
A Proxy-Based Architecture for Secure Networked Wearable Devices

Todd Mills, Matthew Burnside, John Ankcorn, Srinivas Devadas
MIT Laboratory for Computer Science

200 Technology Square, Cambridge, MA 02139 USA
{mills, event, jca, devadas}@lcs.mit.edu

Abstract

We describe the software and hardware architecture for
a wearable communicator, and a secure protocol for com-
munication between it and its software proxy. The proxy
runs on a fast computer so it is capable of implementing
sophisticated cryptographic algorithms, while the wearable
communicator contains a simple embedded processor ca-
pable of only simple algorithms. The architecture of the
wearable communicator is generic, so the same design can
be used as a device controller for automation purposes. A
prototype automation system using the wearable communi-
cator has been constructed and evaluated. A variety of ap-
plications have been implemented on the system including
private and public messaging throughout a building, where
the messages can be text, audio, or still images. We present
an evaluation of our system using scalability, energy and
other metrics.

1. Introduction

Attaining the goals of ubiquitous and pervasive
computing[3][1] is becoming more and more feasible as the
number of computing devices in the world increases ex-
ponentially. However, there are still signi£cant hurdles to
overcome when integrating wearable and embedded devices
into a ubiquitous computing environment. These hurdles
include designing devices smart enough to collaborate with
each other, increasing ease-of-use, and enabling enhanced
connectivity between the different devices.

For ¤exibility, the devices must have high connectivity.
For convenience, they must be mobile and easily wearable.
When connectivity is high, the security of the system is a
key factor, since devices in the system must be robust and
resistant to tampering.

Devices must only allow access to authorized users and
also must keep the communication private. This is impor-
tant because the devices may be transmitting personal or
private information. Implementing typical forms of secure,

private communication using a typical public-key infras-
tructure on devices of this type is dif£cult because the nec-
essary cryptographic algorithms are CPU-intensive.

We describe a device communication architecture that
enables secure devices while utilizing only a small portion
of the processing power on the device. Devices built using
this architecture are more secure than comparable devices,
with only a nominal increase in size and complexity. This
is ideal for wearable devices where size, security and power
consumption are the most important factors.

This architecture also works well when used as a net-
work of wearable devices such as cameras, displays, input
devices, or context sensors. For convenience and ¤exibility,
a user would prefer the devices to communicate wirelessly,
rather than wrapping wires around his or her body. Wire-
less communication is susceptible to eavesdropping, how-
ever, and therefore securing these communication channels
is important. The architecture described in this paper seam-
lessly handles this security requirement.

We also describe an implementation of a device called a
wearable communicator, based on the previously described
architecture. This device uses the Cricket[8] system to de-
termine the user’s location. The communicator transmits
this information securely to a software proxy running on a
trusted machine. The proxy runs scripts for the user, such as
a messaging application for routing audio-, text-, or image-
based messages to the output device nearest the user’s loca-
tion.

The organization of this paper is as follows: we £rst de-
scribe the architecture and then go on to describe the im-
plementation of the wearable communicator. We present an
evaluation of our implementation using factors such as pro-
cessing power required, scalability, and energy consump-
tion. We then describe some example applications.

2. Related Work

There are many existing technologies that connect de-
vices for automation purposes. Many of these technologies,
however, do not focus on the security of the devices at all,



or they require the ability to implement complex security
algorithms.

X10 is a simple protocol that allows the control of de-
vices over 110-volt house wiring[14]. It is designed for use
with simple devices that only need to be turned on or off;
however there are also packages for more complex items
such as thermostats. The X10 protocol requires manual con-
£guration of each device and it is not secure. Every device
must be manually con£gured with a unique address. Since
X10 implements no authentication or authorization, other
people on the same 110-volt power feed can gain unautho-
rized control of devices.

The Resurrecting Duckling is a security model for ad-
hoc wireless networks[12][11]. In this model, when devices
begin their lives, they must be “imprinted” before they can
be used. A master (the mother duck) imprints a device (the
duckling) by being the £rst one to communicate with it. Af-
ter imprinting, a device only listens to its master. During
the process of imprinting, the master is placed in physical
contact with the device and they share a secret key that is
then used for symmetric-key authentication and encryption.
The master can also delegate the control of a device to other
devices so that control is not always limited to just the mas-
ter. A device can be “killed” by its master then resurrected
by a new one in order for it to swap masters.

The architecture described in this paper is an extension
of the resurrecting duckling security model. In this system
the master for each device is a software component called a
proxy. The proxy can run directly on the device, or remotely
over the network. The proxy allows for easy integration
with resource discovery systems since the proxy can act as
an interface to these systems[2]. In addition, the proxies
have the ability to authenticate and authorize certain users
for control of the device. The set of authorized users can
change in a dynamic and arbitrary manner.

3. Device Architecture

The primary design goal of the architecture is security.
That is, the authentication, authorization, and privacy of all
communication. An architecture that ful£lls this require-
ment needs an end-to-end security layer, from the user con-
trolling the device to the device itself. In addition, the archi-
tecture must be appropriate for the devices being controlled.
Enhancing the security of, for example, a wearable cam-
era should not require the addition of expensive processing
power. The system must be secure with the addition of, at
most, a cheap, simple micro-controller.

Public-key cryptography is ideal for authentication and
authorization. Unfortunately, public-key cryptography re-
quires signi£cant computational power. A common public-
key cryptographic algorithm such as RSA using 1024-bit
keys takes 43ms to sign and 0.6ms to verify on a 200MHz

Intel Pentium Pro [13]. This is using a 32-bit processor;
some of the devices in this system may have 8-bit micro-
controllers running at 1-4 MHz, so public-key cryptography
on the device itself is simply not an option.

However, public-key based communication between de-
vices over a network is still desirable. To allow the archi-
tecture to use a public-key security model on the network
while keeping the devices themselves simple, we create a
software proxy for each device which we run on a separate,
trusted computer. Between the proxy and the device, we
implement a symmetric-key-based security protocol. The
proxy can implement sophisticated access control and au-
thentication algorithms, while the device remains simple.
Additionally, it is possible to run many proxies on the same
computer, allowing the amortization of their cost, since they
may require a signi£cant amount of processing power and
memory to control access to the device.

3.1. Devices

By focusing on impoverished devices, we handle the
base case; more complex devices can be built by incorporat-
ing more of the proxy software onto the device itself. The
devices are most likely controlled by simple 8- or 16-bit
micro-controllers running at 1-4 MHz. The devices typ-
ically take control commands as input and output simple
state values. For example, a radio has simple input variables
such as on/off, tuning the station, and adjusting the volume.
It outputs state such as the current station and volume level.

Devices also need a method for communicating with
their proxies. A device and proxy can communicate using
wireless methods such as radio frequency (RF) or infrared,
or they could use a wired solution like Ethernet. Regard-
less of the medium, a reliable communication protocol is
required.

3.2. Proxies

The proxy is software that runs on a network-visible
computer. The proxy’s primary function is to make access-
control decisions on behalf of the device it represents. It
may also perform secondary functions such as running
scripted actions on behalf of the device and interfacing with
a directory service.

The proxy can implement computationally expensive se-
curity algorithms since it runs on a computer that has sig-
ni£cantly more processing capabilities than the device. The
proxy can also store large access control lists that would not
£t in the device’s memory. It uses these mechanisms to act
as a guardian; the proxy authenticates users and only allows
those with valid permissions to control the device.



Proxy

User Device

1. Authenticate

2. Request 3. Authorized Request

4. Response5. Forward Response

ACL

Figure 1. Security model

3.3. Security Model

The proxy and device share a secret key. This secret
key allows them to communicate using symmetric-key au-
thentication and encryption. Symmetric-key operations take
much less processing power than public-key, so the device
can do this computation with a small micro-controller.

All communication passes through the proxy, so it au-
thenticates and then routes communication from the user to
the device. The ¤ow of communication is shown in Figure
1 with each step described below.

1. The proxy and user authenticate each other. They also
set up a secure communication channel.

2. The user sends his or her request to the proxy.

3. The proxy checks its access control list (ACL) to verify
the user is allowed to perform the speci£ed request. If
this check succeeds, the proxy forwards the request on
to the device. Otherwise, the proxy responds with an
error message.

4. The device performs the requested action and sends a
response back to the proxy.

5. The proxy forwards the response back to the user.

3.4. Device Initialization

When a device is initialized it must be assigned a proxy
and it must obtain a secret key that is shared with the proxy.
This is done by physically touching the device to the com-
puter that will run the proxy. When the device is touched to
the computer, a proxy is created and the proxy then gener-
ates a random secret key that it shares with the device. This
initialization is straightforward and easy for the user who is
initializing the device. The user does not need to perform
any manual con£guration.

4. Device Implementation

We have built devices that are wireless, can determine
their location, and can communicate securely. The devices

Computer

Proxy A

Proxy B

Device A

Device B

Gateway

Gateway
Device C

Proxy C

UDP/IP
RF Packets

Figure 2. Communication overview

can also act as wearable communicators that securely route,
among other things, the users’ location to their proxies. This
section will describe the implementation of these devices,
including how they communicate, the security algorithms
they use, and how they determine their location. We will
also evaluate the performance of the devices in terms of how
much memory and processing power is required for their
implementation.

4.1. Communication

Our system uses RF communication because it allows for
greater versatility when dealing with device location. RF is
also ideal for wearable communicators since the user will
obviously be mobile.

RF communication between the device and its proxy is
handled by a gateway that translates packetized RF commu-
nication into UDP/IP packets, which are then routed over
the network to the proxy. Of course, the gateway also
works in the opposite direction by converting UDP/IP pack-
ets from the proxy into RF packets and transmitting them to
the device. An overview of the communication is shown
in Figure 2. This £gure shows a computer running three
proxies; one for each of three separate devices. The £gure
also shows how multiple gateways can be used; device A is
using a different gateway from devices B and C.

4.1.1. RF Protocol

All communication with the device is initiated by the
proxy. This keeps the device’s code very simple, since it
only has to respond to messages. This protocol also helps
keep the RF channel from being over-utilized. If the devices
initiated communication, this would lead to a lot of trans-
mission collisions since it is possible for multiple devices
to broadcast at the same time. Since the RF channel has a
narrow bandwidth, many transmission collisions could lead



to severely degraded performance and cause unacceptable
delays in communication.

However, since the proxies initiate all communication,
the gateway can act as an arbiter over the RF channel. When
the gateway receives a message from a proxy, it broadcasts
it over the RF channel. Since the device will always respond
to a message, the gateway waits 50ms for a response. Dur-
ing this time, the gateway will not transmit any messages
over the RF channel, to prevent a transmission collision be-
tween the gateway and the device. We assume the gateways
have minimal RF overlap so that they can act as the arbiter
for their broadcast areas.

To enable reliable communication, the proxy repeatedly
transmits the same packet until it receives a response. Every
packet has a sequence number and the device responds with
the same sequence number to acknowledge that it has re-
ceived the packet. Once the device acknowledges a packet,
it begin looking for packets with the next sequence number.
If the device receives a packet with a sequence number one
less than the expected number, it re-sends the previous re-
sponse. This way, the device will only process each unique
packet once.

Devices can also be mobile and this presents a problem,
since we still want to maintain communication. The prob-
lem is that a device can move out of communication range
of one gateway and then into the range of another. The de-
vice’s proxy will not know about this new gateway and so
will be unable to contact the device. There must be a mech-
anism for the device to tell its proxy about the new gate-
way. So, whenever the device has not received a new packet
from its proxy for ten seconds, it begins re-transmitting the
last packet once every four seconds. These packets will be
routed to the proxy through the new gateway, and from the
packet headers, the proxy can determine the address of the
new gateway.

4.2. Security

The proxy and device communicate through a secure
channel that encrypts and authenticates all the messages.
The HMAC-MD5[4][9] algorithm is used for authentication
and the RC5[10] algorithm is used for encryption. Both of
these algorithms use symmetric keys; the proxy and the de-
vice share a 128-bit key.

4.2.1. Authentication

HMAC is a hashed message authentication code (MAC)
that produces a MAC that can validate the authenticity and
integrity of a message. HMAC uses a cryptographic hash
function H, a secret key K, and the message data D. HMAC
essentially computes MAC = H(K,D), but the actual
computation is a little more complex. Since HMAC uses

the secret key only someone who knows that key can create
the MAC or verify that the MAC is correct.

HMAC with the MD5 hash function produces a 16 byte
MAC. The 8 most signi£cant bytes of the MAC are ap-
pended to the end of each packet. This limits the amount
of data that must be transmitted with each packet. From a
security perspective, this has the advantage of giving less
information to an attacker, but the disadvantage of allowing
an attacker to have to guess fewer bits. We feel this is a
good tradeoff since if all 16 MAC bytes are included in ev-
ery packet, then even more of each packet would be devoted
to authentication instead of useful data.

4.2.2. Encryption

The data is encrypted using the RC5 encryption algo-
rithm. RC5 was chosen because of its simplicity and per-
formance. It does not require tables to speed up processing,
as it is primarily XOR and rotate operations.

Our RC5 implementation is based on the OpenSSL[6]
code. RC5 is a block cipher, which means it usually works
on eight byte blocks of data. However, by implementing
it using output feedback (OFB) mode, it can be used as a
stream cipher. This allows for encryption of an arbitrary
number of bytes without having to worry about blocks of
data. Also by using OFB mode, only the encryption routine
of RC5 is needed; not the decryption routine.

OFB mode works by generating an encryption pad from
an initial vector and a key. The encryption pad is then
XOR’ed with the data to produce the cipher text. Since
X⊕Y ⊕Y = X , the cipher text can be decrypted by produc-
ing the same encryption pad and XOR’ing it with the cipher
text. Since this only requires the RC5 encryption routines
to generate the encryption pad, separate encrypt and decrypt
routines are not required.

For our implementation, we use 16 rounds for RC5 and
the same 128-bit key we used for authentication.

4.3. Location

Device location is determined using the Cricket location
system[8][7]. Cricket has several useful features, includ-
ing user privacy, decentralized control, low cost, and easy
deployment. It also works indoors. Cricket’s user privacy
means that there is no central service where locations are
stored. Each device determines its own location. It is up to
the device to decide if it wants to let others know where it
is.

In the Cricket system, beacons are placed on the ceilings
of rooms. These beacons periodically broadcast location
information (such as “Room 4011”) that can be heard by
Cricket listeners. At the same time that this information is
broadcast in the RF spectrum, the beacon also broadcasts an



Figure 3. Picture of the circuit board

ultrasound pulse. When a listener hears the RF message, it
measures the time until it hears the ultrasound pulse. Using
the time difference, the listener can determine the distance
to the beacon. It determines its location by using the in-
formation coming from what it determines to be the nearest
beacon.

The Cricket system is easily confused by external
sources of ultrasound. Many common sounds such as jan-
gling keys or coins produce ultrasound that can confuse a
Cricket listener. It is possible to avoid this problem by sam-
pling for a longer period before making a decision, but this
leads to delays from 6-10 seconds before a decision is made.

4.4. Board Design

This section describes a circuit board that acts as the
brains of a device, or by itself as a wearable communica-
tor. It contains the necessary components for RF commu-
nication, interfacing to the Cricket system, implementing
the security algorithms, and interfacing with devices. With
a slightly different con£guration of software and hardware,
the same circuit board can act as a gateway. A photograph
of the board is shown in Figure 3; it highlights the ma-
jor components of the design which are: the battery, RF
transceiver, Cricket listener, CPU, and serial port. The cur-
rent board is 43mm x 102mm; a little large for a wearable
communicator but future prototypes will be considerably
smaller.

The battery is a 3-volt lithium battery with a nominal ca-
pacity of 1,200mAh. This battery has a long life, which
means there are fewer battery outages, so debugging the
system is simpler. However, it is fairly large, relative to
the size of the circuit board. In future boards a coin-type
battery will be used to make the board smaller.

The serial port allows the device to communicate with a
personal computer, or to control other devices that also have
a serial port. The serial port is used by gateways to send and
receive RF packets from a personal computer.

The Cricket listener is used by the device to determine
its location. This component is not needed on all devices;
only devices that need to know their location. It consists of
an RF receiver to listen for the location information from
Cricket beacons, as well as an ultrasound receiver to listen
for the ultrasound pulses.

The CPU was chosen to be representative of the process-
ing power the simplest devices might have. It is the Atmel
ATMega103L; an 8-bit CPU that uses the Atmel AVR in-
struction set and operates at 3 volts. It has 128KB of ¤ash
memory, 2KB of RAM, and 512 bytes of EEPROM. It runs
at 4MHz. The CPU’s ¤ash memory is quite large and may
not represent what most simple devices have, but it is use-
ful for software development. This CPU is extremely easy
to use, since it only requires a clock crystal and power to
operate. All of the memory is internal so the chip size is
small. It is programmed via a simple cable plugged into the
parallel port of a computer.

The RF Monolithics TR-3001 is used for device to gate-
way communication. It has a reasonable amount of band-
width (19.2 Kbps), does not take much current, and does
not require many external components.

The Cricket listener uses a Linx Technologies RFM-418-
LC, since the beacons use the corresponding transmitter.
The Cricket listener operates at 418 MHz, while the de-
vice to gateway communication operates at 315 MHz. Thus,
there is no interference between them.

4.5. Evaluation

In this section we evaluate our devices in terms of their
memory and processing requirements as well as the quality
of the RF communication.

4.5.1. Memory Requirements

Table 1 breaks down the memory requirements for var-
ious software components. The code size represents mem-
ory used in Flash, and data size represents memory used
in RAM. The device functionality component includes the
packet and location processing routines. The RF code com-
ponent includes the RF transmit and receive routines as well
as the Cricket listener routines. The miscellaneous compo-
nent is code that is common to all of the other components.



Component Code Size Data Size
(KB) (bytes)

Device Functionality 2.0 191
RF Code 1.1 153
HMAC-MD5 4.6 386
RC5 3.2 256
Miscellaneous 1.0 0
Total 11.9 986

Table 1. Code and data size on the Atmel pro-
cessor

The device code requires approximately 12KB of code
space and 1KB of data space. The security algorithms,
HMAC-MD5 and RC5, take up most of the code space.
Both of these algorithms were optimized in assembly,
which reduced their code size by more than half. The code
could be better optimized, but this gives a general idea of
how much memory is required. The code size we have at-
tained is small enough that it can be incorporated into virtu-
ally any device.

To further optimize the code size, a smaller authentica-
tion algorithm could be used. This system uses HMAC-
MD5 which takes up 4.6KB of memory. Another possi-
bility would be to use an authentication algorithm with an
encryption routine instead of a hash function. This could
signi£cantly reduce code size, since the RC5 code might be
reusable in the encryption and authentication. This could
potentially reduce the code size to less than 8 KB.

4.5.2. Processing Requirements

Function Time (ms) Clock Cycles
RC5 encrypt/
decrypt (n bytes) 0.163n + 0.552 652n + 2208
HMAC-MD5
up to 56 bytes 11.48 45,920

Table 2. Performance of encryption and au-
thentication code

The security algorithms put the most demand on the de-
vice. Table 2 breaks down the approximate time it takes for
each of these algorithms to run. The RC5 processing time
varies linearly with the number of bytes being encrypted or
decrypted. The HMAC-MD5 routine, on the other hand,
takes a constant amount of time up to 56 bytes. This is
because HMAC-MD5 is designed to work on blocks of data
and so anything less than 56 bytes is padded. Since we limit
the RF packet size to 50 bytes, we only care how long the

HMAC-MD5 routine takes for packets of size less than or
equal to 50 bytes.

To get an idea of the timing of the device communica-
tion, we will examine how long it takes the device to receive
a packet, process it, and send a response. For this exam-
ple, we assume the device is receiving a packet that has 10
data bytes, making the total packet size 27 bytes, since each
packet contains 17 header bytes made up of a 9-byte address
£eld and an 8-byte message authentication £eld. The device
broadcasts at 19.2 Kbps and we encode 8 bits into 12 bits
for DC balance, so to receive the packet it takes:

packet size + RF header
bandwidth

=
12 · (27 + 4)

19200
= 19.4ms

It then takes the device 11.5ms to authenticate the packet
and then 2.3ms to decrypt it, for a total of 33.2ms. The de-
vice always sends back a response. In this example, we as-
sume the device responds with a packet of the same size, so
the device must encrypt, authenticate, and then transmit the
response which will take another 33.2ms. This means the
device can handle approximately 1000

33.2·2 ≈ 15 transactions
per second. Fifteen transactions per second is suf£cient for
most purposes, with a simple device.

Another optimization that could be performed is the re-
duction of the size of the secret key. This would speed up
the RC5 algorithm. Additionally, the number of rounds per-
formed by the RC5 algorithm could be reduced. Of course,
both of these optimizations reduce the overall security of
the system.

4.5.3. RF Communication

Unfortunately, the RF communication is the weakest
component in the current implementation. On average, with
the device and gateway spaced three feet apart, the proxy
needs to transmit a packet three times before it receives a
response. This is because the RF chip, RFM TR3001, is
highly sensitive to noise. A better option would be to use an
RF chip with a more robust modulation technique, such as
frequency shift keying, that is more immune to interference.

In the previous section we showed that we could sup-
port approximately £fteen devices per gateway, based on
processor time analysis. However, since the RF does not
perform well, in reality it is only possible to support four or
£ve devices per gateway, assuming each device is receiving
approximately one packet per second from its proxy. This
is a limiting factor in the scalability of the system; the so-
lution is to attenuate the RF signals. Thus, the area covered
by a single gateway is reduced, increasing the total possible
number of gateways and thereby increasing the total num-
ber of devices.



4.5.4. Power Consumption

The board was not speci£cally designed for low power
consumption, but power considerations are signi£cant when
it comes to mobile devices. When the RF transceiver is in
receive mode, the board draws 22mA of current, or 66mW
of power. At this rate, in nominal conditions, the battery
will last 54 hours. When the board transmits, it draws
29.5mA of current, or 88.5mW of power. Most of the time,
the board is in receive mode. For devices that do not need
to know their location, the Cricket listener can be removed
to save power. The Cricket listener draws 10mA of cur-
rent or 30mW of power so removing the listener reduces
the board’s power consumption by almost half.

Swapping the Atmel ATMega103L for a Microchip
PIC16F877 processor would reduce power by 15 mW,
but would require considerable compression of the already
tightly packed code. Other methods for reducing power
including modifying the communication protocol to shut
down the RF chips for short periods of time or putting the
processor to sleep when it has nothing to do. More details
of the device implementation can be found in [5].

We believe that a redesign with off-the-shelf components
will result in a wearable communicator with a coin-type bat-
tery that lasts for several days. This can be improved even
further by building customized silicon (which would have
the disadvantage of less ¤exibility).

5. Applications

The system can be used as the framework to build many
different types of applications. In this section we will de-
scribe an example application that highlights the function-
ality and privacy that is provided by the wearable commu-
nicator.

5.1. Mobile Audio

We developed a mobile audio application using the
above described system. That is, as a user with a wear-
able communicator moves from room to room, a single au-
dio stream will follow him or her, always playing from the
nearest speakers. The wearable communicator is constantly
being polled by its proxy, asking for its location. This infor-
mation is reported to an automation script that runs on top
of the proxy.

When an audio stream is sent to the proxy, the automa-
tion script uses a directory server to obtain a list of speak-
ers that are reporting their location in the same area as the
wearable communicator. The automation script chooses the
closest one and redirects the audio. If, at any time, the lo-
cation of the wearable communicator changes, and hence,

Wearable
Communicator

Proxy

Wearable
Communicator

Audio Sender
Speaker Proxy

Location: Room 226

Speaker

Cricket
Beacon

Cricket
Beacon

Room 227

R
oo

m
22

6

Audio

Room
226

Audio

Figure 4. Audio Example Application

the nearest speakers change, the audio output is again redi-
rected. Figure 4 is an overview of the application.

Since the audio is redirected by the proxy (and only the
proxy knows the user’s location), the user’s location is kept
private. The proxy could also route other types of informa-
tion to the user’s location such as text messages, or video,
while keeping the users actual location private. For other
applications, the user could set the wearable communica-
tor’s proxy to only give out the location to select people but
keep it private from others.

5.2. Other Applications

The system can also easily support other applications.
For example many customizations can be made upon en-
tering a new room, such as turning on the lights, setting
the thermostat, and opening the blinds. Another application
would be to customize the desktop of the computer where
the user is logged in. The system could also forward phone
calls to the phone nearest the user. Or, for privacy, the sys-
tem could be set up to only print your documents when you
are located next to the printer.

6. Conclusion and Future Work

We have described a lightweight infrastructure that al-
lows secure communication between wearable and non-
wearable devices. By taking advantage of the computation-
ally simple symmetric-key cryptographic algorithms and in-
troducing a proxy, we keep the additional resources a device
needs to be secure very low. Our implementation also uses
RF communication, allowing the devices to be mobile.

We have also described an application that uses our im-
plementation. The wearable communicator provides private
location information to a proxy that can execute scripts for
the user. In our application, the scripts allow sound mes-
sages to follow a user as they move between rooms.



Future directions of research include perfecting our cur-
rent implementation of the wearable communicator. We
would like to make it smaller, consume less power, and have
more robust RF communication. We would also like to in-
corporate our architecture into other devices.

7. Acknowledgments

This work was funded by Project Oxygen within the MIT
Laboratory for Computer Science.

We thank Ali Tariq for his support of this work. We also
thank Dwaine Clarke, Ron Rivest and Anant Agarwal for
valuable input during the course of this project. We thank
Bodhi Priyantha and Hari Balakrishnan for help with the in-
corporation of the Cricket system into our implementation.

References

[1] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman,
and D. Zukowski. Challenges: An application model for
pervasive computing. In Proc. ACM MOBICOM, August
2000.

[2] M. Burnside. Architecture and implementation of a secure
server network for Project Oxygen. Master’s thesis, Mas-
sachusetts Institute of Technology, Work in Progress.

[3] M. Dertouzos. The future of computing. Scienti£c Ameri-
can, August 1999.

[4] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
hashing for message authentication. Internet Request for
Comments RFC 2104, February 1997.

[5] T. Mills. An architecture and implementation of secure
device communication in Oxygen. Master’s thesis, Mas-
sachusetts Institute of Technology, May 2001.

[6] OpenSSL. The OpenSSL project. http://www.openssl.org.
[7] N. Priyantha. Providing precise indoor location information

to mobile devices. Master’s thesis, Massachusetts Institute
of Technology, January 2001.

[8] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The
Cricket location-support system. In Proc. ACM MOBICOM,
August 2000.

[9] R. Rivest. The MD5 message-digest algorithm. Internet
Request for Comments RFC 1321, April 1992.

[10] R. Rivest. The RC5 encryption algorithm. Dr. Dobbs Jour-
nal, January 1995.

[11] F. Stajano. The Resurrecting Duckling – what next? In
Proceedings of the 8th International Workshop on Security
Protocols, April 2000.

[12] F. Stajano and R. Anderson. The Resurrecting Duckling:
Security issues for ad-hoc wireless networks. In Security
Protocols, 7th International Workshop Proceedings, 1999.

[13] M. Weiner. Performance comparison of public-key cryp-
tosystems. RSA Laboratories’ CryptoBytes, 4(1), 1998.

[14] X-10.ORG. X-10 technology and resource forum.
http://www.x10.org.


