Dual Decomposition for Parsing with Non-Projective Head Automata

Terry Koo, Alexander M. Rush, Michael Collins, David Sontag, and Tommi Jaakkola

Non-Projective Dependency Parsing *^ John₁ movie₄ today₅ that₆ he₇ liked₈ saw₂ aa liked₈ movie₄ today₅ that₆ John_1 saw₂ a_3 he₇ Important problem in many languages. Problem is NP-Hard for all but the simplest models.

The Cost of Model Complexity

We are always looking for better ways to model natural language.

Tradeoff: Richer models \Rightarrow Harder decoding

Added complexity is both computational and implementational.

Tasks with challenging decoding problems:

- Speech Recognition
- Sequence Modeling (e.g. extensions to HMM/CRF)
- Parsing
- Machine Translation

$$y^* = \arg \max_y f(y)$$
 Decoding

Dual Decomposition

A classical technique for constructing decoding algorithms.

Solve complicated models

$$y^* = \arg \max_{y} f(y)$$

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

- Dynamic programming
- Minimum spanning tree
- Shortest path
- Min-Cut
- ▶ ...

How often do we exactly solve the problem?

 Percentage of examples where the dual decomposition finds an exact solution.

- Number of sentences parsed per second
- Comparable to dynamic programming for projective parsing

Accuracy

	Arc-Factored	Prev Best	Grandparent
Dan	89.7	91.5	91.8
Dut	82.3	85.6	85.8
Por	90.7	92.1	93.0
Slo	82.4	85.6	86.2
Swe	88.9	90.6	91.4
Tur	75.7	76.4	77.6
Eng	90.1	—	92.5
Cze	84.4		87.3

 $\mathsf{Prev}\ \mathsf{Best}\ \text{-}\ \mathsf{Best}\ \mathsf{reported}\ \mathsf{results}$ for CoNLL-X data set, includes

- Approximate search (McDonald and Pereira, 2006)
- Loop belief propagation (Smith and Eisner, 2008)
- (Integer) Linear Programming (Martins et al., 2009)

Comparison to Subproblems

 F_1 for dependency accuracy

Comparison to LP/ILP

Martins et al.(2009): Proposes two representations of non-projective dependency parsing as a linear programming relaxation as well as an exact ILP.

- ▶ LP (1)
- ▶ LP (2)
- ► ILP

Use an LP/ILP Solver for decoding

We compare:

- Accuracy
- Exactness
- Speed

Both LP and dual decomposition methods use the same model, features, and weights w.

Comparison to LP/ILP: Exactness and Speed

 $Comparison \ to \ LP/ILP: \ Accuracy$

Dependency / recuracy

All decoding methods have comparable accuracy

Deriving the Algorithm

$$\begin{aligned}
\begin{aligned}
& \text{Gall:} & \text{grams}_{y,y}(y) & \text{Revite:} \\ & \text{grams}_{y,y}(y) & \text{grams}_{y,y}(x) + g(y) \\ & \text{grams}_{y,y}(x) + g(y) & \text{grams}_{y,y}(x) + g(y) \\ & \text{grams}_{y,y}(x) + g(y) + g(y) & \text{grams}_{y,y}(x) + g(y) \\ & \text{fit if } grams}_{y,y}(x) + grams_{y,y}(x) + g(y) & \text{grams}_{y,y}(x) + g(y) \\ & \text{fit if } grams}_{y,y}(x) + grams_{y,y}(x) + grams}_{y,y}(x) + grams}_{y,y}(x)$$

- Dual Decomposition
- $*_0$ John₁ saw₂ a₃ movie₄ today₅ that₆ he₇ liked₈

CEG Model

- Possible NLP Applications
 - Machine Translation
 - Speech Recognition
 - "Loopy" Sequence Models
- Open Questions
 - Can we speed up subalgorithms when running repeatedly?
 - What are the trade-offs of different decompositions?
 - Are there better methods for optimizing the dual?

