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The Cost of Model Complexity

We are always looking for better ways to model natural language.

Tradeoff: Richer models ⇒ Harder decoding

Added complexity is both computational and implementational.

Tasks with challenging decoding problems:

! Speech Recognition

! Sequence Modeling (e.g. extensions to HMM/CRF)

! Parsing

! Machine Translation

y∗ = arg max
y

f (y) Decoding

Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Important problem in many languages.

Problem is NP-Hard for all but the simplest models.

Dual Decomposition

A classical technique for constructing decoding algorithms.

Solve complicated models

y∗ = arg max
y

f (y)

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

! Dynamic programming

! Minimum spanning tree

! Shortest path

! Min-Cut

! ...



A Dual Decomposition Algorithm
for Non-Projective Dependency Parsing

Simple - Uses basic combinatorial algorithms

Efficient - Faster than previously proposed algorithms

Strong Guarantees - Gives a certificate of optimality when exact

Solves 98% of examples exactly, even though the problem is
NP-Hard

Widely Applicable - Similar techniques extend to other problems
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Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

! Starts at the root symbol *

! Each word has a exactly one parent word

! Produces a tree structure (no cycles)

! Dependencies can cross

Algorithm Outline

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

+

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Arc-Factored Model

Dual Decomposition

Sibling Model



Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.



Dual Decomposition Idea

No
Constraints

Tree
Constraints

Arc-
Factored

Minimum
Spanning Tree

Sibling
Model

Individual
Decoding

Dual
Decomposition

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Else Update penalty weights based on y (k)(i , j)− z(k)(i , j)

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1
u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2
u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j



Guarantees

Theorem
If at any iteration y (k) = z(k), then (y (k), z(k)) is the global

optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an
approximate solution (more in the paper).

Extensions

! Grandparent Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =...+ score(gp =∗0, head = saw2, prev =movie4,mod =today5)

! Head Automata (Eisner, 2000)

Generalization of Sibling models

Allow arbitrary automata as local scoring function.
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Experiments
Properties:

! Exactness

! Parsing Speed

! Parsing Accuracy

! Comparison to Individual Decoding

! Comparison to LP/ILP

Training:
! Averaged Perceptron (more details in paper)

Experiments on:

! CoNLL Datasets

! English Penn Treebank

! Czech Dependency Treebank



How often do we exactly solve the problem?
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! Percentage of examples where the dual decomposition finds
an exact solution.

Parsing Speed
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Grandparent model

! Number of sentences parsed per second

! Comparable to dynamic programming for projective parsing

Accuracy

Arc-Factored Prev Best Grandparent
Dan 89.7 91.5 91.8
Dut 82.3 85.6 85.8
Por 90.7 92.1 93.0
Slo 82.4 85.6 86.2
Swe 88.9 90.6 91.4
Tur 75.7 76.4 77.6
Eng 90.1 — 92.5
Cze 84.4 — 87.3

Prev Best - Best reported results for CoNLL-X data set, includes

! Approximate search (McDonald and Pereira, 2006)

! Loop belief propagation (Smith and Eisner, 2008)

! (Integer) Linear Programming (Martins et al., 2009)

Comparison to Subproblems
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Comparison to LP/ILP
Martins et al.(2009): Proposes two representations of
non-projective dependency parsing as a linear programming
relaxation as well as an exact ILP.

! LP (1)
! LP (2)
! ILP

Use an LP/ILP Solver for decoding

We compare:
! Accuracy
! Exactness
! Speed

Both LP and dual decomposition methods use the same model,
features, and weights w .

Comparison to LP/ILP: Accuracy
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! All decoding methods have comparable accuracy

Comparison to LP/ILP: Exactness and Speed
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Deriving the Algorithm

Goal:
y∗ = arg max

y∈Y
f (y)

Rewrite:
arg max

z∈Z,y∈Y
f (z) + g(y)

s.t. z(i , j) = y(i , j) for all i , j

Lagrangian: L(u, y , z) = f (z) + g(y) +
∑

i,j

u(i , j) (z(i , j)− y(i , j))

The dual problem is to find min
u

L(u) where

L(u) = max
y∈Y,z∈Z

L(u, y , z) = max
z∈Z



f (z) +
∑

i,j

u(i , j)z(i , j)





+ max
y∈Y



g(y)−
∑

i,j

u(i , j)y(i , j)





Dual is an upper bound: L(u) ≥ f (z∗) + g(y∗) for any u

A Subgradient Algorithm for Minimizing L(u)

L(u) = max
z∈Z



f (z) +
∑

i,j

u(i , j)z(i , j)



 + max
y∈Y



g(y)−
∑

i,j

u(i , j)y(i , j)





L(u) is convex, but not differentiable. A subgradient of L(u) at u
is a vector gu such that for all v ,

L(v) ≥ L(u) + gu · (v − u)

Subgradient methods use updates u′ = u − αgu

In fact, for our L(u), gu(i , j) = z∗(i , j)− y∗(i , j)

Related Work

! Methods that use general purpose linear programming or
integer linear programming solvers (Martins et al. 2009;
Riedel and Clarke 2006; Roth and Yih 2005)

! Dual decomposition/Lagrangian relaxation in combinatorial
optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970;
Fisher 1981)

! Dual decomposition for inference in MRFs (Komodakis et al.,
2007; Wainwright et al., 2005)

! Methods that incorporate combinatorial solvers within loopy
belief propagation (Duchi et al. 2007; Smith and Eisner 2008)

Summary

y∗ = arg max
y

f (y) ⇐ NP-Hard

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

+

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Arc-Factored Model

Dual Decomposition

Sibling Model



Other Applications

! Dual decomposition can be applied to other decoding
problems.

! Rush et al. (2010) focuses on integrated dynamic
programming algorithms.

! Integrated Parsing and Tagging

! Integrated Constituency and Dependency Parsing

Parsing and Tagging

y∗ = arg max
y

f (y) ⇐ Slow

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8
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HMM Model

Dual Decomposition

CFG Model

Dependency and Constituency

y∗ = arg max
y

f (y) ⇐ Slow

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8
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Future Directions

There is much more to explore around dual decomposition in NLP.

! Known Techniques
! Generalization to more than two models
! K-best decoding
! Approximate subgradient
! Heuristic for branch-and-bound type search

! Possible NLP Applications
! Machine Translation
! Speech Recognition
! “Loopy” Sequence Models

! Open Questions
! Can we speed up subalgorithms when running repeatedly?
! What are the trade-offs of different decompositions?
! Are there better methods for optimizing the dual?



Appendix

Training the Model

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = ... + score(saw2,movie4, today5) + ...

! score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

! Weight vector w trained using Averaged perceptron.

! (More details in the paper.)
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