
Unit 6: Indeterminate Computation
Martha A. Kim
November 19, 2012

Introduction

Until now, we have considered parallelizations of sequential pro-
grams. The parallelizations were deemed “safe” if the parallel pro-
gram were shown to be equivalent to the underlying sequential
program via analysis of the parallel version’s effect sets. We now
turn our attention to a class of parallel programs that is considered
“unsafe” by our previous definition. We call this class of parallel
programs “indeterminate”.

A program is deterministic on a given input if each memory loca-
tion is updated with the same sequence of values in every execution.
Determinism leads the program to always behave in the same way
on the same input. Reasoning about and debugging programs that
do not have this property – indeterminate programs – is significantly
more challenging. In this unit we will reason about the correctness
and progress conditions of indeterminate parallel programs.

Reasoning about interleavings

An interleaving is the order in which multiple simultaneous accesses
to a single memory location are interleaved in time and applied to
the memory location.

Consider the following two transactions applied to the same bank
account. The body of the deposit thread (blue) and the withdrawal
thread (red) each boil down to three instructions containing a load
of and then a store to the single location in memory that holds the
current account balance.

deposi t (x) {
balance += x ;

}

withdraw (x) {
balance −= x ;

}

load balance $r0

addi $r0 , $r0 , x
s t o r e $r0 , balance

load balance $r1

subi $r1 , $r1 , x
s t o r e $r1 , balance

The correctness of the computation depends on the order in which
these operations are applied to the shared memory location, in other
words, the interleaving. Here we illustrate the six possible interleav-
ings of the four memory operations in these two threads. Each thread

unit 6: indeterminate computation 2

dictates the order of its own instructions, but apart from that con-
straint the instructions may read and update memory in any order,
resulting in the six potential interleavings shown below. The first two
interleavings will compute a correct result, while the last four will
not.

load

s t o r e

load

s t o r e

load

s t o r e

load

s t o r e

load

load

s t o r e

s t o r e

load

load

s t o r e

s t o r e

load

load

s t o r e

s t o r e

load

load

s t o r e

s t o r e

When these two threads are executed, as written, the user has no
control over which of these six interleavings will occur. Sometimes
the interleaving may be legal, other times starting from the very
same inputs the result may not be. In order to restrict the possible
interleavings to only the legal ones, it is up to the programmer to
insert appropriate synchronization into their code.

Atomic operations

The problem with the above example is that, to operate correctly, the
load and store in each thread must be executed atomically. Atomic
operations are indivisible. They cannot be split by another thread.

This atomicity can be enforced at any level, either some runtime
software system, or in the hardware itself.

Compare and swap

Most modern processors support one or two basic synchronization
primitives. The first of these is the compare and swap operation. The
compare and swap (CAS) operation takes three arguments: the mem-
ory location in question, an expected value, and an update value. If
the location contains the expected value, it is overwritten with the
update value. If the location does not contain the expected value, it
will not be overwritten, and the CAS operation returns false.

In X10, x10.util.concurrent provides several atomic classes such
as AtomicInteger and AtomicReference that support compare and
swap. Similarly, in Java java.util.concurrent.atomic provides
several basic classes (e.g., boolean, integer and reference classes)
which have a compareAndSet() method 1 while C# supports the 1 Sun Microsystems. Package

java.util.concurrent.atomic.
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/atomic/package-
summary.html

unit 6: indeterminate computation 3

Interlocked.CompareExchange method 2.

2 Microsoft Corporation. Inter-
locked.compareexchange method.
http://msdn.microsoft.com/en-
us/library/system.threading.interlocked.compareexchange(VS.71).aspx

At the hardware level, X86 has the CMPXCHG (for compare and
exchange instruction) while SPARC calls its compare and swap in-
struction CAS.

Load-linked and store-conditional

The second style of synchronization primitive is a pair of instruc-
tions: load-linked (LL) and store-conditional (SC). The idea is that LL
reads from an address, followed by a write (SC) to that same address.
This SC will complete the store only if the value at the address has
not changed since the earlier LL. A number of architectures support
such a pair of instructions in cluding the Alpha AXP (ldl_l,stl_c),
IBM PowerPC (lwarx/stwcx), and ARM (ldrex/strex).

Linearizability

To this point we will have considered parallel programs correct if
they were equivalent to their underlying sequential specification.

We now define a different correctness condition for parallel pro-
grams with no single sequential specification. Linearizability is a cor-
rectness condition for such parallel programs. We define linearizable
using the following terms:

• A history is a sequence of method invocations and responses on a
concurrent object by a set of threads.

• A sequential history is a history in which each invocation is fol-
lowed immediately by the corresponding response.

Consider the histories shown below. There are two sequential
subhistories of the two threads, A and B. The third history is the
parallel history of the queue object q.

• A linearization of a parallel history is a sequential history that is
the result of reordering the invocations in the parallel history such
that:

1. If one method call precedes another in the parallel history, the
order is preserved in the sequential

2. If two method calls overlap, the ordering is ambiguous and the
calls can be ordered in any convenient way

3. The resulting sequential history is legal

Both of the following sequential histories satisfy the first and sec-
ond requirements, however only the first history satisfies the third,
correctness, requirement.

unit 6: indeterminate computation 4

 A
q.enq(a) q.deq() = a

 B
q.enq(b)

q

inv
oc

ati
on

 A: q
.en

q(a
)

(sequential subhistory of thread A)

(sequential subhistory of thread B)

(parallel subhistory of object q)

inv
oc

ati
on

 B: q
.en

q(b
)

res
po

ns
e A

: q
.en

q(a
)

res
po

ns
e B

: q
.en

q(b
)

inv
oc

ati
on

 A: q
.de

q()
 =

a
res

po
ns

e A
: q

.de
q()

 =
a

 q
q.enq(a) q.deq() = a

(a legal sequential history of q, and therefore a linearization)
q.enq(b)

 q
q.enq(b) q.deq() = a

(not a legal sequential history of q, therefore not a linearization)
q.enq(a)

• An object is linearizable if there exists a linearization for all possible
parallel histories.

• An alternative, equivalent, definition of linearizability is that an
object is linearizable if each method call appears to take effect
instantaneously at some moment between its invocation and re-
sponse.

• It is possible to prove linearizability by finding a linearization point
for each method, the moment at which the method’s effects be-
come visible to the other threads.

Atomic updates of shared state will assist us in identifying lin-
earization points and thus to reason about the linearizability of the
concurrent objects.3 3 Linearizability is discussed at some

length and rigorously in “The Art of
Multiprocessor Programming” .

Maurice Herlihy and Nir Shavit.
The Art of Multiprocessor Programming.
Morgan Kauffman, first edition, 2008

Non-blocking data structures

Motivation

Processes can be delayed for any number of reasons including OS
scheduling preemption, a page fault, or a cache miss. Blocking algo-
rithms suffer significant performance degradation when a processes
is halted or delayed at an inopportune time. Non-blocking algorithms
are more robust in the face of these events.

unit 6: indeterminate computation 5

Locks, as a synchronization mechanism, have many undesirable
properties including priority inversion when a lower-priority thread
is interrupted while holding a lock that a higher priority-thread is
trying to acquire (resulting in the delay of a high-priority thread),
convoying when any thread holding a lock is interrupted resulting in
all other threads that are attempting to acquire that lock queueing
up and waiting, and worst of all deadlock in which threads attempt to
lock the same objects in different orders resulting in neither thread
being able to proceed.

We are therefore interested in defining and exploring a class of al-
gorithms that do not suffer the above pitfalls. This class of algorithms
is called non-blocking and an algorithm’s membership is satisfied by
each of the non-blocking properties defined here.

Execution Intervals

When reasoning about progress properties we will reason about
progress in terms of execution intervals. An execution interval is the
period of time it takes a thread to carry out some work. Executing a
method call, or a critical section, or even some part of a method call
are all examples of execution intervals. An execution interval can be
infinite (it may never terminate), finite (it will terminate), or bounded (it
will terminate within a bounded amount of time.

some thread is finite all threads are finite all threads are bounded
lock-free •
wait-free • •

bounded wait-free • • •

Figure 1: Comparison of non-blocking
progress conditions

Both wait-freedom and lock-freedom are both properties that satisfy
the non-blocking progress condition.

A method is wait-free if every call to it finishes in a finite number
of steps. An object is wait-free if all of its methods are wait-free.

By contrast, a less strict non-blocking progress condition, lock-
freedom will allow individual threads to starve, but guarantees system-
wide progress. All wait-free algorithms are also lock-free, but not
vice versa.

Example: lock-free queue

To understand how such a property is acheived in practice, let us
examine an implementation of a lock-free FIFO queue shown in
Figure 2. In addition to its constructor, this class has two methods:
enq() and deq(). The code uses atomic compareAndSet() operations,
as defined earlier in Section , to control updates to shared state. The
queue consists of a linked list in which the first node is a dummy

unit 6: indeterminate computation 6

1 public c l a s s LockFreeQueue {
2 private s t a t i c type Data = S t r i n g ;
3

4 private s t a t i c c l a s s Node {
5 var data : Data = null ;
6 var next : AtomicReference [Node] = AtomicReference . newAtomicReference [Node] (null) ;
7 public def t h i s (data : Data , next : Node) {
8 t h i s . data = data ;
9 t h i s . next = AtomicReference . newAtomicReference [Node] (next) ;

10 }
11 }
12

13 private var head : AtomicReference [Node] ;
14 private var t a i l : AtomicReference [Node] ;
15

16 public def t h i s () {
17 val s e n t i n e l = new Node(null , null) ;
18 head = AtomicReference . newAtomicReference [Node] (s e n t i n e l) ;
19 t a i l = AtomicReference . newAtomicReference [Node] (s e n t i n e l) ;
20 }
21

22 public def enq (data : Data) {
23 var d : Node = new Node(data , null) ;
24 var t : Node = null ;
25 var n : Node = null ;
26 do {
27 t = t a i l . get () ;
28 n = t . next . get () ;
29 i f (t a i l . get () != t) continue ;
30 i f (n != null) {
31 t a i l . compareAndSet (t , n) ;
32 continue ;
33 }
34 i f (t . next . compareAndSet (null , d)) break ;
35 } while (t rue) ;
36 t a i l . compareAndSet (t , d) ;
37 }
38

39 public def deq () {
40 var d : Data=null ;
41 var h : Node=null ;
42 var t : Node=null ;
43 var n : Node=null ;
44 do {
45 h = head . get () ;
46 t = t a i l . get () ;
47 n = h . next . get () ;
48 i f (head . get () != h) continue ;
49 i f (n == null)
50 throw new Exception (" Nothing to dequeue ! ") ;
51 i f (t == h)
52 t a i l . compareAndSet (t , n) ;
53 e lse
54 i f (head . compareAndSet (h , n)) break ;
55 } while (t rue) ;
56 d = n . data ;
57 n . data = null ;
58 h . next = null ;
59 return data ;
60 }
61 }

Figure 2: LockFreeQueue.x10: X10

implementation of a lock-free queue
from Herlihy and Shavit’s “Art of
Multiprocessor Programming”

unit 6: indeterminate computation 7

node or sentinel. Figure 3 illustrates the standard operation of the
enq() and deq() methods.

The enq() method is prepared to encounter two different scenarios
in the shared state.

The first scenario (n == NULL, line 30) is if the queue is in a clean
state where all of the head and tail pointers are correct. enq()’s oper-
ations in this case are illustrated in the two atomic steps in Figure 3.
First it atomically updates the pointer of the next pointer of the last
element in the queue to point to the new element to be added (line
34). It then atomically updates the tail pointer to point to the new
tail of the queue (line 36). Because these two operations are not exe-
cuted atomically, it is possible that another thread will come upon a
queue in which the first CAS has occurred, but not the second.

head
sentinel

tail
x

NULL
compareAndSet() #1

(line 34)

head
sentinel

tail
x

a

NULL

compareAndSet() #2
(line 36)

head
sentinel

tail
x

a

NULL

The queue starts in a clean
state

The enqueueing thread first
links the new node into the
chain

It then updates the tail
pointer to point to the new
node (which is now the tail)

Figure 3: Clean enq() operation

compareAndSet() #3
(line 31)

head
sentinel

tail
x

a

NULL

head
sentinel

tail
x

a

NULL

An enqueueing thread finds the
queue in an unclean state (where
the tail pointer does not point
to the last item in the queue)

Upon recognizing this, the enqueuer first
updates the tail pointer completing the
incomplete enq() and returning the queue
to a clean state

Figure 4: enq() encountering another
enqueue in progress

unit 6: indeterminate computation 8

head
sentinel

tail
x

NULL

compareAndSet() #2
(line 51)

head
sentinel

tail
x

The queue starts in a clean
state

The dequeuer first reads the first value
(x) and then updates advances the head
pointer (leaving the previous sentinel
to be garbage collected)

Figure 5: Normal deq() operation.

head
sentinel

tail
x

NULL

A dequeuer finds the queue in an
unclean state where h==t (ln 51)
but the queue is not empty (n !=
null, line 49).

This occurs when some other
thread was interrupted halfway
through enqueueing an item on an
empty list.

head
sentinel

tail
x

NULL

The dequeuer() updates the tail
pointer so that it can later
safely advance the head pointer
without causing the tail pointer
to lag behind the head pointer.

compareAndSet() #1
(line 52)

Figure 6: deq() finishing up in-progress
enqueue

Implementations of enq() must also, therefore, be prepared to
encounter and to clean up after a half-completed enq() operation
as illustrated in Figure 4. This second scenario occurs if (n != NULL,
line 30). Should thread B call enq() only to discover that thread A
has stopped halfway through its own enq(), thread B will find that
the tail pointer has not yet been updated. It will then then execute
the compareAndSet() operation on line 31 to update the tail pointer
for thread A’s enq() before returning to the top of the while loop to
re-attempt the enqueue of its own new node.

Similarly the deq() method is prepared to encounter two states.
In the first scenario (if t != h on line 51) the dequeueing thread can
proceed with its normal dequeue operation as shown below Figure 5.

In the second scenario, if the queue is non-empty and h == t, the
deq() method finishes up an in-progress enq() operation. While nor-

unit 6: indeterminate computation 9

mally enqueues and dequeues are independent, when h == t, the tail
of the queue is close enough to the head that an incomplete enqueue
operation will affect the proper operation of the dequeue. In this sce-
nario, illustrated in Figure 6, the deq() method needs to advance the
tail pointer on line 52 (just like enq() does when it finds tail lag-
ging) so that deq() can later advance head without advancing it past
tail.

For further examination, a Java implementation of a similar lock-
free queue is discussed in great detail in “The Art of Multiprocessor
Programming” 4, Chapter 10. 4 Maurice Herlihy and Nir Shavit. The

Art of Multiprocessor Programming.
Morgan Kauffman, first edition, 2008

Implementing locks

A good locking algorithm must have the following three correctness
and progress properties. Properties are stated here for two threads,
but can be readily generalized.

• Mutual exclusion: The execution of the critical sections by differ-
ent threads do not overlap in time.

• Deadlock-freedom (lock-freedom): Some thread can always
proceed. (I.e., both threads will not both be trying and unable to
acquire the lock.)

• Starvation-freedom (wait-freedom): Every thread that attempts
to acquire the lock will eventually succeed.

Peterson’s lock

We will prove these three properties for Peterson’s two-thread lock
implementation shown in Figure 7. For further discussion of this
code, as well as the Bakery code presented later, refer to “The Art of
Multiprocessor Programming” 5, Chapter 2. 5 Maurice Herlihy and Nir Shavit. The

Art of Multiprocessor Programming.
Morgan Kauffman, first edition, 2008

Proof of mutual exclusion We will prove mutual exclusion by contra-
diction.

• Let us assume that execution of the critical section by thread A
(CSA) overlaps with thread B’s execution of the critical section
(CSB). In order for each thread to enter the critical section, each
thread will have executed the series of operations shown in black
in Figure ??. (The arrows indicate the precedence ordering of the
operations.)

• Let us assume, without loss of generality, that thread A was the
last to write to victim field. This allows us to add the blue arrow

unit 6: indeterminate computation 10

1 c l a s s Peterson {
2 / / t h r e a d− l o c a l index , 0 or 1
3 private var f l a g : Array [Boolean] { s e l f . rank ==1 } ;
4 private var vic t im : I n t ;
5

6 public def t h i s () {
7 f l a g = new Array [Boolean] (2 , f a l s e) ;
8 vict im = 0 ;
9 }

10

11 public def lock (i : I n t) {
12 a s s e r t (i == 0 | i == 1) ;
13 val j : I n t = 1 − i ;
14 f l a g (i) = t rue ; / / I ’m i n t e r e s t e d
15 vict im = i ; / / you go f i r s t
16 while (f l a g (j) && vict im == i) { } ; / / wa i t
17 }
18

19 public def unlock (i : I n t) {
20 f l a g (i) = f a l s e ;
21 }
22 }

Figure 7: Peterson.x10: X10 implemen-
tation of a Peterson lock

to Figure ?? and to determine that thread A’s subsequent read of
victim produced the value A.

• Since thread A entered the critical section, we know that it suc-
ceeded in acquiring the lock. In order for A to acquire the lock,
it must have satisfied the condition victim != A or flag(B) ==

false. Since we know that victim == A, we can infer that flag(B)
must have been false. (Indicated in green.)

• However, we know the last writer to flag[B] was thread B, and
that it set flag(B) = true. This write of flag(B) = false fol-
lowed by a read of flag(B) that produces true, indicated by the
red arrow, is a contradiction.

Therefore, it is not possible that threads A and B executed the crit-
ical section at the same time, and thus this lock implements mutual
exclusion.

Proof of starvation-freedom We will prove starvation-freedom of Peter-
son’s lock, also by contradiction.

• Suppose that Peterson’s lock is not starvation-free, that some
thread, say A, runs forever in the lock() method.

• For a thread to run forever in the lock() method, it must be execut-
ing the while loop, waiting for either flag(B) == false or victim
== B.

unit 6: indeterminate computation 11

• What is the other thread, thread B, doing during this time? It must
be doing one of three things:

– CASE 1: B does not want to execute the critical section. In that
case, flag(B) will be false which should cause thread A to
break out of the while loop, contradicting our assumptions.

– CASE 2: Thread B is repeatedly executing the critical section,
entering and leaving it repeatedly. Upon entry, thread B sets
victim = B. The value of the victim field will never change after
this because thread A is stuck in the while loop. However it is
impossible for thread A to spin while victim == B, so we have
another contradiction.

– CASE 3: Thread B may also be stuck in the while loop. For
thread B to be stuck in its while loop, flag(A) == true and
victim == B. However, once again, thread A cannot be spinning
when victim == B, so it is impossible that both threads are
stuck in the while loop at the same time.

With a contradiction in all possible cases, we have shown that it is
impossible for a thread to execute forever, never completing a call to
lock().

Proof of deadlock-freedom Since starvation-freedom is a stronger
progress constraint than deadlock freedom, proving starvation-
freedom automatically proves deadlock-freedom.

The bakery algorithm

We now examine a lock implementation that improves upon Peter-
son’s algorithm in two ways: it supports more than two threads and
it enforces a form of fairness (in this case, first come, first served)
amongst threads with respect to the order in which they are granted
access to the critical section. The starvation freedom property of
Peterson’s lock guarantees that every thread that calls lock() will
eventually enter the critical section. However, there is nothing in the
code to enforce fair access to the critical sections regardless of the
scheduling of the threads.

Peterson’s has no way of tracking the order in which the threads
attempt to acquire lock(). The Bakery algorithm is shown in Figure 9.
It is so-named because it is inspired by bakeries in which customers
take numbered tickets upon entry and are then served in the order of
ticket numbers, using this system to introduce inherent fairness into
the lock.

The Bakery algorithm splits the lock acquisition into two sections:
the doorway and the waiting section. The doorway interval (denoted

unit 6: indeterminate computation 12

Di for thread i) consists of a bounded number of steps. The waiting
interval (denoted Wi) is finite but unbounded. The Bakery algorithm
enforces the following first come, first-served policy: if DA −→ DB

then CSA −→ CSB. In other words, if thread A completes its doorway
interval before thread B, thread B cannot overtake thread A.

Examining the code for the Bakery algorithm in Figure 9, we see a
distributed version of the number-dispensing machine:

• flag(A) is a boolean indicating whether or not thread A wants to
enter the critical section.

• label(A) is an integer indicating A’s relative order of entering the
bakery.

The labels are compared using the « operator where (label(i),i)

« (label(j),j) if and only if label(i) < label(j) || (label(i)

== label(j) && i < j). In English, this comparator first compares
the labels of two threads. If they are equal – which can occur as there
is nothing to keep two threads from simultaneously examining the
label array, finding the same maximum value, and basing their labels
on that – the comparator breaks the tie by using the thread IDs.

It is easy to inspect this code and see that, because threads never
reset their labels, that the labels increase monotonically. We will now
prove the three base locking properties (implementation of mutual
exclustion, deadlock-freedom, starvation-freedom) as well as fairness
(FCFS).

Proof of mutual exclusion We will again prove that the Bakery al-
gorithm satisfies mutual exclusion via contradiction. Suppose the
opposite: that the critical section of one thread, CSA, overlaps with
the execution some other thread’s critical section, CSB. Suppose also,
without loss of generality, that A entered the critical section before B,
that (label(A),A) « (label(B),B). For B to have entered its critical
section (for CSB to begin it must have read that flag(A) == false

(i.e., that A did not want to enter the critical section) or (label(B),B)
« (label(A),A) (that B had precedence over A). This latter condition
contradicts our assumption, so it must be the case that B entered the
critical section because it observed flag(A) == false. However, by
our assumptions A is in the critical section (with flag(A) == true)
when B enters. Therefore it is impossible that B could have observed
flag(A) == false. Because the overlapping execution of critical
sections leads to a contradiction, we have proof that this algorithm
implements mutual exclusion.

Proof of deadlock-freedom The Bakery lock is deadlock free because
some waiting thread A must have the uniquely least value of (label(A),A).

unit 6: indeterminate computation 13

The algorithm ensures that that thread will never wait for another
thread, and can thus proceed, guaranteeing that the system is free of
deadlock.

Proof of first-come, first-served property We will prove first-come, first-
served by proving that if A’s doorway precedes B’s, then A’s label is
smaller. Inspect the detail of the doorway executions in Figure 8. We
see that thread A’s setting of its own label precedes B’s reading of it
and subsequent setting of its own label. This sequence of operations
(indicated by the red arrows) implies that label(A) < label(B). So,
the only way that B can proceed to the critical section is if flag(A) ==

false. Once A has executed its doorway, this can only happen after
A has called unlock(). Thus, the critical section of A must complete
before B can begin its own critical section.

Proof of starvation freedom Having proven deadlock-freedom and
first-come, first-served, the proof of starvation-freedom comes au-
tomatically. Deadlock freedom tells us that one thread can always
advance, and first-come, first-served tells us that all threads that
want access to the critical section will eventually get it, thus we have
proven that all threads can advance and that none will starve.

References

Microsoft Corporation. Interlocked.compareexchange
method. http://msdn.microsoft.com/en-
us/library/system.threading.interlocked.compareexchange(VS.71).aspx.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-
ming. Morgan Kauffman, first edition, 2008.

Sun Microsystems. Package java.util.concurrent.atomic.
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/atomic/package-
summary.html.

unit 6: indeterminate computation 14

write (flag(A) = true)

write (victim = A)

read (flag(B))

read (victim)

thread A

= A

= false

l
o
c
k
(
)

C
S

write (flag(B) = true)

write (victim = B)

read (flag(A))

read (victim)

thread B

l
o
c
k
(
)

C
S

write (flag(A) = true)

read (label(i != A))

write (label(A))

thread A

d
o
o
r
w
a
y

write (flag(B) = true)

read (label(i != B))

write (label(b))

thread B

assume A's doorway precedes B's

label(A) < label(B)

Figure 8: Illustration of Bakery’s en-
forcement of first-come, first-served
property

unit 6: indeterminate computation 15

1 c l a s s Bakery {
2 private var f l a g : Array [Boolean] { s e l f . rank ==1 } ;
3 private var label : Array [Long] { s e l f . rank ==1 } ;
4

5 public def t h i s (n : I n t) {
6 f l a g = new Array [Boolean] (n , f a l s e) ;
7 label = new Array [Long] (n , 0 L) ;
8 }
9

10 private def nextLabel () {
11 var max : Long = 0 ;
12 for (var i : I n t = 0 ; i < label . s i z e ; i ++) {
13 i f (label (i) > max) max = label (i) ;
14 }
15 return max+1 ;
16 }
17

18 private def someoneElseFirst (i : I n t) {
19 for (var k : I n t = 0 ; k < label . s i z e ; k++) {
20 i f (f l a g (k) &&
21 ((label (k) < label (i)) || ((label (k) == label (i)) && (k < i))))
22 return true ;
23 }
24 return f a l s e ;
25 }
26

27 public def lock (i : I n t) {
28 / / doorway s e c t i o n
29 f l a g (i) = t rue ;
30 label (i) = nextLabel () ;
31 / / w a i t i n g s e c t i o n
32 while (someoneElseFirst (i)) { }
33 }
34

35 public def unlock (i : I n t) {
36 f l a g (i) = f a l s e ;
37 }
38 }

Figure 9: Bakery.x10: X10 implementa-
tion of a Bakery lock

	Introduction
	Reasoning about interleavings
	Atomic operations
	Linearizability
	Non-blocking data structures
	Implementing locks

