The Analysis of Clocks in X10 Programs

Nalini Vasudevan!, Olivier Tardieu?, Julian Dolby?, and Stephen A. Edwards’

! Department of Computer Science, Columbia University, New York, USA
{naliniv, sedwards}@cs.columbia.edu
2 IBM Research, New York, USA
{tardieu,dolby}@us.ibm.com

Abstract. Distributed and concurrent programming languages are be-
coming more prevelant with the emergence of new parallel architectures.
Reducing communication and synchronization costs is a major issue in
concurrent languages.

In this paper, we deal with the X10 programming language, a distributed
concurrent language that uses clocks for synchronization. Using these
clocks can be costly because they provide synchronization between mul-
tiple tasks. To partially mitigate this, we use static analysis to determine
properties of each clock that can be used to optimize its implementation.
Experimentally, we find our procedure runs in only a few seconds for
modest-sized programs, making it practical to use as part of a compila-
tion chain.

Keywords: X10, Concurrency, Static Analysis, Synchronization, Clocks, NuSMV

1 Introduction

Concurrent programming constructs need to be designed and implemented care-
fully to keep overheads low. Typical sources include creating threads, commu-
nication, and synchornization. The X10 programming language is a distributed
concurrent language that spawns concurrent tasks. Clocks in X10 synchronize
tasks and resemble barriers. Most clocks are used in some idiomatic way. If
can identify patterns in the behavior of a particular clock, we can fine-tune its
implementation for better performance.

In this paper, we describe a method to classify clocks using static analysis.
We use abstraction techniques to make the system finite. For the kind of patterns
we want to detect, we do not need to analyze all possible interleavings of tasks,
which allows us to use sequential analysis to classify clocks and minimize the
complexity of our analysis low.

Not only does our tool provide input to the code optimizer but it also gives
feedback to the user about the properties of each clock in the program.

2 Related Work
(7]

3 The X10 Programming Language

4 Clocks In X10

Clocks in X10 are generalizations of barriers. A single activity may register on
multiple clocks. Mulitple activities may register on a single clock at many time.
Creation of a clock is an implicit register in the activity. Clocks may be explicitly
passed to activities using the clocked construct. An activity may block on a clock
waiting for activities (that are also clocked on the same clock) to synchronize
by executing next(). It may resume a clock by executing resume(). resume()
indicates the end of thexecution of current phase. When an actvity finishes, all
clocks registered with the activity are implictly deregistered. An activity can
explicitly deregister with a clock by calling drop() on that clock.

clock ¢ = clock.factory.clock()
async (clocked c¢) {

c.next ();
c.next ();
}
async (clocked c} {

c.next ();

c.resume ();

c.next ();
c.next ();

c.drop ();

Fig. 1. Example of Clock in X10

Figure 77 shows an example of an X10 program with clocks. The main ac-
tivity creates a clock ¢ and forks two activites in parallel. Both the activities
are clocked on ¢ and have to synchronize on next(). The main activity is also
registered with ¢ and therefore will also take part in the synchronization. The
activities run in parallel until the next call where they block to synchronize.
During the first phase, all the activities synchronize on next. During the second
phase, one of the spawned activities calls resume, indicating that it has finished
the current phase and goes on with the execution of the rest of the code. The

other two activities do not wait for the resumed activity until the next phase.
Finally, the main activity drops the clock.

Clocks can be referenced like any Java object and can be nested within
asyncs.

5 Obtaining the Intermediate Representation

6 Abstracting X10 Programs

Since we analyze the clock patterns in X10, we abstract away other instructions
that are not relevant to clocks. Also, we abstract away the predicates of con-
ditional statements and assume all branches can be taken at any time. When
we check for properties like protocol violation, we leave open the possiblity that
any path can be taken. Only if all paths in the program satisfy the property, we
generate optimized code. Even if there is one branch in the program that does
not satisfy, then we generate the generalized default implementation. Therefore
our abstraction though not very precise, is safe.

7 Building the Activity Automata

1. ¢ = clock.factory.clock()
2. c.next()

if (n> 1)
3. c.resume ()

else

4. c. next();
c. next();
c.drop ();

S Ot

Fig. 2. Example of an activity in X10

Consider the snippet of code in Figure ??. The activity calls next() first on
¢, followed by resume() or next() depending on the value of n. The number on
the left denote line numbers.

We use NuSMV, a BDD and SAT based model checking tool. Modeling in
NuSMYV involves providing a model and list of properties to check. To provide
a model, we translate the call graph of the activity to NUSMV. The translation
is straightforward.

We create a finite state automaton in NuSMV as shown in Figure 7?7, the
clock is initially in the register state referring to the statement where it was
created. NuSMV uses case statements to model transitions. For e.g.,from the
register instruction, the activity calls next at line 2. From line 2, it can make

init (clock) = register;
next (clock) :=

case
(clock = register) : next_2;

(clock = next-2) : {resume_-3, next_4};
(clock = resume_3) : next_5;

(clock = next_-4) : next_5;

(clock = next_5) : drop_6;

1: clock;

esac;

DEFINE clock_next = clock in {next_-2, next_4, next_5}
DEFINE clock_resume = clock in {resume_3}

Fig. 3. Modeling in NuSMV

non-deterministic choices to go to either resume at line 3 or next at line 4. The
last case statement is the default condition, where it stays in the same place.

Also we provide DEFINE statements. For e.g, clock_next refers to all state-
ments in the activity that call next on that clock.

We build this automaton for every clock in the program, independently of
other clocks. We provide one sub-automaton for every function body in the
program. Whenever there is a function call, there is a jump to the entry of
corresponding sub-automaton of the function and back to the caller automaton
from the function’s exit.

8 Building the State Automaton

We also need to keep track of the state of the activity with respect to a particular
clock. Figure ?7?. Initially, before the clock is defined, the activity is in the
inactive state. Now looking at the case statements, when the activity registers
on the clock, the state changes from inactive to active. When the state is active
and and the activity drops the clock, the state changes to inactive. When the
state is active, and the activity calls resume, the state changes to resumed. From
the resumed state, it moves to active, when the activity callsnext.

The clock protocol does not allow the an activity to call resume twice con-
secutively. Suppose, the activity is in the resumed state, but calls resume, then
it moves to the resume_exception state. Similarly, if an activity tries to call next
on a clock after dropping the clock, then it moves to the next_exception state.

We build a separate state automaton for every clock in the program inde-
pendently of each other.

init (state) = inactive;
next (state) :=

case
(state = inactive) & (clock_register) : active;
(state = active) & (clock_drop) : inactive;
(state = active) & (clock_resume): resumed;
(state = resumed) & (clock_next): active;

— Exception cases

(state = resumed) & (clock_resume):
resume_exception;
(state = inactive) & (clock_next) : next_exception;

Fig. 4. State Automaton in NuSMV

9 Checking For Properties

We need to provide NuSMV with the properties or specifications that we need
to check.

Suppose we want to check if a set of clock operations do not violate the clock
protocol is exception free. We combine all exceptions such as drop_ezception,
nexl_exception etc into one state_exception:

DEFINE state_exception = state in {drop_exception, next_exception, .}
Specifications can be expressed in Temporal Logic in NuSMV.
SPEC AG(™ (state_exception))

The above specification checks for the freedom of exceptions. If all paths in the
program, globally, are exception free, then the above expression returns true.
Similarly we could check for the absence of resume as follows:

SPEC AG(™ (clock_resume))

10 Combining with Aliasing Analysis

Figure 77 shows an example of aliasing of Clocks in X10. Two clocks ¢! and c2
are created. x can be either ¢! or ¢2 depending on the value of n.

We can abstract the above snippet of code to Figure ??7. The problem
with this kind of abstraction is that it increases the complexity exponentially
with nested clocks. Applications that follow this behavior include data-flow al-
gorithms.

We therefore reduce the complexity with some loss of precision by abstracting
it in a different way as shown in Figure 7?. We branch each clock instruction
independently of the other therefore making the expansion polynomial. By doing

clock . factory.clock ();
clock . factory.clock ();

final clock cl
final clock c¢2

final clock x = (n > 1)7 cl; c2;
x.resume ();
x.next ();

Fig. 5. Aliasing of Clocks in X10

final clock ¢l = clock.factory.clock ();
final clock ¢2 = clock.factory.clock ();

if(5) {
c.resume ();
c.next ();

} else {
d.resume ();
d.next ();

}

Fig. 6. Abstracting aliases

this, we are only adding extra paths in the program, still making our tool safe,
because of over-approximation of the system.

Also, wala’s pointer analysis gives an over approximation of possible values
for every variable used in each instruction, therefore giving us the feasibility to
easily adopt the second abstraction.

11 Results

We ran our static analyzer on various X10 programs on a 3GHz Pentium 4
machine with 1GB RAM.

12 The Code Optimizer

The result of the static analyzer is fed as as input to the code optimizer. The code
optimizer has a plugin that switches between different implementations based
on the input. We provide a different clock implementation for each pattern of
clock. Example of pattern based implementations include protocol-violation-free
implementation, no resume implementation etc. . The code optimizer uses line
and column number of definition of clock in the source code provided by the
static analyzer to switch between implementations.

final clock cl
final clock c¢2

if(5) {
c.resume ();

} else {
c.next ();

}

if (x) {
d.resume ();

} else {
d.next ();

}

clock . factory.clock ();
clock . factory.clock ();

Fig. 7. Abstracting aliases in a less complex manner

Example Lines of Code|No. of Clocks Result Analysis Time
Game of Life Algorithm 55 1 EF,NR 5.8
All Reduction Barrier 65 1 EF,NR 21.4
Sequence Alignment (Edmiston) 205 2 Clock 1: EF,NR Clock 2: EF,NR 20.0
LU Factorization 210 1 EF,NR 9.9
Java Grande Benchmark Suite 930 1 EF,NR 27.6

Table 1. Experimental Results. EF: Exception Free, NR: No Resume

13 Conclusion and Future Work

We have presented a static analysis technique for clocks in the X10 programming

language.

References

