
Recurrent Networks, and LSTMs, for NLP

Michael Collins, Columbia University



Representing Sequences

I Often we want to map some sequence x[1:n] = x1 . . . xn to a
label y or a distribution p(y|x[1:n])

I Examples:

I Language modeling: x[1:n] is first n words in a document, y
is the (n+ 1)’th word

I Sentiment analysis: x[1:n] is a sentence (or document), y is
label indicating whether the sentence is
positive/neutral/negative about a particular topic (e.g., a
particular restaurant)

I Machine translation: x[1:n] is a source-language sentence, y
is a target language sentence (or the first word in the target
language sentence)



Representing Sequences (continued)

I Slightly more generally: map a sequence x[1:n] and a
position i ∈ {1 . . . n} to a label y or a distribution
p(y|x[1:n], i)

I Examples:

I Tagging: x[1:n] is a sentence, i is a position in the sentence,
y is the tag for position i

I Dependency parsing: x[1:n] is a sentence, i is a position in
the sentence, y ∈ {1 . . . n}, y 6= i is the head for word xi in
the dependency parse



A Simple Recurrent Network

Inputs: A sequence x1 . . . xn where each xj ∈ Rd. A label
y ∈ {1 . . .K}. An integer m defining size of hidden dimension.
Parameters W hh ∈ Rm×m, W hx ∈ Rm×d, bh ∈ Rm, h0 ∈ Rm,
V ∈ RK×m, γ ∈ RK . Transfer function g : Rm → Rm.
Definitions:

θ = {W hh,W hx, bh, h0}
R(x(t), h(t−1); θ) = g(W hxx(t) +W hhh(t−1) + bh)

Computational Graph:

I For t = 1 . . . n

I h(t) = R(x(t), h(t−1); θ)

I l = V h(n) + γ, q = LS(l), o = −qy



The Computational Graph



A Problem in Training: Exploding and Vanishing

Gradients

I Calculation of gradients involves multiplication of long chains
of Jacobians

I This leads to exploding and vanishing gradients



LSTMs (Long Short-Term Memory units)

I Old definitions of the recurrent update:

θ = {W hh,W hx, bh, h0}
R(x(t), h(t−1); θ) = g(W hxx(t) +W hhh(t−1) + bh)

I LSTMs give an alternative definition of R(x(t), h(t−1); θ).



Definition of Sigmoid Function, Element-Wise

Product

I Given any integer d ≥ 1, σd : Rd → Rd is the function that
maps a vector v to a vector σd(v) such that for i = 1 . . . d,

σdi (v) =
evi

1 + evi

I Given vectors a ∈ Rd and b ∈ Rd, c = a� b has components

ci = ai × bi

for i = 1 . . . d



LSTM Equations (from Ilya Sutskever, PhD thesis)

Maintain st, s̃t, ht as hidden state at position t. st is memory,
intuitively allows long-term memory. The function
st, s̃t, ht = LSTM(xt, st−1, s̃t−1, ht−1; θ) is defined as:

ut = CONCAT(ht−1, xt, s̃t−1)

ht = g(W hut + bh) (hidden state)

it = g(W iut + bi) (“input”)

ιt = σ(W ιut + bι) (“input gate”)

ot = σ(W out + bo) (“output gate”)

f t = σ(W fut + bf ) (“forget gate”)

st = st−1 � f t + it � ιt forget and input gates control update of memory

s̃t = st � ot output gate controls information that can leave the unit



An LSTM-based Recurrent Network

Inputs: A sequence x1 . . . xn where each xj ∈ Rd. A label
y ∈ {1 . . .K}.

Computational Graph:

I h(0), s(0), s̃(0) are set to some inital values.

I For t = 1 . . . n

I s(t), s̃(t), h(t) = LSTM(x(t), s(t−1), s̃(t−1), h(t−1); θ)

I l = V lhh(n) + V lss̃(n) + γ, q = LS(l), o = −qy



The Computational Graph



An LSTM-based Recurrent Network for Tagging

Inputs: A sequence x1 . . . xn where each xj ∈ Rd. A sequence
y1 . . . yn of tags.

Computational Graph:

I h(0), s(0), s̃(0) are set to some inital values.

I For t = 1 . . . n

I s(t), s̃(t), h(t) = LSTM(x(t), s(t−1), s̃(t−1), h(t−1); θ)

I For t = 1 . . . n

I lt = V × CONCAT(h(t), s̃(t)) + γ, qt = LS(lt), ot = −qyt

I o =
∑n

t=1 o
t



The Computational Graph



A bi-directional LSTM (bi-LSTM) for tagging
Inputs: A sequence x1 . . . xn where each xj ∈ Rd. A sequence
y1 . . . yn of tags.
Definitions: θF and θB are parameters of a forward and backward
LSTM.
Computational Graph:

I h(0), s(0), s̃(0), η(n+1), α(n+1), α̃(n+1) are set to some inital values.

I For t = 1 . . . n

I s(t), s̃(t), h(t) = LSTM(x(t), s(t−1), s̃(t−1), h(t−1); θF )

I For t = n . . . 1

I α(t), α̃(t), η(t) = LSTM(x(t), α(t+1), α̃(t+1), η(t+1); θB)

I For t = 1 . . . n

I lt = V × CONCAT(h(t), s̃(t), η(t), α̃t) + γ, qt = LS(lt),
ot = −qyt

I o =
∑n

t=1 o
t



The Computational Graph



Results on Language Modeling

I Results from One Billion Word Benchmark for Measuring
Progress in Statistical Language Modeling, Ciprian Chelba,
Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants.



Results on Dependency Parsing

I Deep Biaffine Attention for Neural Dependency Parsing,
Dozat and Manning.

I Uses a bidirectional LSTM to represent each word

I Uses LSTM representations to predict head for each word in
the sentence

I Unlabeled dependency accuracy: 95.75%



Conclusions

I Recurrent units map input sequences x1 . . . xn to
representations h1 . . . hn. The vector hn can be used to
predict a label for the entire sentence. Each vector hi for
i = 1 . . . n can be used to make a prediction for position i

I LSTMs are recurrent units that make use of more involved
recurrent updates. They maintain a “memory” state.
Empirically they perform extremely well

I Bi-directional LSTMs allow representation of both the
information before and after a position i in the sentence

I Many applications: language modeling, tagging, parsing,
speech recognition, we will soon see machine translation


