Homomorphic Data Isolation for Hardware Trojan Protection

Abstract

The interest in homomorphic encryption/decryption is increasing due to its excellent security properties and operating facilities. It allows operating on data without revealing its content. In this work, we suggest using homomorphism for Hardware Trojan protection. We implement two partial homomorphic designs based on El Gamal encryption/decryption scheme. The first design is a multiplicative homomorphic, whereas the second one is an additive homomorphic. We implement the proposed designs on a low-cost Xilinx Spartan-6 FPGA. Area utilization, delay, and power consumption are reported for both designs. Furthermore, we introduce a dual-circuit design that combines the two earlier designs using resource sharing in order to have minimum area cost. Experimental results show that our dual-circuit design saves 35% of the logic resources compared to a regular design without resource sharing. The saving in power consumption is 20%, whereas the number of cycles needed remains almost the same.

Publication
In the IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2015)

Related