
Lecture 2, COMS E6998-3:
Log-linear models, MEMMs, CRFs

Michael Collins

January 26, 2011

Log-Linear Models

! We have sets X and Y : we will assume that Y is a finite set.
We have a feature-vector definition φ : X × Y → Rd. We also
assume a parameter vector w ∈ Rd. Given these definitions,

p(y|x; w) =
exp

(
w · φ(x, y)

)
∑

y′∈Y exp
(
w · φ(x, y′)

)

This is the conditional probability of y given x, under
parameters w.

Notation

! Throughout this lecture I’ll use underline to denote vectors.
For example w ∈ Rd is a vector, w1, w2, . . . , wd are the
individual components of the vector. The inner product
between two vectors is

w · x =
d∑

j=1

wjxj

The Log-Likelihood Function

! To estimate the parameters, we assume we have a set of n
labeled examples, {(xi, yi)}n

i=1. The log-likelihood function is

L(w) =
n∑

i=1

log p(yi|xi; w)

We can think of L(w) as being a function that for a given w
measures how well w explains the labeled examples. A “good”
value for w will give a high value for p(yi|xi; w) for all
i = 1 . . . n, and thus will have a high value for L(w).

Maximum-Likelihood Estimates

! The maximum-likelihood estimates are

w∗ = arg max
w∈Rd

n∑

i=1

log p(yi|xi; w)

The maximum-likelihood estimates are thus the parameters
that best fit the training set, under the criterion L(w). (In
some cases this maximum will not be well-defined—we’ll come
back to this point later—but for now we’ll assume that the
maximum exists.)

Finding the Maximum-Likelihood Estimates

! Given a training set {(xi, yi)}n
i=1, how do we find the

maximum-likelihood parameter estimates w∗?

! Unfortunately, closed-form solutions do not in general exist.
Instead, gradient-based optimization methods are often used.
For these we need the derivative of L(w) with respect to the
parameters w1, w2, . . . wd. These derivatives take the form

∂

∂wj
L(w) =

∑

i

φj(xi, yi)−
∑

i

∑

y

p(y|xi; w)φj(xi, y)

Regularized Log-Likelihood

! In many cases, it is useful to add a regularization term that
penalizes large parameter values. The new objective function
is:

L(w) =
n∑

i=1

log p(yi|xi; w)− λ

2
||w||2

where λ > 0 is a constant.

! We again choose the optimal parameter values to be
w∗ = arg maxw∈Rd L(w)

! In this case

∂

∂wj
L(w) =

∑

i

φj(xi, yi)−
∑

i

∑

y

p(y|xi; w)φj(xi, y)− λwj

Maximum-Entropy Markov Models (MEMMs)
! Goal: model the distribution

p(s1, s2 . . . sm|x1 . . . xm)

where each xi for i = 1 . . . m is a word, and each si for
i = 1 . . . m is an underlying state (for example, a
part-of-speech tag for the i’th word). We use S to refer to the
set of possible states (each si can take any value in S). S is a
finite set.

! In HMMs (last lecture), we had

p(x1 . . . xm, s1 . . . sm) = t(s1)
m∏

j=2

t(sj|sj−1)
m∏

j=1

e(xj|sj)

where t(s′|s) are the transition parameters, and e(x|s) are the
emission parameters.

Independence Assumptions in MEMMs

! MEMMs use the following decomposition:

p(s1, s2 . . . sm|x1 . . . xm) =
m∏

i=1

p(si|s1 . . . si−1, x1 . . . xn)

=
m∏

i=1

p(si|si−1, x1 . . . xn)

! The first step is exact (by the chain rule)

! The second step follows from an independence assumption,
i.e., that for all i,

p(si|s1 . . . si−1, x1 . . . xm) = p(si|si−1, x1 . . . xm)

Using Log-Linear Models

! We then model each term using a log-linear model:

p(si|si−1, x1 . . . xm) =
exp

(
w · φ(x1 . . . xm, i, si−1, si)

)
∑

s′∈S exp
(
w · φ(x1 . . . xm, i, si−1, s′)

)

! Here φ(x1 . . . xm, i, s, s′) is a feature vector where:

! x1 . . . xm is the sequence of m words to be tagged
! i is the position to be tagged (any value from 1 . . . m)
! s is the previous state
! s′ is the new state

Decoding with MEMMs
! Goal: for a given input sequence x1, . . . , xm, find

arg max
s1,...,sm

p(s1 . . . sm|x1 . . . xm)

! We can use the Viterbi algorithm again (see last lecture on
HMMs). Basic data structure:

π[j, s]

will be a table entry that stores the maximum probability for
any state sequence ending in state s at position j. More
formally:

π[j, s] = max
s1...sj−1

(
p(s|sj−1, x1 . . . xm)

j−1∏

k=1

p(sk|sk−1, x1 . . . xm)

)

The Viterbi Algorithm

! Initialization: for s ∈ S
π[1, s] = p(s|s0, x1 . . . xm)

where s0 is a special “initial” state.

! For j = 2 . . . m, s = 1 . . . k:

π[j, s] = max
s′∈S

[π[j − 1, s′]× p(s|s′, x1 . . . xm)]

! We then have

max
s1...sm

p(s1 . . . sm|x1 . . . xm) = max
s

π[m, s]

! The algorithm runs in O(mk2) time. As before (see HMM
lecture slides), we can use backpointers to recover the most
likely sequence of states.

Comparison between HMMs and MEMMs
! In MEMMs, each state transition has probability

p(si|si−1, x1 . . . xn) =
exp

(
w · φ(x1 . . . xn, i, si−1, si)

)
∑

s′∈S exp
(
w · φ(x1 . . . xn, i, si−1, s′)

)

! In HMMs, each state transition has probability

p(si|si−1)p(xi|si)

! The introduction of feature vectors φ allows much richer
representations in MEMMs, for example:

! Sensitivity to any word in the input sequence x1 . . . xn (not
just xi)

! Sensitivity to spelling features (prefixes, suffixes etc.) of xi,
or of surrounding words

! Parameter estimation in MEMMs is more expensive than in
HMMs (but is still not prohibitive for most tasks)

Conditional Random Fields (CRFs)

! Notation: for convenience we’ll use x to refer to the sequence
of input words, x1 . . . xm, and s to refer to a sequence of
possible states, s1 . . . sm. The set of possible states is S. We
use Sm to refer to the set of all possible state sequences (we
have |Sm| = |S|m).

! We’re again going to build a model of

p(s1 . . . sm|x1 . . . xm) = p(s|x)

CRFs

! We use Φ(x, s) ∈ Rd to refer to a feature vector for an entire
state sequence

! We then build a giant log-linear model,

p(s|x; w) =
exp (w · Φ(x, s))∑

s′∈Sm exp (w · Φ(x, s′))

! The model is “giant” in the sense that: 1) the space of
possible values for s, i.e., Sm, is huge. 2) The normalization
constant (denominator in the above expression) involves a sum
over a huge number of possibilities (i.e., all members of Sm).

CRFs (continued)

p(s|x; w) =
exp (w · Φ(x, s))∑

s′∈Sm exp (w · Φ(x, s′))

! How do we define Φ(x, s)? Answer:

Φ(x, s) =
m∑

j=1

φ(x, j, sj−1, sj)

where φ(x, j, sj−1, sj) are the same as the feature vectors used
in MEMMs.

Decoding with CRFs
! The decoding problem: find

arg max
s∈Sm

p(s|x; w) = arg max
s∈Sm

exp (w · Φ(x, s))∑
s′∈Sm exp (w · Φ(x, s′))

= arg max
s∈Sm

exp (w · Φ(x, s))

= arg max
s∈Sm

w · Φ(x, s)

= arg max
s∈Sm

w ·
m∑

j=1

φ(x, j, sj−1, sj)

= arg max
s∈Sm

m∑

j=1

w · φ(x, j, sj−1, sj)

! Again, we can use the Viterbi algorithm...

The Viterbi Algorithm for CRFs

! Initialization: for s ∈ S
π[1, s] = w · φ(x, 1, s0, s)

where s0 is a special “initial” state.

! For j = 2 . . . m, s = 1 . . . k:

π[j, s] = max
s′∈S

[
π[j − 1, s′] + w · φ(x, j, s′, s)

]

! We then have

max
s1...sm

m∑

j=1

w · φ(x, j, sj−1, sj) = max
s

π[m, s]

! The algorithm runs in O(mk2) time. As before (see HMM
lecture slides), we can use backpointers to recover the most
likely sequence of states.

Parameter Estimation in CRFs

! To estimate the parameters, we assume we have a set of n
labeled examples, {(xi, si)}n

i=1. Each xi is an input sequence
xi

1 . . . xi
m, each si is a state sequence si

1 . . . si
m.

! We then proceed in exactly the same way as for regular
log-linear models

! The regularized log-likelihood function is

L(w) =
n∑

i=1

log p(si|xi; w)− λ

2
||w||2

! Our parameter estimates are

w∗ = arg max
w∈Rd

n∑

i=1

log p(si|xi; w)− λ

2
||w||2

Finding the Maximum-Likelihood Estimates

! We’ll again use gradient-based optimization methods to find
w∗

! How can we compute the derivatives? As before,

∂

∂wk
L(w) =

∑

i

Φk(xi, si)−
∑

i

∑

s∈Sm

p(s|xi;w)Φk(xi, s)− λwk

! The first term is easily computed, because

∑

i

Φk(x
i, si) =

∑

i

m∑

j=1

φk(x
i, j, si

j−1, s
i
j)

! The second term involves a sum over Sm, and because of this
looks nasty...

Calculating Derivatives using the
Forward-Backward Algorithm

! We now consider how to compute the second term:

∑

s∈Sm

p(s|xi;w)Φk(xi, s) =
∑

s∈Sm

p(s|xi;w)
m∑

j=1

φk(xi, j, sj−1, sj)

=
m∑

j=1

∑

a∈S,b∈S
qi
j(a, b)φk(xi, j, a, b)

where
qi
j(a, b) =

∑

s∈Sm:sj−1=a,sj=b

p(s|xi;w)

(for the full derivation see the notes)

! For a given i, all qi
j terms can be computed simultaneously in

O(mk2) time using the forward-backward algorithm, a dynamic
programming algorithm that is closely related to Viterbi.

Why prefer CRFs over MEMMs?

! (1) We’ll soon see in the class that it’s eash to generalize
CRFs to a wide range of structured prediction problems

! (2) The label bias problem. An example of a conditional
distribution that MEMMs can’t capture:

a b c ⇒ a/A b/B c/C with p(A B C|a b c) = 1
a b e ⇒ a/A b/B e/E with p(A D E|a b e) = 1

! It’s impossible to find parameters that satisfy

p(A|a)p(B|b, A)p(C|c, B) = 1

p(A|a)p(D|b, A)p(E|c, e) = 1

! It’s easy to find parameters in a CRF that model this
distribution correctly.

