Lecture 2, COMS E6998-3:
Log-linear models, MEMMs, CRFs

Michael Collins

January 26, 2011

Notation

>

Throughout this lecture I'll use underline to denote vectors.
For example w € R? is a vector, wy, ws, . .., wq are the
individual components of the vector. The inner product
between two vectors is

d
woz=) w
j=1

Log-Linear Models

» We have sets X’ and): we will assume that) is a finite set.
We have a feature-vector definition QX XY — R?. We also

assume a parameter vector w € R?. Given these definitions,

exp (w - ¢(z,y))
Xyey P (w8, 9))

This is the conditional probability of y given z, under
parameters w.

p(ylz;w) =

The

Log-Likelihood Function

To estimate the parameters, we assume we have a set of n
labeled examples, {(x;, y;)},. The log-likelihood function is

L(w) = log p(yi|zi; w)
=1

We can think of L(w) as being a function that for a given w
measures how well w explains the labeled examples. A “good”
value for w will give a high value for p(y;|z;;w) for all

i =1...n, and thus will have a high value for L(w).

Maximum-Likelihood Estimates

» The maximum-likelihood estimates are
w’ = arg max leogp(yilwi;w)
i

The maximum-likelihood estimates are thus the parameters
that best fit the training set, under the criterion L(w). (In
some cases this maximum will not be well-defined—we'll come
back to this point later—but for now we'll assume that the
maximum exists.)

Regularized Log-Likelihood

» In many cases, it is useful to add a regularization term that
penalizes large parameter values. The new objective function

is:
Zlogp yils w) —

where A > 0 is a constant.

\UHZ

» We again choose the optimal parameter values to be
w* = arg max,ega L(w)

» In this case

8111 Z¢J xwyz ZZP y|$“ ¢] Z;,) _)‘U",j
J

Finding the Maximum-Likelihood Estimates

» Given a training set {(z;,v;)}",, how do we find the
maximum-likelihood parameter estimates w*?

» Unfortunately, closed-form solutions do not in general exist.
Instead, gradient-based optimization methods are often used.
For these we need the derivative of L(w) with respect to the
parameters wy, wa, . .. wy. | hese derivatives take the form

w) =Y 65w y) = D0 D plylesw)ds (@)

Maximum-Entropy Markov Models (MEMMs)

» Goal: model the distribution

p(S1,82 . Sm|T1 ... Tiy)

where each x; for i = 1...m is a word, and each s; for

i =1...mis an underlying state (for example, a
part-of-speech tag for the i'th word). We use S to refer to the
set of possible states (each s; can take any value in S). S'is a
finite set.

» In HMMs (last lecture), we had

m m
) =t(s1 Ht S;lsi—1 He HED)
=2 j=1

where t(s'|s) are the transition parameters, and e(z|s) are the
emission parameters.

p(x1 ... Ty, S1 .

Independence Assumptions in MEMMs

» MEMNMs use the following decomposition:

m
p(s1,82. . Sm|T1 ..) = Hp(si]sl...si,l,xl...xn)
=1
Zm
= Hp(5i|3i717x1-~~$n)
i=1

» The first step is exact (by the chain rule)

» The second step follows from an independence assumption,
i.e., that for all 7,

p(Si|s1-- . Sic1, @1 T) = P(Si|Sic1, @1+ T)

Decoding with MEMMs

» Goal: for a given input sequence x1, ..., Z,,, find

arg an&ﬁ(p(S1.. . Sm|T1. . Tm)

» We can use the Viterbi algorithm again (see last lecture on
HMMs). Basic data structure:

mlj,]

will be a table entry that stores the maximum probability for
any state sequence ending in state s at position j. More
formally:

j-1
7[j,s] = max (p(s]sj_l, Ty .. Tp) Hp(sklsk_l, 1 .. :Em))

81-.-85—1 el

Using Log-Linear Models

» We then model each term using a log-linear model:

exp (w . ?($1 o Ty, i, Si—1, Sz))

Si18; 1,21 .. L) =
p(Z| b m) Zs/esexp (w'?(l‘l'“xm;iasi—l’sl))

» Here ¢(x1 ... 2,14, 5,5 is a feature vector where:

> T1...IT, is the sequence of m words to be tagged

» ¢ is the position to be tagged (any value from 1...m)
» s is the previous state

» s’ is the new state

The Viterbi Algorithm

» Initialization: for s € S
(1, s] = p(s|so, z1 ... Tm)

where s is a special “initial” state.

» Forj=2...m,s=1...k:
g, 8] = max (77 — 1,8 x p(s]s’, x1 ... xm)]
s'e
» We then have
max p(sq...8n|x1 ... 2y) = maxw[m, s]

81...8m

» The algorithm runs in O(mk?) time. As before (see HMM
lecture slides), we can use backpointers to recover the most
likely sequence of states.

Comparison between HMMs and MEMMs

» In MEMMs, each state transition has probability
exp (w Py T, 1, S0, sz))
p(silsic1, 21 .. xp) = . -
Y ses €XP (w CO(Ty Ty 0, 81,8))
» In HMMs, each state transition has probability
p(silsi-1)p(xils;)
» The introduction of feature vectors ¢ allows much richer
representations in MEMMs, for example:
» Sensitivity to any word in the input sequence ...z, (not
just z;)
» Sensitivity to spelling features (prefixes, suffixes etc.) of z;,
or of surrounding words
» Parameter estimation in MEMMs is more expensive than in

HMMs (but is still not prohibitive for most tasks)

CRFs

» We use ®(z, s) € R? to refer to a feature vector for an entire
state sequence

» We then build a giant log-linear model,

exp (w - ®(z, s)
ZSES’” eXp (w ' @(lv §/))

» The model is “giant” in the sense that: 1) the space of
possible values for s, i.e., 8™, is huge. 2) The normalization
constant (denominator in the above expression) involves a sum
over a huge number of possibilities (i.e., all members of §™).

p(s|z;w) =

Conditional Random Fields (CRFs)

» Notation: for convenience we'll use z to refer to the sequence
of input words, z;...z,,, and s to refer to a sequence of
possible states, s;...s,,. The set of possible states is S. We
use 8™ to refer to the set of all possible state sequences (we
have |[S™] = |S|™).

» We're again going to build a model of

p(S1...Sm|T1 ... Tm) = p(s|z)

CRFs (continued)

) = exp (w . @@: §)>
p(slz; w) > gesm exp (w - B(z,5'))

» How do we define ®(x,s)? Answer:
@(&a §) = Z?(&a]a Sj—1, Sj)
j=1

where ¢(z,j,sj-1,5;) are the same as the feature vectors used
in MEMMs.

Decoding with CRFs

» The decoding problem: find

|

exp (w - ®(z, s))

argmaxp(slz;w) = argmax > esm exp (w - 2(z, ')
= argmax exp (w- &(z,s))
sesm
= . (b
argmax w D(z,5)

= argmax w-

sedm O, J,55-1,55)

M

1

J

m
= arg?g%zg Zw'@(zvjvsjflasj)
=1

Again, we can use the Viterbi algorithm...

Parameter Estimation in CRFs

» To estimate the parameters, we assume we have a set of n
labeled examples {(z%,s")}",. Each z' is an input sequence
1’1 v, each s’ is a state sequence 51 sin.

> We then proceed in exactly the same way as for regular
log-linear models

» The regularized log-likelihood function is
=D logp(s'lz) — [l
i=1
» Our parameter estimates are

w” :argmax Zlogp s w)——||w||2
i=1

The

v

v

v

v

Viterbi Algorithm for CRFs

Initialization: for s € S
71—[17 S] =w- ?(@7 17 50, S)

where s is a special “initial” state.

Forj=2...m,s=1...k:

g, s] = max 7 — 1L s+ w-é(z,4,5,9)]
We then have

maxi (2, J,8j-1,8)) = msexw[m,s]

§1...8Sm “

The algorithm runs in O(mk?) time. As before (see HMM
lecture slides), we can use backpointers to recover the most
likely sequence of states.

Finding the Maximum-Likelihood Estimates

» We'll again use gradient-based optimization methods to find

*

w

» How can we compute the derivatives? As before,

8 w <I>k p(slzt; w)®p (2!,) — Awy,
8wk

1 sESm

» The first term is easily computed, because

Z(I)k Zz¢km Js S] 15 J)

» The second term involves a sum over 8™, and because of this
looks nasty...

Calculating Derivatives using the
Forward-Backward Algorithm

» We now consider how to compute the second term:

> plslahw)@e(alys) = Y p(ﬁ\f;w)Z%(&i,j,sj_hsj)

seSm §e$m
Z Z (a,0)x (2’ j, a, b)
j=1a€S,b
where ‘ '
gj(a,b) = > p(slz’;w)

§€Sm18j_1:a78j:b
(for the full derivation see the notes)
» For a given 4, all q;. terms can be computed simultaneously in

O(mk?) time using the forward-backward algorithm, a dynamic
programming algorithm that is closely related to Viterbi.

Why prefer CRFs over MEMMSs?

» (1) We'll soon see in the class that it's eash to generalize
CRFs to a wide range of structured prediction problems

» (2) The label bias problem. An example of a conditional
distribution that MEMMs can't capture:

abc= a/Ab/Bc/C with p(A B Cla b c)=1
abe = a/A b/B e/E with p(A D Ela b e) =1

> It's impossible to find parameters that satisfy

p(Ala)p(Blb, A)p(Cle, B) = 1
p(Ala)p(Dlb, A)p(Ele,e) = 1

» It's easy to find parameters in a CRF that model this
distribution correctly.

