Recurrent Networks, and LSTMs, for NLP

Michael Collins, Columbia University

Representing Sequences

» Often we want to map some sequence ZT[m] = T1...Tn tO A
label 3 or a distribution p(y|z[.n))

» Examples:

» Language modeling: [y, is first n words in a document, y
is the (n + 1)'th word

» Sentiment analysis: [, is a sentence (or document), y is
label indicating whether the sentence is
positive/neutral /negative about a particular topic (e.g., a
particular restaurant)

» Machine translation: z[;., is a source-language sentence, y
is a target language sentence (or the first word in the target
language sentence)

Representing Sequences (continued)

» Slightly more generally: map a sequence z;.,) and a
position i € {1...n} to a label y or a distribution
P(ylpny,; 0)

» Examples:

» Tagging: x[1.,,] is a sentence, ¢ is a position in the sentence,
y is the tag for position ¢

» Dependency parsing: z1.,,] is a sentence, i is a position in
the sentence, y € {1...n},y # ¢ is the head for word z; in
the dependency parse

A Simple Recurrent Network

Inputs: A sequence 77 ...z, where each z; € RY. A label

y € {1...K}. An integer m defining size of hidden dimension.
Parameters W/ ¢ Rmxm Wwhe ¢ gmxd ph c g pO € R™,
V e REX™m ~ ¢ RE. Transfer function g : R — R™.
Definitions:

9 = (W whe ph R0}
R(z® htD.0) = g(Wheg® whhpt=1) 4 phy
Computational Graph:
» Fort=1...n
» B — R(;p(t)’h(t*l);e)
» [=Vh" 4, ¢=LS(), 0= —q,

The Computational Graph

A Problem in Training: Exploding and Vanishing
Gradients

» Calculation of gradients involves multiplication of long chains
of Jacobians

» This leads to exploding and vanishing gradients

LSTMs (Long Short-Term Memory units)

» Old definitions of the recurrent update:

g = {Whh, Whac7 bh, hO}
R(zW,hlD:0) = g(Wz® 4 WHp= 4 by

» LSTMs give an alternative definition of R(z® ht=1;0).

Definition of Sigmoid Function, Element-Wise
Product

» Given any integer d > 1, 0% : R? — R? is the function that
maps a vector v to a vector o%(v) such that for i = 1...d,

J evi
o (v) =
! () 14 evi

» Given vectors a € R? and b € R?, ¢ = a ® b has components
C; = a; X bz

fori=1...d

LSTM Equations (from liya Sutskever, PhD thesis)

Maintain s, 3¢, h! as hidden state at position ¢. st is memory,
intuitively allows long-term memory. The function
st st ht = LSTM(zt, s'=1, 571 ht=1: 0) is defined as:

u' = CONCAT(h'™!, 2t 571
g(W"u! 4 b") (hidden state)
it = g(Whl+b) (“input”)

>
~+
I

o= oWt +bY) (“input gate”)
o' = o(W'+b°) (“output gate”)
ffo= o(Wlul +b/) (“forget gate”)

st = 7o fl4it ¢ forget and input gates control update of memory

5 = s'®o" output gate controls information that can leave the unit

An LSTM-based Recurrent Network

Inputs: A sequence z7 ...z, where each z; € R?. A label
ye{l...K}.

Computational Graph:

> 10 50 50 gre set to some inital values.

» Fort=1...n
» 5 50 h®) = LSTM(2®), st 5(t=1) p(t=1); g)
> [=V 4 yilsg) 4y g =LS(l), 0= —q,

The Computational Graph

An LSTM-based Recurrent Network for Tagging

Inputs: A sequence 77 ...z, where each z; € R%. A sequence
Y1 ...Yn Of tags.

Computational Graph:

> 10 50 50 are set to some inital values.

» Fort=1...n
» s® 50 M = LSTM(z®), st=1_ 5¢=1) p(t=1),)
> Fort=1...n
» ' =V x CONCAT(h®,5®) + v, ¢ =LS(1*), ot = —q

> o=3 0

The Computational Graph

A bi-directional LSTM (bi-LSTM) for tagging

Inputs: A sequence 77 ...z, where each x; € R A sequence

Y1 ... Y, Of tags.
Definitions: 8% and 67 are parameters of a forward and backward

LSTM.
Computational Graph:
> 10 50) 5(0),77(”“),@(”“), a1 are set to some inital values.
> Fort=1.
» s 5 () () = LSTM(x(t) (t— 1)7§(t—1)7h(t—1);9F)
» Fort=n...1
> a(t),d(t),n(t) — LSTM(a:(t),a(t“),d(t“) (t+1). 93)
» Fort=1.
» It =V x CONCAT(h®), 50) at) +~, ¢ = LS(1"),
ot = —Qyt

> o=3,0

The Computational Graph

Results on Language Modeling

Model Num. Params | Training Time | Perplexity
[billions] [hours] | [CPUs]

Interpolated KN 5-gram, 1.1B n-grams (KN) 1.76 3 100 67.6
Katz 5-gram, 1.1B n-grams 1.74 2 100 79.9
Stupid Backoff 5-gram (SBO) 1.13 0.4 200 87.9
Interpolated KN 5-gram, 15M n-grams 0.03 3 100 243.2
Katz 5-gram, 15M n-grams 0.03 2 100 127.5
Binary MaxEnt 5-gram (n-gram features) 1.13 1 5000 115.4
Binary MaxEnt 5-gram (n-gram + skip-1 features) 1.8 1.25 5000 107.1
Hierarchical Softmax MaxEnt 4-gram (HME) 6 3 1 101.3
Recurrent NN-256 + MaxEnt 9-gram 20 60 24 58.3
Recurrent NN-512 + MaxEnt 9-gram 20 120 24 54.5
Recurrent NN-1024 + MaxEnt 9-gram 20 240 24 51.3

Table 1: Results on the 1B Word Benchmark test set with various types of language models.

» Results from One Billion Word Benchmark for Measuring
Progress in Statistical Language Modeling, Ciprian Chelba,
Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants.

Results on Dependency Parsing

» Deep Biaffine Attention for Neural Dependency Parsing,
Dozat and Manning.

» Uses a bidirectional LSTM to represent each word

» Uses LSTM representations to predict head for each word in
the sentence

» Unlabeled dependency accuracy: 95.75%

Conclusions

» Recurrent units map input sequences z ...z, to
representations h!...h". The vector h™ can be used to
predict a label for the entire sentence. Each vector h' for
1 =1...n can be used to make a prediction for position %

» LSTMs are recurrent units that make use of more involved
recurrent updates. They maintain a “memory” state.
Empirically they perform extremely well

» Bi-directional LSTMs allow representation of both the
information before and after a position ¢ in the sentence

» Many applications: language modeling, tagging, parsing,
speech recognition, we will soon see machine translation

