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Abstract. Automated intrusion prevention and self-healing software are active
areas of security systems research. A major hurdle for the widespread deploy-
ment of these systems is that many system administrators lack confidence in the
quality of the generated fixes. Thus, a key requirement for future self-healing
software is that each automatically-generated fix must be validated before deploy-
ment. Under the response rates required by self-healing systems, we believe such
verification must proceed automatically. We call this process Automatic Repair
Validation (ARV). We describe the design and implementation of Bloodhound,
a system that tags and tracks information between the kernel and the application
and correlates symptoms of exploits (such as memory errors) with high-level data
(e.g., network flows). By doing so, Bloodhound can replay the flows that triggered
the repair process against the newly healed application to help show that the re-
pair is accurate (i.e., it defeats the exploit). We show through experimentation a
performance impact of as little as 2.6%.
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1 Introduction

Recent advances in self-healing software techniques have paved the way for autonomic
intrusion reaction, but real-world deployments of such systems have lagged behind re-
search efforts. The limits of detection technology have historically mandated that re-
searchers address the shortcomings of intrusion detection before reaction mechanisms
(i.e., self-healing mechanisms) are considered – an attack must be detected before a re-
sponse can be mounted. In addition, many system administrators are reluctant to allow
a defense system to make unsupervised changes to the computing environment, even
though (and precisely because) a machine can react much faster than a human.

1.1 Automatic Repair Validation

Automatically generated fixes must be subjected to rigorous testing in an automated
fashion. This problem is the essence of Automatic Repair Validation (ARV), a new area
of intrusion defense research. ARV encompasses the entire spectrum of an automated
response system’s functionality: attack detection, repair accuracy, repair precision, and
impact on normal behavior:



1. Validation of detection – The system must verify that the events causing an alert
actually produce a compromise. In the case where the sensor is an anomaly detector,
the detector’s initial classification must be confirmed.

2. Validation of a repair’s accuracy – The system must test and verify that the repair
defeats at least the exploit input that triggered the detection. The rest of the paper
discusses the challenges of this process and our solution to it in detail.

3. Validation of a repair’s precision – The fix must be precise, in the sense that it
blocks malicious variants of the original attack. For example, if the fix is an input
filter, the system must ensure that the signature generation does not fall prey to
the allergy attack [1], whereby a signature generation system is trained to corre-
late benign input with undesireable symptoms, thereby increasing the rate of false
positives.

4. Validation of a repair’s impact on application behavior – Behavior exhibited by
the application after self-healing should be similar to the previous behavior pro-
file of the application. Section 6 briefly discusses an approach for addressing this
challenge.

Even though the other problems in this space remain important challenges, we con-
cern ourselves with a repair’s accuracy in this paper. Verifying accuracy requires the
identification and replay of the attack inputs. Identifying these inputs is challenging, as
they may not have been captured correctly (or at all) by the defense instrumentation.
The challenge is greater if the input is contained in network traffic — data that most
humans find difficult to rapidly analyze by hand. Although the general ARV problem
exists for many types of systems, we propose a solution for systems that deal with net-
work traffic. These applications remain popular targets for attack due to the relative
anonymity of an attacker and the ease with which input can be sent to the system.

1.2 Correlating Across Abstraction

ARV reveals the tension between the need for abstraction during system design with
the need for anti-abstraction during system healing. Since defense system components
may not operate at the same layer, the underlying challenge in this problem space is cor-
relating information across layers of abstraction. For example, a detection component
may perform binary supervision, but its defense may be the generation of signatures
that match network packet content. The accuracy of such signatures is suspect because
the data that trips the detector is no longer contained in IP packets; rather, it resides in
a memory address and may have been repeatedly transformed before detection. With-
out appropriate instrumentation, the detector has lost the details of how the data arrived
in the memory location. This paper presents a system that contains instrumentation to
address this problem.

Abstraction is a powerful tool for system design. The key assumption is that a com-
ponent should be self-contained: it should not know (and therefore have a hidden depen-
dency on) the implementation details of another component. This assumption greatly
eases design cost and increases the flexibility of the system’s composition. It no longer
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holds when a system must self-heal. Other components must be aware of the details of
the malfunctioning component so that they can respond to the failure3.

Self-healing systems must correlate events and data across layers of abstraction.
This correlation should remain flexible: if a component switches to a different imple-
mentation, the self-healing infrastructure should adapt to the internal behavior of the
new component. We plan to identify a core set of anti-abstraction design patterns in
follow-on work to help support this capability.

This paper considers the design, architecture, and implementation of Bloodhound,
a system for recording and replaying attack input embedded in network flows. The
primary challenge involves correlating the form of input that triggers the self-healing
instrumentation with the input that originally enters the system. As such, Bloodhound
correlates network flows with host-based events by marking an application’s internal
data structures with the ID of the flow that “taints” that data structure. Bloodhound
breaks the traditional abstraction between low-level network data and high-level ap-
plication data objects by placing sensors at multiple layers in the network stack and
application stack. Specifically, Bloodhound runs on the OpenBSD operating system,
and it uses a loadable kernel module for a pseudo-device to break the user/kernel-space
abstraction.

2 Related Work

ARV is only meaningful if a system protects itself with a self-healing mechanism. Ri-
nard et al. [2] have developed compiler extensions that insert code to deal with access
to unallocated memory. This technique is leveraged for failure-oblivious computing. A
related idea is that of error virtualization [3], which creates a mapping between the set
of errors that could occur during a program’s execution and the limited set of errors that
are explicitly handled by the program code. The Rx system [4] improves on these ap-
proaches by performing only safe perturbations of application state to execute through
a fault.

2.1 Signature Generation

Although we could leverage Bloodhound to generate exploit signatures, such a task
is not our goal. In addition, recent work [5, 6] has called into question the ultimate
utility of exploit-based signatures, and Cui et al. [7] discuss using binary-level taint-
tracking to construct network or filesystem level “data patches” to filter input instances
related to a particular vulnerability. Newsome et al. suggest generating and distribut-
ing vulnerability-specific execution filters [8] based on the identification of a particular
control flow path derived from tainted dataflow analysis. Many systems aim at automat-
ically generating signatures of malicious traffic [9–12]. To generate a signature, most
of these systems either examine the content or characteristics of network traffic or in-
strument the host to identify malicious input.

3 Note that the problem domain we consider in relation to “self-healing” is not the more tra-
ditional fault-tolerant environment for distributed applications, where transparent fail-over to
replicated components is the norm. In such cases, anti-abstraction serves little purpose.
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Other recent work takes a hybrid approach and performs host-type processing on
network data. Abstract Payload Execution (APE) [13] identifies network traffic that
contains malicious code by treating the content of a packet as machine instructions.
Instruction decoding of packets can identify the sequence of instructions in an exploit
whose purpose is to guide the program counter to the exploit code. Kruegel et al. [14]
detect polymorphic worms by learning a control flow graph for the worm binary with
similar techniques. Convergent static analysis [15] also aims at revealing the control
flow of malcode.

DIRA [16] is a compiler extension that adds instrumentation to keep track of mem-
ory operations and check the integrity of control flow transfers. It creates a string-based
signature for filtering further exploit instances. Liang and Sekar [12] and Xu et al.
[17] concurrently proposed using address space randomization to drive the detection
of memory corruption vulnerabilities and create a signature to block further exploits.
These systems operate in a similar fashion to Bloodhound in that they trace back from a
memory error to network data. The work of King and Chen [18] utilizes virtual machine
logging and replay to step back through checkpoints of a system to identify the ultimate
source of a compromise.

Newsome et al. propose dynamic taint analysis [19] to detect exploited vulnera-
bilities. The Vigilante [20] system uses similar analysis for detection and defines an
architecture for production and verification of Self-Certifying Alerts (SCAs), a data
structure for exchanging information about newly discovered vulnerabilities. The ver-
ification step is an example of the form of ARV mentioned in Section 1: Vigilante
verifies the control flow path that forms the basis for the alert actually causes an ex-
ploit to occur. While Bloodhound uses tainted dataflow analysis, it is not a replacement
for such systems. Instead, it augments dataflow analysis systems by considering how
tainted data flows through the kernel as well as userspace memory.

2.2 Replaying Traffic

Bloodhound archives all flows consumed by an application and replays only those flows
that were related to the exploit in question. Replaying application protocol dialogs is a
crucial aspect of an ARV system, and it proves useful in a number of situations (e.g.,
application or protocol debugging). Traffic can be reproduced in two major ways. First,
the raw packets can be recorded and replayed, but this approach may require a large
amount of storage and further packet processing. The second approach builds an ana-
lytical model of traffic and then generates traffic matching these characteristics.

TCPopera [21] can interactively replay network traffic. It is broadly applicable to
problems that require producing large amounts of realistic network data. Roleplayer by
Cui et al. [22] and the ScriptGen system by Leita et al. [23] attempt to reconstruct and
replay application-level messages from network flows with little contextual data and a
few guiding heuristics.

The Replayer system [24] formalizes the problem of application replay. Replayer
describes a sound approach (that is, one not based on heuristics) to generate and issue an
input that directs Host Bob to reach the same state as Host Alice (as determined by some
post-condition test). Although our replay problem is somewhat different, the Replayer
system is the most closely related research effort to Bloodhound, and we found the
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syntax of Replayer’s formal model of application protocol replay useful to help frame
Bloodhound’s task.

The most significant difference between Bloodhound and Replayer is that Blood-
hound focuses on identifying whether a particular network flow in the database of stored
flows contains malicious input. In addition, the underlying problem differs; Replayer is
designed to suitably transform a traffic trace or input so that a second host reaches a
state equivalent to the first host. Replayer does this by, for example, changing parts
of the input to reflect the appropriate hostname or cookie value based on the post-
condition constraint. In contrast, Bloodhound leverages taint analysis to identify the set
of network packets involved in an exploit. We designed Bloodhound to work with a
self-healing system. Since the host is modified via self-healing, the target state explic-
itly differs from the initial observed state (i.e., the application reaches a new “healed”
state rather than the same corrupted state).

One interesting avenue of research would be to combine Replayer and Bloodhound
so that stored flows that Bloodhound has selected for replay are consistent with the
state of the application and external world. The major challenge with this approach is
to ensure that fields critical to the exploit are not changed in a way that interferes with
the exploit’s efficacy, thus introducing a false negative into the validation process (i.e.,
the systems believes the exploit was defeated by the self-healing when it was simply
broken by the replay engine).

3 Design Space

ARV consists of automatically validating each step in the process toward a repair. We
focus our discussion here on how to determine the accuracy of a repair for network ap-
plications. Bloodhound’s tasks include (a) preferentially recording network traffic, (b)
searching through these flows after the application has been healed, and (c) replaying
the relevant flows to test this repair. Bloodhound provides evidence that an automated
response protects against the input that triggered the self-healing mechanism.

3.1 ARV Replay Definition

ARV replay involves selecting a series of packets to transmit to a modified version of
an application to test whether it survives the act of consuming those packets. An ARV
replay system, in effect, reprises the role of the attacker. Consider a program P and a
set of network flows F . Some subset of those network flows are exploit flows e.

{e0, e1, . . . , en} ⊆ F (1)
When P runs and receives input F containing exploit flows, it enters an exploited

or error state σ (according to some detection mechanism).

Run(P, F ) → σ (2)
After P consumes F and reaches the exploited or error state σ, a self-healing func-

tion H operates on P and σ to produce a “healed” program P ′, optionally replacing σ

or other states with correct or healed versions according to the repair strategy in use.
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H(P, σ) → P ′ (3)

The ARV accuracy test is to identify the subset e0, e1, . . . , en of F and verify that:

Run(P ′, {e0, e1, . . . , en}) 9 σ (4)

that is, to determine whether the healed version of the application enters an error or
exploit state on replay of the attack traffic.

During normal operation of P , (i.e., when it has not entered σ), the system records
a database of flows F where each flow fi consists of incoming and outgoing packets.
Each packet of fi causes changes in user and kernel memory and expresses a particular
control flow path in P . Instrumenting memory accesses to observe changes derived
from each fi results in a directed graph D. Each node in D is a memory address, and
each edge in D indicates that the source node “taints” the destination node. We label
each edge with the instruction responsible for propagating the taint.

While creating D seems fairly straightforward, D — as described — does not con-
tain enough information to support precise traceback. Traceback becomes imprecise
when the OS or application reuses a memory location to hold data derived from both
malicious and non-malicious flows. At such “common point” memory locations (like
a buffer that stores incoming requests), D does not prevent the traceback routine from
mistakenly expanding its scope. Common points have a fan-in from multiple flows that
becomes a fan-out during traceback.

Table 1. Forward-Marking Supports Precise Flow Traceback. The routine adds a node to D,
labels the transition, and labels the new (or existing) target node. Traceback iterates over E to
collect the malicious flow subsets from the corresponding nodes of D.

ROUTINE PROPAGATE(MEM SRC, MEM DST, FLOW F)
create new edge in D from src to dst

addFlow(dst, f)

ROUTINE TRACEBACK(EXPLOITMEM E, TAINTGRAPH D)
foreach memory address x in E

foreach node y in D

if x = y

maliciousFlows← getFlows(y)
return maliciousFlows

Our solution adopts a simplified traceback approach based on a forward marking
scheme that labels each node (memory address) in D with the flow ID responsible
for the current change in the node’s data. Once P enters σ, the detector generates a
set of memory addresses E that are involved in the exploit (e.g., an address whose
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contents enters the instruction register). Forward marking continuously maintains the
information necessary to quickly derive {e0, e1, . . . , en} (the flows responsible for the
exploit) given E. At that point, Bloodhound performs the accuracy test of Equation 4
to determine if P ′ represents a viable candidate to replace P in production service.

3.2 Traffic Recording

Many options exist for preferentially recording flows. The simplest approach archives
all network traffic and replays the entire archive on demand. This approach seems un-
tenable; a system can only store a finite volume of traffic, and replaying or searching
an arbitrarily large archive is infeasible in a timing-dependent domain like self-healing
software. The flow archive’s size must result in a reasonable duration for searching and
replaying flows. We consider some heuristics for choosing which flows to store:

– Save a sliding window of the last n days worth of traffic. This heuristic is simple
to implement, and it is simple to tune the size of the archive to optimize storage or
replay duration. To test a patch against the archive, simply replay all stored flows.
The obvious downside to this heuristic is that it fails against attacks that last longer
than, or started before, the n days stored in the archive.

– Save a probabilistic window. Rather than using a window with a fixed horizon,
probabilistically eject flows from the archive as they age. Aging policies can range
from FIFO to LRU to random ejection. Regardless of the aging policy chosen, the
self-healing software can only make probabilistic statements about its confidence
in a particular patch, based on the likelihood that the entire exploit was contained
in the archive.

– Archive flows flagged by a signature-based misuse detector (e.g., Snort). This heuris-
tic has the advantage of simplicity, but it is a poor match for a self-healing system
that can patch against new or 0-day attacks. The self-healing system can patch
against never-before-seen attacks, but the testing framework would could only re-
play flows for which a signature already exists.

– Archive those flows identified by a payload-based anomaly detection system such
as Anagram [25]. This heuristic supports the detection of suspect flows that have
never been seen before, unlike the previous example. The viability of this heuristic
depends entirely on the abilities of the anomaly detection system. If the anomaly
detection system has a low false negative rate, then the likelihood that the entire
exploit package is archived is very high.

– Archive flows based on tainted dataflow analysis. This heuristic focuses on reducing
the duration of testing, rather than reducing storage space. As an application and the
OS handle each flow, the flow will taint various user and kernel data structures. If
each flow is indexed based on the data structures it taints, then during testing only
those flows which taint the data structures involved in the patch under question
require replay.

These heuristics may also be combined to achieve various points on the trade-
off curve between archive size, replay duration, and confidence. While the choices of
recording strategies listed above all involve tradeoffs, we choose to employ a solution
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that does not admit false negatives during detection. That is, during replay, we prefer
to replay flows we know to be malicious. Thus, Bloodhound uses a form of host-based
taint analysis to help identify flows that are involved in a particular exploit.

3.3 Classes of Attack

We classify attacks into several broad categories to make it easier to illustrate the po-
tential complexity of the recording and replay task. The simplest scenario occurs when
a single TCP flow or UDP packet encompasses the entire attack (e.g., worms like Slam-
mer or Code Red). The attacker initiates a connection, transmits the exploit code, and
then closes the connection. Testing must replay the entire flow. In a slightly more com-
plex version, the attack may be a subset of a larger, innocent flow. Consider an SSH
connection where the attacker behaves innocently for several hours and then runs an
exploit. We differentiate this attack class from the previous scenario because it may not
be desirable to store all of a long-duration flow if only a portion is suspicious.

An attack can be distributed across multiple TCP flows, each of which taken alone
appears innocent. Consider a hypothetical attack where one flow corrupts a buffer and
a second one delivers the rest of the exploit. To complicate matters, an attack may
take advantage of the timing relationship between multiple flows or the timing relation-
ship between packets of a single flow. Attacks of this form exploit race conditions in
multi-threaded code, and recreating the circumstances of race conditions is notoriously
difficult. At the very least, the timing relationship between the packets or flows must
be preserved for testing. This requirement presents difficulties for a rapid automatic re-
sponse, as deployment time is constrained by characteristics of the attack – parameters
that the attacker controls. An attacker can potentially distribute exploits from both these
scenarios over arbitrarily many flows.

The attack may depend on innocent user action. Consider an exploit where the ad-
versary sends an attack packet, followed by N innocent requests, the combination of
which triggers the exploit. Any replay of the flows must include the attack packet and
all N innocent requests. This class is particularly difficult because, to the untrained eye,
the N th packet is highly suspect, while the true attack packet does not necessarily stand
out. Worst of all, regardless of the validity of a particular patch, testing against the N th

packet almost always succeeds because it is an innocent request.
Finally, an attack may be polymorphic. That is, the algorithm for generating the

exploit code may use cryptographic or other heuristics to change the form of the attack
over time. As a result, searching a flow or flows for particular bit patterns cannot neces-
sarily identify attacks of this form. In the most pathological case, an attack may consist
of any combination of the above attack classes: an attack may be polymorphic, spread
across multiple TCP flows, and depend on innocent user action. While we do not expect
this situation to dominate, it is useful to illustrate the extent of the design space.

4 Bloodhound Implementation

Based on the constraints we present in Section 3, we cover the implementation of Blood-
hound’s major components, including the structure of our data storage component as
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well as the implementation of a pseudo-device and its communication protocol with the
user space data management framework. We discuss ways to optimize traffic recording
through the use of a network content anomaly detector in Section 6.

TCP/IP stack

/dev/bloodhound

Daemon

Analyzer

socket()

read()

write()

User space

Kernel space

Network flows

Application
Database

(1)

(2)

(3)

(4)

(5)

libwdig

Fig. 1. Bloodhound Architecture. In order to track network flows from the operating system to
user applications, Bloodhound must break the user space/kernel abstraction. When an applica-
tion issues a network I/O system call (1), Bloodhound copies the network flow information to a
pseudo-device /dev/bloodhound (2). A daemon (3) regularly polls the pseudo-device and
then stores the network flow data in a database (4). After a self-healing repair has been effected,
the analyzer can issue queries to the database (5) to discover which flow caused the exploit. The
flow can then be replayed against the newly healed application to test the efficacy of the repair.

4.1 Architecture & Operation

Bloodhound must store flow information and enough structured forensic information to
link flows with kernel and application data items, so Bloodhound’s core components
are distributed across the kernel and user space as shown in Figure 1.

The /dev/bloodhound pseudo-device is implemented as an OpenBSD Load-
able Kernel Module. The pseudo-device supports an ioctl() call BH PID which
indicates the process ID number of specific process to observe. On loading, the mod-
ule hooks into the I/O system calls to intercept network data before it is copied to user
space. Each flow associated with the observed process is copied to an in-kernel buffer
which is read through standard read() calls on /dev/bloodhound.
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Data is read out of /dev/bloodhound by a simple daemon process which uses
a Berkeley DB 4.5 database to store flows and related information. The database main-
tains two primary relationships: a mapping from flow IDs to flow objects (a data struture
that we define), and a mapping from tainted memory addresses to flow IDs. We created
a library (libwdig) to provide access to the data store and define our “flow” data type.
The library contains the following core procedures:

– Register Flow – This procedure creates a message that encodes a flow and sends
it via the protocol described below to the daemon. The daemon parses the message
and inserts the flow into the database indexed by the flow ID.

– Register Binding – This procedure creates a message that contains a memory ad-
dress and a flow ID. The daemon inserts this mapping into the database.

– Retrieve Flow – This procedure provides a physical memory address to the dae-
mon. If the address points to a flow, the daemon returns the associated flow ID.

– Retrieve Location – This procedure supplies the daemon with a flow ID. As a
result, the daemon traverses the bindings of memory addresses to flow IDs and
returns a list of memory addresses that are associated with the given flow ID.

The user space daemon employs libwdig to mediate an application’s access to the
database. User applications can also call libwdig’s functions directly to “manually”
store trace information. We plan to investigate methods of automatically performing
this dataflow analysis using binary rewriting to inject calls to libwdig functions.

The daemon serves as the hub of the system. It manages communication with
three different components. First, it intercepts any user space applications that use the
libwdig library directly. The daemon receives requests for flows or memory binding
insertions into the database and invokes the appropriate database functions to handle the
request. Second, the daemon communicates with the kernel through the bloodhound
device. The daemon periodically polls the bloodhound device for messages. The dae-
mon retrieves the messages and checks to see whether the flow IDs associated with the
messages have been entered in the database. If they have not, it registers new flows in
the database with the new flow IDs. Finally, the daemon helps the Analyzer perform
forensic operations by receiving requests for memory address or flow ID lookups and
passing them to the database. The daemon uses a TCP-based protocol to communicate
with the Analyzer, as described in Table 2.

5 Evaluation

We evaluate Bloodhound by examining three aspects of the system. First, we discover
what impact Bloodhound has on the normal, i.e., non-repair-time, performance of an
application by characterizing the slowdown due to system call interposition of network
I/O related calls. Second, we employ an end-to-end test of the system to show how
Bloodhound’s forensic capability works for a synthetic vulnerability. Finally, we con-
sider the utility of a possible optimization that employs either signature or statistical
content anomaly approaches to pre-classify (and thus limit) the number of flows that
Bloodhound would have to store for any given process.
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Table 2. Message Structure for Daemon Communication. A message consists of two control
bytes: the first indicates either query Q or response R, and the second distinguishes between
a memory location L, a flow F, or a flow ID I. The rest of the message encodes a serialized
representation of the memory location or flow.

Direction Message Format Meaning
To daemon Q, I, flow id, flow Register flow

Q, L, loc, flow id Register a binding
Q, L, loc Retrieve flow id at location loc

Q, I, flow id Retrieve flow id
To client R, F, flow Response to retrieve flow

R, I, flow id Response to register flow ID

5.1 Performance

To understand the performance impact of Bloodhound, we instructed the bloodhound
device to observe a single-process instance of the Apache web server. The web server
was running on a Dell PowerEdge 2650 with a 2.8GHz Intel Xeon processor and
1GB of RAM. We used a second, identical, Dell PowerEdge 2650, connected to the
first over Gigabit Ethernet to download a collection of files. The collection of files
we chose was the Apache web server manual, as distributed with the OpenBSD op-
erating system. It consists of 163 text and graphics files totalling 2.1M of data. The
manual was downloaded 25 times with /dev/bloodhound inactive, followed by an-
other 25 downloads with /dev/bloodhound activated. On average a download with
/dev/bloodhound inactivate took 4.19s, while a download with /dev/bloodhound
active took 4.31s, for a general performance impact of 2.6%.

5.2 Efficacy

The purpose of our end-to-end efficacy test is to illustrate how Bloodhound can work
back from a memory error or other indication of a detected attack to the network flow
that contained the exploit input. Memory errors manifested in signals like SIGSEGV are
common symptoms of detected exploits, especially when protection mechanisms like
Stackguard, address space layout randomizationm or instruction set randomization are
employed. In any case, Bloodhound assumes that such a signal will be raised, and that
the Analyzer can obtain a memory address to start working backward from. In future
work, we plan to use a binary rewriting tool to track tainted data between application-
level data structures.

We test the traceback process for a synthetic vulnerability. Our hypothesis is that we
can use Bloodhound’s kernel instrumentation to track an attack back from a memory
error to the flow causing the error. Our experiment is based on a function containing
a stack-based buffer overflow in an echo server. The echo server reads user input into
a small buffer and echos it back to the user. An exploit script sends a long string of
input characters to the server, causing an overwrite of the stack. Each time the read
system call is used, it uses /dev/bloodhound to notify the database of the contents
boundaries of the data transfer.
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When an overflow occurs and the function returns, the OpenBSD stack-smash pro-
tection is triggered and causes the program to crash, dumping core. A script loads the
core and determines the location of the RET value on the stack. This value is used as
the search value in the database, identifying the dataset that triggered the overflow.

6 Discussion

Automatically validating a repair is a rich field for future work, especially for techniques
to ensure that the behavior of an application after repair matches a profile of behavior
known to be “good” or clean of malicious influence. A number of considerations exist
in this space that parallel the challenges that Bloodhound faces. In particular, the choice
of behavior aspects to record and analyze is a key to balancing the tradeoff between
the amount of information retained and the ability to confirm with enough specificity
that the system can automatically distinguish between known-good tested behaviors and
anomalous or malicious behaviors. We believe that a promising approach would start
with the rich set of techniques previously proposed for system call anomaly detection
[26–28]. Capturing aspects of both data and control flow [29], including library, appli-
cation, and system calls as well as function return values and arguments [30] seems like
it would provide a solid profile with enough information to distinguish between these
behaviors.

6.1 Limitations

Bloodhound’s implementation can be improved along three lines. First, we do not deal
with taint-tracking through the application itself. Such taint-tracking can be accom-
plished by a programmer making direct calls into our taint-tracking library. We can
also explore the combination of our kernel-level taint-tracking with existing binary-
level tainted dataflow analysis. Second, we plan to incorporate behavior profiling (as
described above) into Bloodhound so that it can verify an application’s post-healing
profile. We are currently porting our OpenBSD implementation to Linux to support
these capabilities.

A third area of future work deals with improving Bloodhound’s playback capa-
bilities to handle some of the more advanced classes of attack we list in Section 3.3.
For example, while other “innocent” user packets may have set up the attack (e.g., by
causing some limit to be exceeded), Bloodhound does not necessarily identify them as
involved in the exploit. We defer research on these types of attacks; the goal of our
current research and development is to provide an infrastructure — currently absent
— for addressing them. We believe, however, that repair validation can proceed in the
presence of these types of attacks, and we offer a sketch of one possible way forward:
the use of continuous hypothesis testing that proceeds through each level of attack. If
the cost of applying the fix to a production system can be kept relatively low, Blood-
hound can validate the repair in stages, where each stage assumes that the attack was
more sophisiticated and constructs appropriate playback scenarios as needed. This in-
cremental process of generating and validating fixes allows Bloodhound to both quickly
validate a fix for a specific version of the exploit and continuously ensure that the fix
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works against more advanced attack scenarios. The exploration of this type of intru-
sion defense system seems valuable, and Bloodhound’s provides a framework so that
researchers can implement more intelligent playback and testing strategies.

One potential criticism of Bloodhound is that it appears to be exploit-specific and
therefore does not provide protection that vulnerability-specific systems might. While
Bloodhound focuses on identifying a particular exploit input, its task does not conflict
with the goals of vulnerability-specific defense systems [6, 8, 20, 7] and related analy-
sis [5, 31]. Instead, Bloodhound can provide these systems with more confidence that
the fix is correct and blocks at the very least the malicious input that triggered the
instrumentation. Future work can use the input traffic as a template to generate other
semantically correct instances of the flow so that the fix can be tested against a vari-
ety of inputs that exploit the same vulnerability. Systems similar to RolePlayer [22] or
Replayer [24] seem well suited to this task. Cui et al. [7] illustrate the process of de-
riving practical signatures of previously unknown vulnerabilities. These “data patches”
are generated in part by binary-level taint-tracking and help filter related exploit inputs.

6.2 Further Optimizations

We have performed several preliminary experiments to determine the feasibility of re-
ducing the amount of traffic that ARV systems like Bloodhound need to store. ARV is
essentially a problem of search; performing an online search, even of an indexed cor-
pus, can be sped up if the size of the corpus is reduced. A system that only considers
packets relevant to the current vulnerability or exploit would prove useful. Bloodhound
uses taint propagation to achieve this measure. However, an ARV system can com-
plement this dataflow analysis with packet classification schemes, including payload
anomaly detection. We refer the interested reader to our technical report, which has the
details [32].

7 Conclusions

Most attacks occur rapidly enough to frustrate manual defense or repair. It appears that
defense systems must include some degree of autonomy. Recent advances have led
to an emerging interest in self-healing software as a solution to this problem. System
owners, however, are understandably reluctant to permit automated changes to their
environment and applications in response to attacks. Testing an automatic repair helps
raise the confidence level in self-healing systems. One critical part of such testing is the
verification that the changes made by the self-healing mechanism actually defeat the
original attack or close variations thereof.

This paper identifies the important challenge of Automatic Repair Validation (ARV):
using audit information to test the resilience and efficacy of a self-healing repair. We
present Bloodhound, a system for recording and replaying network flows related to
the exercise of a particular vulnerability. The design process reveals a number of chal-
lenging problems that the research community needs to address in order to make self-
securing systems a reality. Our implementation and experiments illustrate that the prob-
lem is surmountable; the performance impact on normal operation due to monitoring
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seems reasonable, and the system can trace back to the flow at fault. In the future, we
plan to deploy Bloodhound in a testbed like DETER to test how well Bloodhound can
provide an audit service to other nodes.
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