Flipped Classroom Questions on Conditional Random Fields

Michael Collins

1 Notation

Throughout this note I’ll use underline to denote vectors. For example, w € R? will be a vector
with components w1, wa, . . . wg. We use exp(x) for the exponential function, i.e., exp(z) = e*.

2 CRFs

We now turn to conditional random fields (CRFs).

One brief note on notation: for convenience, we’ll use z to refer to an input sequence i . .. T,
and s to refer to a sequence of states s; . .. S,,. The set of all possible states is again S; the set of all
possible state sequences is S". In conditional random fields we’ll again build a model of

p(s1...Sml|x1 ... Tm) = p(s|z)

A first key idea in CRFs will be to define a feature vector

®(z,s) € RY

that maps an entire input sequence x paired with an entire state sequence s to some d-dimensional
feature vector. We’ll soon give a concrete definition for ®, but for now just assume that some
definition exists. We will often refer to ® as being a “global” feature vector (it is global in the sense
that it takes the entire state sequence into account).

We then build a giant log-linear model,

exp (w - ®(z, s))
Z§’€$m exXp (w ’ @(£7 §/))

p(s|lz; w) =

This is “just” another log-linear model, but it is is “giant” in the sense that: 1) the space of possible
values for s, i.e., 8", is huge. 2) The normalization constant (denominator in the above expression)

involves a sum over the set S™. At first glance, these issues might seem to cause severe compu-
tational problems, but we’ll soon see that under appropriate assumptions we can train and decode
efficiently with this type of model.

The next question is how to define ®(z, s)? Our answer will be
m
Q(&a §) = Z?(£7 Js Sj—1, Sj)
j=1

Here ¢(z, j,sj—1, 5;) is a feature vector where:

e x = x1...Xy is the entire sentence being tagged
e j is the position to be tagged (can take any value from 1 to m)
e s;_1 is the previous state value (can take any value in S)

e s; is the new state value (can take any value in S)

See the lecture slides on log-linear models (from Lecture 1) to see examples of features used in
applications such as part-of-speech tagging.

Or put another way, we’re assuming that for £ = 1. .. d, the k’th global feature is
m
Op(z,8) =Y ol 4, sj-1,55)
j=1

Thus @ is calculated by summing the “local” feature vector ¢y, over the m different state transitions
insi...Sn.

We now turn to two critical practical issues in CRFs: first, decoding, and second, parameter esti-
mation.

Decoding with CRFs The decoding problem in CRFs is as follows: for a given input sequence
T = x1,T2,...Tm, we would like to find the most likely underlying state sequence under the model,
that is,

arg max p(s|a; w)

We simplify this expression as follows:

exp (w - ®(z, 8))

arg max p(slz;w) = arg max >

= argmax oxp (w- 2(z,5))

2

[S

- ®(z, s)

= arg max
sesS™

3

= argﬁne12:¥ w - . 1@(&7].733'—178]')

<
I

m
= arg max Zw-@(l,j, $j—1,55)
sesS™ =

So we have shown that finding the most likely sequence under the model is equivalent to finding the
sequence that maximizes

m
arg;ggﬁ]z::lw ' é(ihj) Sj—1, .S’j)

Question 1: describe a dynamic programming problem that finds the arg max in the above equation.

Parameter Estimation in CRFs. For parameter estimation, we assume we have a set of n la-
beled examples, {(z*,s")}i.;. Each 2° is an input sequence z7 ... z7,, each s’ is a state sequence
sy ...sy,. We then proceed in exactly the same way as for regular log-linear models. The regular-
ized log-likelihood function is

= i) A
L(w) =3 logp(s'|a) — [uw] |
=1

Our parameter estimates are then
n
* i A 2
w" = arg max log p(s'|z*; w) — S [[uwl]
1

d
we =

We’ll again use gradient-based optimization methods to find w*. As before, the partial derivatives
are

9
owy,

Lw) = > @', s) =3 D plsla’;w)®x(a’,s) — My

i seS™
The first term is easily computed, because
. . m . . .
PILACSEVEDIPILACHIL ENH
i i j=1

Hence all we have to do is to sum over all training examples ¢ = 1. ..n, and for each example sum
over all positions 7 =1...m.

The second term is more difficult to deal with, because it involves a sum over §™, a very large set.

Question 2: Assume that for any 4, j, forany a € S,b € S, we can efficiently compute

qi(a,b) = > p(slz’; w)

s5€8™:5;_1=a,5;=b

The quantity q}- (a,b) has a fairly intuitive interpretation: it is the probabilty of the i’th training
example zt having state a at position j — 1 and state b at position j, under the distribution p(s|z; w).

Show that given an algorithm that computes all qj. (a, b) terms efficiently, it is possible to efficiently

(in polynomial time) compute ' '
>3 plslz’w)®p(al, s)
i seS™m

(Note: A critical result is that for a given i, all qé- (a,b) terms can be calculated together, in O(mk?)
time. The algorithm that achieves this is the forward-backward algorithm. This is another dynamic
programming algorithm, and is closely related to the Viterbi algorithm.)

