction use features from the Feature Store. The model uses gradient boosted trees and
is trained using Spark MLIib. The deployed models serve the UberEATS application when
users open the app.

Hive Model Model
Training Performance

Training

Feature
store

UberEATS
App

Yy

Model —— ETD

Real-time
prediction

Figure 3: UberEATS ETD

3. Feature Computation and Serving

One key impediment to developing ML solutions is that it is time consuming to engineer
and compute the right features or predictors. To overcome this, we would like to make them
readily available for both training and real-time predictions: we need to address the general
needs of feature computing and serving.

3.1. Requirements and Challenges

We first discuss our requirements and explain the challenges.

3.1.1. REQUIREMENTS

We have several requirements. First, we would like to compute a diverse set of features.
Features are associated with simple entities in Uber’s systems, such as riders, drivers, trips,
and cities. In some cases, features can be associated with composite entities such as a cohort
(a set of drivers in an incentive campaign), a set of similar trips (origin and destination within
one mile of one another), or geofences. We distinguish simple, relatively static attributes of
the entity in question, such as a driver’s signup city from aggregate features relative to a
nominal time, such as the number of trips in last 30 days per driver or average rider waiting
time of a geofence over the last hour. We would like to make these two types of pre-computed
features available to training, offline prediction, and real-time prediction. Third, we need
feature freshness and serving latency guarantees. Historical features served from the online
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features store are less than 12 hours old and are available with 10 ms query latency. Near
real-time features served from the online features store are less than 5 min old and available
in the online serving store with 10 ms query latency.

3.1.2. CHALLENGES ON FEATURE COMPUTATION

Since we need to compute historical aggregate features over long durations such as weeks and
near real-time features over several minutes, it is desirable, for simplicity, to have a unified
batch and streaming engine. However, there are several limitations of such an engine. First,
it is much less efficient to compute historical features over a long duration because of the
need to maintain states for on demand update of states due to delayed data. Second, there is
a lack of support for computing certain features (for example, features of driver-rider fraud
graphs) in current streaming engines such as Spark streaming.

3.1.3. CHALLENGES ON FEATURE SERVING

For batch training and prediction, we would like efficient bulk access. For real-time predic-
tion, we need low latency per record access. Ideally, we would like a single feature store that
serves both historical features and near real-time features. However, there are two main
problems. First, most data stores are efficient for either point queries or for bulk access, but
not both. Second, frequent bulk access can adversely impact the latency of point queries.
Third, the two have different query patterns. For the online case, we only use features at
the time of the query. For the offline case, we use features at the event time (nominal time)
of the data.

3.2. Solution

Due to problems of unified computation engines and data stores, we made the decision to
leverage the strength of separate batch computing and streaming engines, as well as separate
bulk serving and online serving stores. Because of the separation, we need to address three
problems. First, we require that each feature to be computed by one code path for training
and prediction. We want to avoid the case where a near real-time feature is computed by
one code path in a streaming system for online serving and a separate code path in the batch
system for training. Second, users only need to express their selected features for training.
The same expression should work for real-time prediction without user involvement. Third,
batch computed historical features need to be uploaded to the online data store and real
time computed features should be uploaded to bulk serving store.

We now describe our detailed design. We chose Apache Spark as our batch computing
engine, Samza (Apache, 2017¢) as our streaming engine, Hive (Apache, 2017a) as batch
feature store, and Cassandra (Apache) as our online feature store.

3.2.1. FEATURE GROUPS

Features need to be computed, stored and accessed. To minimize operational overhead and
optimize storage and access patterns, we group features together. A feature group is an
atomic unit for scheduling and storage. All features in the same group are computed by the
same batch job or streaming job, and they are stored in the same table.
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It is up to the feature owners to define their own feature group or add features to an
existing feature group owned by others. Feature groups will generally store features related
to an entity that are convenient and efficient to compute and manage together. For instance,
all the trip related features for a geofence would likely be in one feature group since they all
can be computed efficiently by one job that scans through the trip history.

A feature group consists of a meta-data YAML file that defines its semantics and a set
of source code files written in the appropriate language for the execution platform (Spark
or SQL for batch, Samza for streaming). These resources are all managed with git as source
code and subject to regular code review and approval.

When the job code is deployed to the execution platform, the metadata will get pushed
into the feature directory (a global registry of all available features) so that it is available
globally. Metadata about data availability can also be updated as the ETL jobs complete.

Once the feature groups are registered in the feature directory, they can be browsed and
discovered via the REST API or web Ul

Deprecating features will require notifying users. (We log usage of features so that we
know exactly who is using what features.)

Once features are active, there should never be semantic changes to those features.
Semantic changes should always result in a new feature with a new name in order to not
break existing consumers.

3.2.2. BATCH FEATURE COMPUTATION AND FEATURE STORE

We chose Apache Spark as the computing engine for batch computed features and Hive as
the batch feature store.

Spark ETL jobs are run to compute a set of related features (a.k.a. feature group) and
they are written into a single Hive table, one column per feature. Each row is a set of
features for a specific entity identified by a unique ID (e.g. driver UUID) and is relative to
a specific nominal time. As features in a feature group are likely to be accessed together
by nominal time, we use nominal time as the partition key. This ETL process is used to
generate regular historical features used for batch training and both batch and real-time
prediction.

When each ETL job finishes, the relevant rows of historical features are copied to Cas-
sandra clusters in each data center so that the features can be queried with low latency for
real-time prediction.

Both training and batch predictions use offline features. In offline mode, the primary
key of a set of features is the combination of the unique ID and the nominal time. When the
nominal time is given, there is no difference between historical features and near realtime
features. Using unique ID and the nominal time, we associate feature store features to each
data record in the training or prediction dataset. This is implemented as Spark jobs joining
data sources from Parquet files and data frames from Hive.

3.2.3. NEAR REAL-TIME FEATURE COMPUTATION AND ONLINE FEATURE STORE

The online feature store serves features generated from two sources. Regular historical
features are generated by Spark ETL jobs. They need to be bulk loaded into the online
store periodically. The other set is near real-time features. By consuming Kafka topics, we
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compute these features using streaming jobs, and update them in the online feature store
directly. Cassandra supports both data loading patterns.

In online prediction, clients are responsible for sending the relevant entity UUID and
any features not in the feature store. The online prediction service uses the feature accessor
expressions in the feature engineering component of the deployed model to pull pre-computed
features directly from Cassandra. Once all features are available, the prediction service will
compute a response which involves DSL transformation of features followed by running
inference of the machine learning algorithm. It is worth noting that, at batch training time,
the Spark job uses expressions identical to the ones that are used in online serving to pull
features from Hive and automatically joins them if they are from different Hive tables.

3.3. UberEATS ETD Use Case
The ETD model uses different type of features as follows:

e Restaurant features such as location, average meal preparation time, average delivery
time, average demand during lunch

Contextual features such as the time of day, or day of week

Order features such as the number of items or the total cost

Near real-time features such as information about the past N orders

UberEATS order and context features are supplied by the app. Restaurant and near
real-time features are obtained by the service backend from the Feature Store.

4. Partitioned Models

Data scientists at Uber often build one ML model per city. It is time consuming and error
prone for users to manage training and deployment of several hundred individual models.
To simplify the process, we allow users to define a hierarchical partitioning scheme such as
country and city. We automatically train a model per partition (a node in the tree). We
refer to the collection of models as one partitioned model. A partitioned model with all
partitions is managed and deployed as one single logical model. When one partition has
insufficient data to train a model, it will fall back to use the model trained at its parent
node or ancestor node if the parent partition happens to be skipped for training as well.

4.1. Challenges

First, each partition needs to create two sample sets (one training and one validation set) for
model training. This results in significant data duplication, unnecessary data serialization,
and a large number of files if we persist data across all partitions. Second, training several
hundred models can be time consuming and cause the starvation of regular non-partitioned
model training. A large number of training jobs are spawned out of training on partitioned
data: for example, a partitioned model with a 3-level hierarchy for country-city includes
1 global, 60 country and 400 city partitions (a total of 461 partitions) for training the
partitioned model. Thus, we need some strategy for training job management.
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COUNTRY

Figure 4: Illustration of a partitioned model: the red cross means that a model is not trained
due to lack of data in this partition, or that its model performance is worse than
the one from its parent’s.

4.2. Solution

We now describe our solution for scalable data preparation and training of partitioned models
in detail.

4.2.1. SCALABLE DATA PREPARATION

We persist the global training and validation sets with the metadata of partitions so that
we can create partitioned training and validation sets on-the-fly to avoid duplicate data
serialization and storage on partition levels. The data persistence enables data checkpoint
and failover on training partition models, i.e., each partition can be re-trained if the previous
attempt of model training fails on a partition due to some transient issue.

4.2.2. SCHEDULING TRAINING JOBS

There are three possible approaches: (1) rely on a workflow scheduler such as Apache Oozie,
(2) an external controller with all the scheduling logic, (3) write a single Spark application.
For the first approach, we would need to construct the training jobs in the workflow sched-
uler. Workflow schedulers typically are not equipped to process input data and construct
training jobs based on information extracted dynamically. For example, we need to extract
the keys of the partition model and train per node in the tree, and we only train when we
have enough data. Writing an external controller will be much more involved and we cannot
do it in our front end or API tier. So we decided to take the third approach.

Fortunately, Spark has good support internally to schedule jobs fairly and in parallel.
Therefore, we can train from top to bottom, and parallelize training per level. All partition
training is encapsulated in a single Spark application so that it does not flood the job
scheduler and can make use of sharing the global data across all partitions training under
the same Spark application.
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4.3. UberEATS ETD Use Case

UberEATS operates food delivery across many cities and the model of estimated time to
delivery (ETD) is trained as a partitioned model, i.e., the ETD model is trained using data
from each city when it has sufficient data. This greatly simplified model management by
training and deploying a single ETD model for all cities.

5. Real-Time Prediction and Live Monitoring

Many applications of ML such as UberEATS ETD require real-time prediction. The deployed
ML models need to be monitored live for their performance. It is challenging to scale ML
services for real-time prediction and live monitoring of model performance, and automate
model deployment and retirement.

Realtime Predict Service

Figure 5: Illustration of real-time serving.

5.1. Challenges

The service needs to be low latency and meet latency bounds even during peak usage. When
deploying new models, the services need to keep serving prediction requests. The deployed
models need to be monitored live, and degradation of model performance should be detected
before seriously impacting on external customer (e.g. riders and drivers) experiences.

5.2. Solution

We now describe our technical solution in detail.

5.2.1. REAL-TIME SERVING

For real-time prediction, we adopt a high performance RPC service using TChannel as the
networking framing protocol (Corbin et al., 2017). TChannel was developed at Uber and
has been open sourced. TChannel supports out-of-order responses at extremely high perfor-
mance where intermediaries can make a forwarding decision quickly. Client service specifies
the model to use in the TChannel request transport headers. The predict service inspects
these headers and routes internally to the appropriate model. In the case of experimentation,
it is up to the client service to decide with each request which version of the model it wants
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to invoke. The prediction service is managed by Uber’s infrastructure. The infrastructure
provides all key support to host services with high availability. It shards the requests of
one logical service into multiple physical instances of the service, manages all services using
Docker containers, provides rolling updates and monitors service health and payloads.

For the prediction service, our models are packed into docker images. When a physical
instance of a service boots up, it loads into memory and warms up all models in the container,
and then registers itself as a live instance. After that, it starts accepting prediction requests.
Fach service instance also periodically checks new models deployed in the Docker image, and
loads newly detected models into memory.

5.2.2. LIVE MONITORING OF MODEL PERFORMANCE

To ensure deployed models are making good predictions, we log predictions in Kafka (Apache,
2017b) and join logged predictions with actual outcomes. We then publish metrics for mon-
itoring and alerting.

5.2.3. AUTOMATED MODEL DEPLOYMENT AND RETIREMENT

Owners of each ML prediction service decide when to deploy a new model and when to retire
an old model. Deployment or retirement requests go through our API tier. Requests are
put into a reliable distributed message queue. The message will be sent to our deployment
service. For deployment, the service will be responsible to package required files, validate the
model can be run correctly, and deploy into running Docker containers. To avoid interference
of concurrent deployment requests of the same prediction service, we use Redis distributed
locks (Da Silva and Tavares, 2015). For model retirement, the deployment service will purge
the model from the Docker containers of the prediction service.

5.3. UberEATS ETD Use Case

UberEATS has bursty requests, especially during lunch and dinner time. Our real-time
services can scale with the demand gracefully. We have 99 percentile latency of 20 ms.

6. Lessons Learned

Developing, maintaining and operating a ML system as a service in production is a massive
undertaking with many practical challenges as discussed in Sculley et al. (2015). We feel it
is beneficial to share some important lessons we learned with the community.

First, throughout the whole ML workflow, a user’s jobs can fail for various reasons such as
schema mismatch, missing data, Spark job failures, Cassandra failures, etc. Debuggability
is very important. This includes surfacing meaningful error messages and logging error
messages. It is particularly hard to assign the right amount of resources to Spark MLIlib
jobs so that training can succeed within the user expected durations.

Second, fault tolerance is very important. Partitioned model training contains hundreds
of sub-models. This increases the chance of failure. Cross data center replication is important
for seamless real-time prediction.

Third, we designed our system with abstractions at the machine learning algorithm level
so that we can easily plug in different ML libraries. This allowed us to easily support
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MTLlib, XGBoost (Chen and Guestrin, 2016), Caffe (Jia et al., 2014) and TensorFlow (Abadi
et al., 2016). Configuration of hyperparameters, evaluation metrics and visualization, and
prediction all have APIs common at the algorithm level.

Fourth, automating ML workflow and ease of use is essential. For many common use
cases, users do not need to write any code. Interacting with the web UI, all users need to do is
specify what features to use from the feature store, and what algorithms and corresponding
hyperparameters to use for the model. Models are training automatically and standard
performance metrics (e.g. ROC, AUC precision and recall) are provided after training.
Users can then select the best model based on performance metrics and deploy to real-time
service with one-click.

Fifth, the ML system must be extensible and be easy for other systems to interact with
programmatically. Other teams programmatically interact with the platform to train their
models. Jupyter notebooks are integrated with the platform through REST. Data scientists
find it very useful to iterate on their models in our scalable platform via the notebook.

7. Related Work

We make heavy use of open source components: HDFS (Apache, 2014), Spark, Samza
streaming (Apache, 2017¢), Cassandra (Apache), Hive (Apache, 2017a), Mesos and Docker (Docker
Inc., 2017). We provide users with a standard set of algorithms, a row-based DSL, feature
store and one-click deployment of real-time prediction service. Our ML platform tightly
integrates with Uber infrastructure for ETL, deployment, prediction and data store. We
now discuss closely related ML systems in industry and academia.

Facebook FBLearner Flow (Dunn, 2017) is a workflow scheduling system with an ex-
periment management UI. It composes operators (programs) to construct and execute ML
pipelines. It provides a number of standard ML algorithms that users can reuse. Serving is
not part of FBLearner Flow. In contrast, our ML platform currently does not support flexi-
ble pipeline construction. We manage the whole workflow of training and serving. Amazon,
Microsoft and Google all provide cloud services for users to construct ML workflows to train
models and prediction services. They also offer high level APIs for computer vision, speech
and natural language. Turi (2017) uses the public cloud to offer ML services. However,
there is a lack of technical details from which we cannot make an informed comparison.

ML systems have received limited attention in academia. Clipper (Crankshaw et al.,
2017) focuses on online serving. It tries to address three key challenges of prediction serv-
ing: latency, throughput, and accuracy. Clipper provides a common prediction interface that
isolates end-user applications from the variability and diversity in machine learning frame-
works. Clipper has a model abstraction layer and a model selection layer. It addressed the
challenges of prediction serving latency and throughput with caching and adaptive batching
strategies in the model abstraction layer. It addressed the challenges of accuracy by dynam-
ically selecting and combining predictions from each model with straggler mitigation in the
model selection layer.
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8. Conclusion and Future Work

We have built a scalable ML as a service company-wide platform. We have many internal
customers actively training models and many deployed models serving real-time predictions
such as UberEATS ETD. Although not a focus of this paper, our platform also provides
deep learning as a service. We have many use cases for deep learning including computer
vision and natural language processing, and demand forecasting.

For our ongoing work, we are in the process of supporting custom machine learning mod-
els for sophisticated customers, and custom performance evaluations, and making pipeline
construction more customizable. We are also working on simplifying the whole workflow,
scaling training of deep learning models, optimizing real-time serving, and automated and
efficient cluster resource allocation including GPUs.
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