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Abstract—True random number generation on resource-
constrained devices is challenging due to inherent hardware
limitations; these limitations affect the ability to find a reliable
source of randomness with high throughput and sufficient en-
tropy. As recent developments in the field of Brain-Computer
Interfaces (BCI) suggest a wide range of future applications
that require random numbers, we investigate the usability of
electrocorticography-based neural data as seeds for random
number generation. We develop algorithms that generate random
bits from brain data and evaluate the quality of randomness by
using the NIST SP 800-22 test suite. We implement the algorithms
as hardware random bit generators (RBGs). Then, we integrate
these implementations as hardware accelerators in MindCrypt, a
heterogeneous System-on-Chip (SoC) that is equipped with a host
processor to run BCI applications. In MindCrypt, applications
use our RBG accelerators as random number generators (RNGs)
and prime number generators. FPGA prototypes of MindCrypt
running software applications on a RISC-V processor that invoke
our accelerators show improvements of 376x in throughput and
4885x in energy efficiency compared to using state-of-the-art
Linux-based RNGs. By transferring random bits with point-to-
point (P2P) communication between the RBG accelerators and
cryptographic accelerators, we gain 6.1x in performance and
12.4x in energy efficiency compared to direct memory access
(DMA). Finally, we explore the efficacy of a partially reconfig-
urable FPGA implementation of MindCrypt that dynamically
optimizes the throughput of random number generation in a
resource-constrained BCI SoC.

Index Terms—SoC, HLS, BCI, RISC-V, P2P, FPGA, DPR

I. INTRODUCTION

As a subset of the Internet-of-Things (IoT) ecosystem,

wearable brain-computer interfaces (BCI) are at the verge of

taking a bigger part in everyday life [1]–[3]. Often constrained

by area and power limitations, wearable real-time BCI devices

need to execute diverse compute workloads for Machine

Learning (ML) [4]–[6], adaptive control algorithms [7], [8],

high-throughput secure communication [2], [9] and privacy

preservation [10]. However, these applications require access

to a true high-entropy source of randomness. For example, ML

algorithms use randomness to generate better predictions and

provide higher accuracy [5], [11] while security primitives use

random cryptographic keys [12], [13].

In IoT devices, traditional ways of harvesting entropy and

generating random numbers can become a bottleneck due to

resources constraints and lightweight architectures [14]–[17].

For this reason, the use of Physically Unclonable Functions

(PUFs) has become ubiquitous [18]–[20]. While adding a

PUF to a device usually requires minimal additional hardware,

classic PUFs rely on physical properties of the device that

Fig. 1: MindCrypt SoC as part of a BCI-based IoT device.

result from manufacturing processes and often suffer from

sensitivity to varying environmental conditions that can lead

to questionable reliability in random number generation [18].

As an alternative, sensor-based PUFs that rely on raw sensor

data have been proposed [21]. A reliable, high-throughput,

sensor-based PUF that takes advantage of sensor-based brain

data offers robustness for wearable BCIs that are expected to

function in a constantly changing environment.

To achieve this goal, we present MindCrypt, a configurable,

programmable, and scalable solution that provides real-time

random number generation for SoC-based wearable BCIs

and their applications. A MindCrypt SoC integrates hardware

accelerators embedded with a custom algorithm, BrainMod,

which generates random bits from in-vivo electrocorticography

sensor-based brain data [22]. Fig. 1 shows a potential real-

world BCI system that is based on a MindCrypt SoC inside

a wearable relay station, where the on-chip RBG accelerators

are employed to provide random numbers to different BCI

applications running on the IoT device.

We develop prototypes of the MindCrypt SoC on FPGA

with various compositions of accelerators. With software ap-

plications running on a 64-bit CVA6 RISC-V processor [23],

we evaluate random number generation and prime number

generation compared to the Linux-based /dev/urandom and

rand() RNGs. We implement a state-of-the-art brain-based

RBG [24] in hardware, integrate it in MindCrypt, and compare

it against BrainMod. By integrating crypto accelerators (AES,

SHA2, RSA) in the SoC, we investigate the communication

between the RBG accelerators and the crypto accelerators via

point-to-point (P2P) and direct memory access (DMA).

In the case of an area-constrained implementation on FPGA,



we use Dynamic Partial Reconfiguration (DPR) and multi-

plexing of accelerators in order to optimize the throughput of

random number generation on the MindCrypt SoC.

Our results confirm that BCI devices, with access to real-

time brain data, can achieve high quality randomness and

efficient random number generation for various applications.

We break down our contribution into the following points:

1) The implementation and the statistical analysis of two

BCI-based RBG algorithm.

2) Two hardware accelerators, BrainMod RBG and Brain-

Bit RBG, that can be reconfigured at runtime to generate

random numbers of different lengths from brain data.

3) Generation of both random numbers and prime numbers

tested on real brain data that outperforms Linux-based

random number generation.

4) The design of many-accelerator SoCs that support P2P

and DPR, which demonstrate a dataflow of efficient

random number generation for various applications.

5) The open-source release of MindCrypt to support other

research projects in the BCI community.

II. BACKGROUND

BCI System-Level Design. Modern BCI systems generally

include three sub-systems: (i) an implanted neural interface

used as a sensor, (ii) an intermediate mobile relay station

located close to the human body that is used for preliminary

computations on real-time data, and (iii) a distant machine

with a wireless connection to the relay station for additional

processing [1], [2], [9], [25], [26]. As the neural interface

and the relay station of a BCI system are implemented on

platforms with strict hardware constraints, they share the

aforementioned limitations with most IoT devices. But unlike

most IoT devices, BCI systems can potentially exploit an

abundant source of randomness within reach: the brain.

The main guidelines when designing a wearable BCI system

are: (i) provide enough resolution and throughput of brain

data in order to extract meaningful information about neuronal

activity [27]–[30], (ii) provide sufficient computational power

to enable real-time execution of prediction algorithms within

the boundaries of the reaction time of the brain [25], [31], and

(iii) meet ultra-low-power constraints for a wearable device in

a body-area network (BAN) [2], [32], [33].

BCI Applications and Randomness. Fig. 1 presents a BCI

system that includes an implanted chip, a relay station, and an

external device to support potential applications of BCI. The

implanted chip is the neural interface and usually includes

thousands of electrodes that can each record and stimulate

small populations of neurons [29], [30], [34]. The chip should

send the recordings wirelessly without losing information to

the relay station [26], [28]. The relay station is an SoC that

receives a large amount of brain data from the chip, executes

signal processing to extract features, and provides real-time

predictions of the intentions of the brain [25]. These predic-

tions are sent to an external device for further processing. The

external device controls other devices depending on the desired

application. One example application is translating a motion

intent from the motor cortex of an individual into moving a

prosthesis [7]. Another example is reconstructing images from

the visual cortex of the brain and even using a stimulation

feedback to repair lost vision [35]. The system can also be

used to control objects like drones and vehicles [36]. Finally,

distinct features from brain data can be used as biometric

passwords for secure authentication [37].

To be realized as real-world IoT, BCI systems need to sup-

port secure communication and ML-based computation [2]–

[5], [9], [11]. Security primitives, such as AES [12] and

RSA [13], are utilized by various applications and require

random keys to enable information security and privacy [14].

Kalman Filter is a widely used online learning algorithm for

continuous control in BCIs, but it needs to be periodically

calibrated or to be used in combination with Reinforcement

Learning (RL) [5], [6]. RL and other ML algorithms make

heavy use of randomness to support adaptiveness [5], [6], [11].

Random Number Generation in IoT. In practice, random

number generation (RNG), which is based on random bit

generation (RBG), is done by using an algorithm that takes

advantage of multiple existing sources and combines them

to harvest entropy. For instance, Linux generates randomness

from the recordings of system-level events and the timing of

interrupts from various I/O sources [16], [17], [38]. In IoT,

limited hardware resources and lack of user inputs make the

generation of random numbers a challenging task [14], [15].

For that reason, traditional approaches of computationally

heavy numerical methods and sampling hardware components

are either not feasible or inefficient [11], [17].

One popular approach for random number generation in IoT

is to use a Physical Unclonable Function (PUF) [19]–[21].

PUFs are based on manufacturing variations introduced during

the fabrication of an integrated circuit (IC), which make it

impossible to create an identical device with the same circuit

characteristics. The PUF takes an input “challenge” and, by

combining it with unique physical characteristics, outputs a

“response” that cannot be replicated by any other device. A

strong PUF that is reliable and able to generate a wide space

of responses can be used as a RNG [20].

However, integrating PUFs in constrained systems is a

challenging task due to unreliability caused by sensitivity

to device aging and environmental noise (temperature and

voltage) [18], [20], [39]. In contrast, wearable devices are

expected to maintain correct function and reliability in a

constantly changing environment. Sensor-based PUFs have

been proposed for these devices [21], [40], [41]. These PUFs

are lightweight and include the implementation of algorithms

that generate random bits from a combination of sensor data.

Depending on the algorithm and the sensor involved, this type

of PUF can be used to build a more robust RNG.

The Brain as a Random Number Generator. Empirical

evidence on the existence of chaos in the brain [42] suggests

a certain level of unpredictability when recording interactions

between neurons. When the resolution is lower and the anal-

ysis is made on bigger parts of the brain, unique patterns can

be found to the level of authenticating an individual [37].

Experiments with neurophysiology [24] and EEG [43], [44]

showed that by applying mathematical transformations as



1: global variables: σ, µ,R, L, d, h

2: function BRAINBIT(x)
3: Initialize: result = None
4: if |x− µ| f Rσ then

5: y = x− (µ−Rσ)
6: z = 2×Rσ
7: w = +(y/z)× L),
8: result = w mod 2
9: return result

10: function BRAINMOD(x)
11: Initialize: result = None
12: if |x− µ| f Rσ then

13: y = x− µ
14: z = y × 2d

15: w = +z, mod 2h

16: result = (
∑

h
wb) mod 2

17: return result

Notations:

R,L, d, h are user defined parameters
µ is the estimated average over all values
σ is the estimated standard deviation over all values
wb are the bits of the variable w

Fig. 2: Random bit generation algorithms.

RBG algorithms on fine-grained high-resolution brain data,

we can retrieve streams of bits that pass statistical tests for

randomness [45]. When produced with sufficient throughput,

these bits can be used to construct cryptographic keys [24].

As we validate the randomness of bits that are generated

from modern neural interfaces [26], we open a path for

integrating a sensor-based PUF that relies on high-resolution

brain data in BCI systems.

III. RANDOMNESS ANALYSIS

Progress in the ability to record electrocorticography

(ECoG) data directly from the brain was recently reported [22].

The results were stored in a database that holds the data

recorded from 1024 electrodes (channels) attached to the

visual cortex of the brain of a non-human primate. The data,

which have been released in the public domain, can be used

by any data analysis tool. With the availability of an ECoG

database, we can implement RBG algorithms and run them

on data from the database to generate random bits and test if

they satisfy the state-of-the-art NIST statistical tests [45].

Brain-Based RBG Throughput. The basic throughput of

a brain-based RBG depends on the recording ability from the

neural interface. We analyzed data from the visual cortex of a

non-human primate [22] and focused on local field potentials

(LFP) [46]. We report the results of a subset that contains 78
million data points from 64 electrodes, which was recorded

over a span of 41 min [22]. This translates to a throughput

of one value per 0.03msec from the neural interface, or

a data rate of 33KHz. However, the full dataset provides

recordings from 1024 electrodes in the same amount of time,

thus yielding a maximum data rate of 533KHz. In general,

neural interfaces are expected to be scalable and support

simultaneous recording from even more electrodes [26], [30].

The rest of the throughput is determined by the RBG algorithm

and its implementation, as discussed in the rest of the paper.

Algorithm for Random Bit Generation. As a baseline, we

implemented the RBG algorithm described by Szczepanski et

al. [24]. We named it BrainBit and described it in Fig. 2.

BrainBit takes a data value x and calculates if the value does

not deviate, beyond a specific threshold, from the estimated

average of the dataset. The threshold is controlled by the esti-

mated standard deviation, and by the user defined parameter R.

Eventually, only the values within the range [µ−Rσ, µ+Rσ]

Fig. 3: Statistical analysis of the bit streams generated from

BrainBit running on electrophysiological brain data.

Fig. 4: Statistical analysis of the bit streams generated from

BrainMod running on electrophysiological brain data.

are passed for bit computation. The computation is controlled

by another parameter L, which sets how many sub-intervals

the range [µ−Rσ, µ+Rσ] will be divided into. In line 7 of

Fig. 2, the variable w provides the number for the sub-interval

where the value x is found. If the number is even, the result

of the computation is 0 and if it is odd, the result is 1.

The BrainBit algorithm is based on large multiplications

and divisions which might not be optimal for hardware im-

plementations. For this reason, we created our own algorithm,

BrainMod, which emphasizes hardware-efficient techniques.

BrainMod is reported in Fig. 2. The algorithm begins by

applying the same threshold control as in BrainBit. Then, it

calculates the distance of x from the average µ, and multiplies

it with 2d. In line 15, the variable w holds the integer part of z

after applying a modulo operation with 2h. As a final step, the

sum of the lower h bits in w is checked for oddness and the

result is set accordingly. As BrainMod does not require any

division operators, and it uses powers of 2 for multiplications

and modulo operations, we expect it to provide better resource

utilization in a hardware implementation.

Statistical Analysis. As mentioned previously, we ran

BrainBit on the data from the chosen LFP dataset, which

provided 78 million data points. We ran the RBG algorithms

with different configurations to generate streams of bits. Then,

we checked the randomness of the bit streams with the NIST

SP 800-22 statistical test suite [45]. The suite outputs a pass or

fail score for each type of test, and the number of tests passed

for each type. In our analysis, we focus on configurations that

provided a pass score for all the types of tests, and analyze the

passing rate as the total sum of individual tests that passed.

Fig. 3 reports the results of the bit streams generated

by BrainBit with respect to the values of R and L. All

combinations of R,L provided high passing rates of over

96%, which match the standards of other RBGs [11]. For
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Fig. 5: The architecture of the BrainBit accelerator.

R = 1.5, all the values of L produced very similar passing

rates of around 99%. For other values of R, the passing rates

were less consistent and went down to a minimum of 97.6%.

The number of values that passed the threshold condition

of BrainBit (Fig. 2 line 4) changed significantly when we

modified R. R = 1.5 yielded 91% bits from the original

dataset, R = 3 yielded 99%, R = 0.5 yielded 49%, and

R = 0.1 yielded only 10%. We conducted the experiments

of Section VI with R = 1.5 and L = 1500, as they give a

good compromise between passing rate and bit yield.

Fig. 4 shows the passing rate results of the bit streams

generated by BrainMod with respect to the values of d and

h when R = 1.5. Overall, the passing rate did not go

below 97%, similarly to BrainBit, and meets the standards

of other RBGs [11]. In BrainMod, the scaling factor 2d can

be implemented as a shift operation of size d, and the modulo

with 2h can be implemented by selecting the lower h bits

of the integer part of z. For this reason, when d is small

we can see that the results for different values of h are

identical. For d > 5, the integer part of z (line 14 in Fig. 2)

differentiates between the tested values of h and we could

see more variations. When applying the algorithm, we aim at

obtaining both good statistical results and good performance.

For this reason, we used {h = 12, d = 7} in our experiments.

In Section IV, we implement the RBG algorithms as hard-

ware accelerators for better performance, better energy effi-

ciency, and to remove the need of the processor in generating

random numbers, which is preferred for IoT devices [15].

IV. RANDOM BIT GENERATION ACCELERATORS

Fig. 5 and 6 show the architectures of the RBG accelerators

for BrainBit and BrainMod, respectively. We designed the

accelerators in C/C++ and synthesized them with Vivado HLS.

Our implementations extend the original algorithms (Fig. 2)

to generate random bit streams of fixed length (keys).

The accelerators include private local memories (PLMs) to

store inputs and outputs [47]. The PLMs are implemented as

multi-bank memories that expose multiple read/write ports and

their size is configurable at design time. The accelerators are

configured to operate on a 32-bit fixed-point datatype.

Communication and Computation Configurability. To

handle the communication with main memory and other accel-

erators in the SoC, both accelerators use configuration registers

that set the size and structure of the input and output data. As

such, key_len sets the length of a key to produce, while

key_base indicates the upper bound for the total number of
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Fig. 6: The architecture of the BrainMod accelerator.

keys that can be generated from the data. key_num holds the

number of keys the accelerator will produce consecutively.

The configuration registers R, L, d, h, σ, and µ configure the

computation for different datasets of brain data.

Data-Flow in the Accelerators. The architecture of both

accelerators (Fig. 5 and 6) consists of three main functions op-

erating concurrently in pipeline [48]. The load function loads

a key_len size of 32-bit fixed-point data values from main

memory into the input PLM. The compute function, which is

fully pipelined to speedup the computation, implements the

main algorithms. In both accelerators, the computation starts

by checking each value stored in the input PLM for the initial

filter condition (lines 4 and 12 in Fig. 2). If the value is

within the configured range, i.e., [µ−Rσ, µ+Rσ], then further

computation is performed. Otherwise, the value is discarded.

In BrainBit (Fig. 5), the lower edge of the range is calculated

and subtracted from the input value. The total size of the range

is calculated by a shift operation on Rσ. As part of the algo-

rithm, the accelerator calculates w, which is the sub-interval

within the range that holds the input value (Section III). The

accelerator uses a 32-bit multiplier and a 32-bit divisor for

the computation. Finally, the lowest bit of w is stored in the

output PLM as a random bit and part of a new key.

On the other hand, BrainMod (Fig. 6) was created to avoid

the utilization of a 32-bit multiplier and a 32-bit divisor that

can increase the overall area and power on FPGA. First, the

average µ is subtracted from the input value. Then, a 32-bit

shift operator is used and the integer part is taken from the

result. The lower h bits are summed, and the lowest bit of the

sum is stored in the output PLM as part of a new key.

In both accelerators, after completing enough 32-bit words

to assemble a key of key_len bit length, the store function

sends the key. This process continues until key_num is sat-

isfied. In order to accommodate 64-bit DMA requests, the

loops inside load and store include an unrolled nested loop

that reads/writes two 32-bit values in parallel. The PLM is

partitioned in order to enable parallel read/write operations.

Input/Output Offset Control. The first step inside compute

discards input values that do not meet the filter criteria (Fig 2

line 4). While load fetches only one key_len at a time, any

discarded bit in compute requires an additional DMA read

request to complete a key.

To handle this, the accelerators store offsets for the input

and the output in local 32-bit registers, and use synchronization

between the main functions (load, compute, store). If one value

from the input was discarded, the input offset is incremented



while the output offset remains the same. The computation

continues until all the input values in the PLM are read. At

this point, there is a mismatch between the input and the

output offsets that triggers a signal from compute to initiate

an additional DMA read request by load. A signal is also sent

from compute to stall the next write request by store. After

the next DMA read, the input offset is set at zero while the

output offset is set according to the previously finished bits in

the key. When the output offset reaches key_len the key is

finished and a signal is sent to store to initiate a DMA write.

V. MINDCRYPT SOC

MindCrypt provides the infrastructure for a many-

accelerator SoC that supports configurable random number

generation for applications that run on a wearable BCI device.

The architecture of MindCrypt allows the combination of

multiple accelerators with a RISC-V processor, a memory

channel, and an I/O interface in a single SoC. A typical

MindCrypt SoC combines one or more RBG accelerators with

other accelerators that implement computation kernels and

benefit from a high throughput of random numbers.

Target System. Fig. 1 describes a potential BCI system that

is powered by a MindCrypt SoC. An implanted chip uses a

large array of electrodes to record the electrical activity of

neurons on the outer cortex of the brain. By using a low-

power short-range wireless connection, the chip sends the

recorded brain data to an external relay station which has been

designed with a MindCrypt SoC. As most BCI computations

are based on learning and then predicting the intention of the

brain, we include efficient accelerators for Kalman Filter and

Singular Value Decomposition (SVD) for feature extraction

in real time [4], [5]. To extract the features, applications

running on the device use random numbers generated by

brain-based RBGs. Additional processing of the features by

an external device is required in order to actuate and correct

disabilities with a feedback mechanism. To this end, secure

communication of the features to another device is done by

encrypting them with an AES accelerator that uses brain-based

random keys generated by one of the RBGs. Then, the RBG

provides the AES keys to an on-chip RSA accelerator so that it

can be sent for external processing via asymmetric encryption.

The ciphertext is sent to the external device, which decrypts

it with the brain-based key.

SoC Design Platform. We implemented MindCrypt by

leveraging ESP, an open-source platform for the design of

heterogeneous SoCs and their prototyping on FPGA [49]. ESP

provides the template for a tile-based architecture that can be

configured and specialized with the desired mix and placement

of accelerator tiles, processor tiles, memory channel tiles and

an I/O tile that manages various peripherals. ESP features

a multi-plane network-on-chip (NoC) as the main on-chip

interconnect. We selected the 64-bit CVA6 RISC-V core [23]

as the host processor.

Accelerator Communication and Invocation. The accel-

erator tiles follow a loosely-coupled accelerator model [50].

The RBG accelerators were designed independently from the

rest of the system so they can run separately from the proces-

sor [15]. In Section VI, we implement MindCrypt SoCs with

TABLE I: Resource and Power consumption in MindCrypt SoC.

Component LUT FF BRAM DSP Power[W] Time[ms]

BrainBit 11441 6730 4 22 0.068 89.8

BrainMod 5929 2379 4 16 0.01 88.3

CVA6 56191 35752 36 27 0.128 N/A

AES 69075 28290 14 3 0.108 4.9

RSA 126973 57941 0 0 0.277 6874.4

SHA2 32796 20756 2 0 0.408 5.1

*Execution time is for 1536 bits

crypto accelerators which were designed with Catapult HLS

and were provided to us by the authors of HARDROID [51].

Following the integration, the accelerators are connected

directly to the system interconnect via a configurable tile

socket [52], which is provided by ESP. The socket is config-

ured through memory-mapped registers and handles address

translation, cache coherence, DMA, and P2P communication.

P2P communication enables direct data transfer between

the accelerators [53] and isolates their computation from

other system components such as the processor and main

memory. To take advantage of the P2P feature, we designed

our RBG accelerators to work independently on arbitrary-size

inputs with minimum software assistance. We also modified

the crypto accelerators to support a similar feature. Enabling

P2P results in a reduction of off-chip memory accesses, and

consequent performance improvements and energy savings,

especially when high encryption throughput is needed and

multiple instances of the accelerators are used (Section VI).

VI. EVALUATION ON FPGA

Experimental Setup. We evaluated our MindCrypt SoCs on

the Xilinx Virtex UltraScale+ VCU118 FPGA with a clock

frequency of 78MHz, which is the frequency set by the

ESP platform. We developed bare-metal and Linux software

applications that run on the CVA6 RISC-V processor and

leverage the ESP run-time API to invoke our RBG accelerators

and the crypto accelerators. For each accelerator, the appli-

cations allocate buffers whose sizes match the accelerators’

data footprint. Table I reports the FPGA resources and power

consumption of the accelerators and the processor (as given

by post-implementation reports from Xilinx Vivado) and the

execution time of each accelerator in isolation on FPGA. The

RBG accelerators were running a task to generate an output

of 1536 random bits, while the crypto accelerators ran for

an input size of 1536 bits. We chose this specific input size

as it corresponds to a key size of 1024-bit and plaintext size

of 16 32-bit words for RSA. For a fair comparison, we set

the same input size also for the other crypto accelerators, and

matched the output size of the RBG accelerators accordingly.

The power consumption of BrainMod is almost 7× lower than

that of BrainBit. This result was expected because of the more

hardware-oriented features of BrainMod (Section III).

Performance of the RBG Accelerators. The average time

that takes to read a value from memory, send it to one RBG

accelerator, and generate one random bit is 0.05msec (Table I).

While the neural interface is actively recording, the throughput

of random numbers will be determined by the number of

instances of the RBG accelerators and their latency. More

accelerators’ instances can support a higher throughput of

random numbers to meet the needs of different applications.



Fig. 7: Performance and energy efficiency of RNGs.

We compared the generation of different bit lengths by one

instance of each of our RBG accelerators against equivalent

software implementations (written in C) running on the CVA6

processor. We also evaluated the same generation by two

Linux-based generators: (1) /dev/urandom [17] and (2)

the rand() function in C. The interface to /dev/urandom

provides the option to request any specific number of random

bytes, while rand() provides 32-bit words, which we concate-

nated into the specific bit lengths. Fig. 7 depicts our results

normalized to the performance of /dev/urandom. The RBG

accelerators provide a maximum of 376× better performance

for 128-bit, and a minimum of 46× for 2048-bit. For 128-

bit, BrainMod provides a maximum of 4885× better energy

efficiency, and a minimum of 607× for 2048-bit. BrainMod

provides 7× better energy efficiency over BrainBit.

Random Prime Number Generation. As the RSA execu-

tion time is the largest among the accelerators (Table I), the

effective throughput of the system can depend on the number

of RSA instances in the system and the utilization of the

RSA accelerator. Since RSA depends on the availability of

prime numbers, we investigated our RBG accelerators as prime

number generators. This can also provide more information

about the entropy and quality of the brain as a source for

randomness in combination with BrainBit and BrainMod.

We configured the accelerators to generate 1000 256-bit,

512-bit and 1024-bit random numbers and implemented the

Miller-Rabin probabilistic primality test [54] to run on the

CVA6 processor. We also performed the same test on numbers

generated using /dev/urandom and rand(). We repeated the

test for 100 iterations. The average amount of prime numbers

generated from each RNG is summarized in Table II. The

amount of prime numbers generated by our RBG accelerators

is equivalent to /dev/urandom. The amount produced by

rand() is slightly higher but we observed obvious patterns

and a lower quality of randomness. Fig. 8 presents the average

time to generate a prime number from each of the RNGs

in log scale. For 256-bit, our RBG accelerators provide an

average gain in throughput of 368× over /dev/urandom and

11× over rand(). For 512-bit, the speedup provided by the

RBG accelerators is 214× over /dev/urandom and for 1024-

bit the maximum speedup is 70×. Compared to rand(), the

TABLE II: Average Amount of Prime Numbers / 1000 Numbers

bit length BrainBit BrainMod /dev/urandom rand()

256-bit 5.47 5.51 5.6 11

512-bit 2.87 2.83 2.59 6.65

1024-bit 1.16 1.46 1.08 2.74

Fig. 8: Average time to generate a prime number.

throughput is increased by 6× and by 3× for 512-bit and

1024-bit, respectively.

Overall, the RBG accelerators provide a significant perfor-

mance advantage over the other RNGs. The results demon-

strate the potential of MindCrypt as a viable prime number

generation engine for asymmetric cryptography algorithms like

RSA, which rely on the availability of large prime numbers.

Performance and Efficiency of BrainBit-AES. To in-

vestigate the encryption throughput MindCrypt provides, we

invoked both the RBG accelerators and the AES accelerator on

FPGA. We evaluated the execution of their joined computation

by scaling up the number of accelerators of each type. We ran

our tests on MindCrypt SoCs containing up to four accelerators

per type, and compared the cases of communication via P2P

and communication via DMA.

Fig. 9 shows the normalized performance and energy ef-

ficiency of invoking the accelerators. Each AES received a

total of 256-bit, 512-bit, or 1024-bit random bits, while the

first 128 bits were used as encryption keys and the rest as 32-

bit plaintext words. For each combination of accelerators, the

results were normalized with respect to the result of one RBG

accelerator and one AES communicating via DMA. We report

the results from unique configurations with different number

of instances for each accelerator type.

For the case of one accelerator of each type, enabling

P2P provides 1.7× speedup, and 4.4× better energy-efficiency

(BrainMod). For 1024-bit and with 4 instances of the RBG

accelerators we achieve a maximum of 6.1× speedup and

12.4× energy-efficiency. Instead, adding more instances of

AES gives moderate speedup and energy-efficiency gain. This

is expected because of the execution time of AES, which is

shorter than the one for the RBG accelerators (Table I).

The results show that in addition to the security advantages

of isolating the generated random bits from off-chip memory

and the processor, using P2P is beneficial for performance and

energy efficiency. We expect P2P to show similar results when

experimenting with other crypto accelerators as well.

Throughput Optimization with DPR. Environmental fac-

tors such as temperature, noise, etc., can affect the perfor-

mance of the neural interface. This results in some of the

brain data being discarded by the RBG accelerators leading to

a reduction of the total throughput (Section IV). To confront

this, we would like to increase the throughput by having



Fig. 9: Performance and energy efficiency for different SoCs

with RBG×AES accelerators communicating via P2P.

an SoC with multiple instances of RBG accelerators reading

brain data from more channels. However, BCI-based IoT are

constrained in area and resources to host multiple accelerators.

As we target the relay-station part of a BCI system (Fig. 1)

which can be implemented on FPGA, we augmented an FPGA

implementation of the MindCrypt SoC with a DPR flow to

multiplex BrainMod accelerators with other accelerators in

the same FPGA area [55]. When a lower RBG throughput is

detected, our software triggers a partial reconfiguration which

temporarily replaces one of the less frequently used tiles with

an additional BrainMod accelerator. As long as the power

consumption of BrainMod is lower than the one of the other

accelerator, the total power consumption will not be harmed.

Fig. 10 shows our evaluation on the performance of DPR

with the generation of different numbers of keys for multiple

iterations. The brain data was altered in 60% of the execution

time to simulate a low throughput. For less keys, DPR is

not effective and the RBG throughput remains as in the case

with no DPR. For higher numbers of keys, DPR improves

the throughput, which almost reaches the ideal value with no

environmental effects. These results show that in the case of

an FPGA-based implementation, DPR can be highly effective

in maintaining the throughput of MindCrypt, while having a

negligible impact on the energy efficiency [56].

VII. RELATED WORK

Random number generation in IoT has been emphasized in

literature [11], [14], [15], [39], [40]. Kietzmann et al. [11]

investigate the generation of random numbers for various

purposes by software and hardware generators from the per-

spective of an operating system (OS) on an IoT device. They

emphasize the importance of random number generation for

emerging AI and security applications on IoT devices, and

discuss the growing processing demands of ML and RL in

IoT, which triggers the use of hardware platforms that consist

of low-power RISC-V processors and hardware accelerators.

In Section VI, by running software applications on a RISC-

V processor, we show that our hardware accelerators provide

superior random number generation in terms of throughput and

energy efficiency compared to Linux-based software RNGs.

Authentication and random number generation in IoT has

been enabled via PUFs that are based on ring oscillators,

radio frequency, power distribution, and more [18]–[20], [39].

Fig. 10: DPR throughput vs. no DPR.

However, to eliminate the need in modifying the fabrication

of the IC and to increase reliability, harvesting entropy from

sensor-based data has been proposed instead [21], [40], [41].

Hillerström et al. [21] propose to build a sensor-based PUF

by combining raw data from multiple sensors and applying

randomness extraction algorithms to transform it into uni-

formly distributed sequences. Wallace et al. [40] build the

SensoRNG framework which collects data from on-board

sensors to produce random numbers via a mixing algorithm. In

Section III, we apply our RBG extraction algorithms on brain

data recorded from multiple sensors (electrodes) to generate

uniformly random bits.

The design of BCI systems as secure healthcare wearable

devices has been discussed [1]–[3], [9], [33]. Taleb et al. [33]

explain that security and privacy are indispensable require-

ments for devices in wireless body-area networks (WBANs).

Lin et. al. [37] show how online brain data can provide

authentication. Szczepanski et al. [24] present the only existing

algorithm in literature that converts neurophysiological brain

data to pseudo-random bits, and test it on brain data from a

cat. They suggest that in the future the random bits can be used

to generate cryptographic keys. In Section III we implement

BrainBit based on the description from Szczepanski et al. [24].

Then, we develop the hardware-efficient BrainMod algorithm.

BCI algorithms based on adaptive ML are more successful

in decoding the brain intent as the neural interface and the

neural activity change over time [3]–[6]. Degenhart et al. [5]

align neural activity from the brain of a non-human primate to

body movements via ML. The implementation runs a stabilizer

to support a Kalman Filter and the tuning of the model uses

random values in different stages. Zhang et al. [6] implement

a RL-based Kalman Filter, while RL is known to make heavy

use of random numbers due to the use of randomized algo-

rithms [11]. In Section IV we portray the implementation of

our RBG algorithms as reconfigurable hardware accelerators.

In Section VI, we show that our accelerators provide better

throughput for random number generation compared to other

RNGs, and, therefore, are more suitable to generate random

numbers for adaptive ML applications.

To the best of our knowledge, MindCrypt is the first work

that takes real brain data and realizes a full heterogeneous

SoC that can provide random numbers for various applications

on BCI-based IoT devices.

VIII. CONCLUSION

We designed MindCrypt to advance the research on brain-

based random number generation to be used by applications

for brain-computer interfaces. MindCrypt integrates RBG ac-

celerators in a scalable SoC architecture, and provides a com-



plete flow, from the availability of brain data through random

bit generation to configurable random number generation,

which can be mapped to high-level applications via efficient

communication and resource utilization. We have released the

design of MindCrypt in the public domain1.
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