
 1

Abstract: Transactions and recoverable memories are pow-
erful mechanisms for handling failures and manipulating
persistent data. Unfortunately, standard recoverable memo-
ries incur an overhead of several milliseconds per transac-
tion. This paper presents a system that improves transaction
overhead by a factor of 2000 for working sets that fit in
main memory. Of this factor of 2000, a factor of 20 is due to
the Rio file cache, which absorbs synchronous writes to disk
without losing data during system crashes. The remaining
factor of 100 is due to Vista, a 720-line, recoverable-mem-
ory library tailored for Rio. Vista lowers transaction over-
head to 5µsec by using no redo log, no system calls, and
only one memory-to-memory copy. This drastic reduction
in overhead leads to a overall speedup of 150-556x for
benchmarks based on TPC-B and TPC-C.

1. Introduction
Any application that modifies a file takes a risk—a

crash during a series of updates can irreparably damage per-
manent data. Grouping a series of updates into anatomic
transaction addresses this problem by ensuring that either
all the updates are applied, or none are [Gray93].

Transactions are acclaimed widely as a powerful
mechanism for handling failures. Transactions simplify pro-
gramming by restricting the variety of states in which a
crash can leave a system. Recoverable memory provides
atomic updates and persistence for a region of virtual mem-
ory [Satyanarayanan93]. Recoverable memory allows pro-
grams to manipulate permanent data structures safely in
their native, in-memory form—programs need not convert
between persistent and non-persistent formats
[Atkinson83].

Unfortunately, while transactions are useful in both
kernel and application programming, their high overhead
prevents them from being used ubiquitously to manipulate

all persistent data. Committing a transaction has tradition-
ally required at least one synchronous disk I/O. This sev-
eral-millisecond overhead has persuaded most systems to
give up the precise failure semantics of transactions in favor
of faster but less-precise behavior. For example, many file
systems can lose up to 30 seconds of recently committed
data after a crash and depend on ad-hoc mechanisms such as
ordered writes and consistency checks to maintain file sys-
tem integrity.

The main contribution of this paper is to present a sys-
tem that reduces transaction overhead by a factor of 2000.
We believe the resulting 5µsec overhead makes transactions
cheap enough that applications and kernels can use them to
manipulate all persistent data. Two components, Rio and
Vista, combine to enable this remarkable speedup.

The Rio file cache is an area of main memory that sur-
vives operating system crashes [Chen96]. Combined with
an uninterruptible power supply, Rio provides persistent
memory to applications that can be used as a safe, in-mem-
ory buffer for file system data. Existing recoverable-mem-
ory libraries such as RVM [Satyanarayanan93] can run
unchanged on Rio and gain a 20-fold increase in perfor-
mance.

Vista is a user-level, recoverable-memory library tai-
lored to run on Rio. Because Vista assumes its memory is
persistent, its logging and recovery mechanisms are fast and
simple. The code for Vista totals 720 lines of C, including
the basic transaction routines, recovery code, and persistent
heap management. Vista achieves a 100-fold speedup over
existing recoverable-memory libraries, even when both run
on Rio. We expect Vista performance to scale well with
faster computers because its transactions use no disk I/Os,
no system calls, and only one memory-to-memory copy—
factors that have been identified repeatedly as bottlenecks to
scaling [Ousterhout90, Anderson91, Rosenblum95].

2. Related Work
Out of the vast literature on transaction processing,

Vista is related most closely to RVM and a number of per-
sistent stores.

RVM is an important, widely referenced, user-level
library that provides recoverable memory
[Satyanarayanan93]. RVM provides a simple, lightweight
layer that handles atomicity and persistence. To keep the
library simple and lightweight, the designers of RVM did
not support other transactional properties, such as serializ-
ability and nesting, arguing that these could be better pro-
vided as independent layers on top of RVM [Lampson83].

Free Transactions with Rio Vista

David E. Lowell and Peter M. Chen

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

University of Michigan
{dlowell,pmchen}@eecs.umich.edu

http://www.eecs.umich.edu/Rio

This research was supported in part by NSF grant
MIP-9521386, Digital Equipment Corporation, and the
University of Michigan. Peter Chen was also supported by
an NSF CAREER and Research Initiation Award (MIP-
9624869 and MIP-9409229).

16th ACM Symposium on Operating Systems Principles, October 1997

 2

Figure 1 shows the steps involved in a simple RVM
transaction. After declaring the beginning of the transaction,
the program notifies RVM of the range of memory the trans-
action may update. RVM copies this range to an in-memory
region called the undo log. The program then writes to
memory using normal store instructions. If the transaction
commits, RVM reclaims the space in the undo log and syn-
chronously writes the updated data to an on-disk region
called the redo log. If the user aborts the transaction, the
undo log is used to quickly reverse the changes to the in-
memory copy of the database. After many transactions com-
mit and the redo log fills up, RVM truncates the log by prop-
agating new data to the database on disk and reclaiming
space in the redo log. After a process or system crash, RVM
recovers by replaying committed transactions from the redo
log to the database.

In addition to providing atomicity and durability, writ-
ing data to the redo log accelerates commit, because writing
sequentially to the redo log is faster than writing to scattered
locations in the database. Writing to the redo log in this
manner is known as ano-force policy, because dirty data-
base pages need not be forced synchronously to disk for
every transaction [Haerder83]. This policy is used by nearly
all transaction systems.

Note from Figure 1 that RVM performs up to three
copy operations for each transaction. RVM performs two
copies during the transaction: one to an in-memory undo log
and one to an on-disk redo log. Log truncation adds at least
one additional copy for each modified datum in the log.

Persistent stores such as IBM 801 Storage [Chang88]
and ObjectStore [Lamb91] provide a single-level storage
interface to permanent data [Bensoussan72]. Like RVM,
most persistent stores write data to a redo log to avoid forc-
ing pages to the database for each transaction.

RVM and persistent stores build and maintain an
application’s address space differently. RVMcopies the

database into the application’s address space usingread
and maintains it usingread andwrite . In contrast, per-
sistent storesmap the database into the application’s address
space and depend on the VM system to trigger data move-
ment. We discuss the implications of these two choices in
Section 3.

Vista differs from current recoverable memories and
persistent stores in that Vista is tailored for the reliable
memory provided by Rio. Tailoring Vista for Rio allows
Vista to eliminate the redo log and its accompanying two
copy operations per transaction. Vista also eliminates
expensive system calls such asfsync andmsync , which
other systems must use to flush data to disk.

Having placed our work in context, we next describe
the two systems that combine to reduce transaction over-
head.

3. The Rio File Cache
Like most file caches, Rio buffers file data in main

memory to accelerate future accesses. Rio seeks to protect
this area of memory from its two common modes of failure:
power loss and system crashes [Chen96]. While systems
can protect against power loss in a straightforward manner
(by using a $100 UPS, for example [APC96]), software
errors are trickier. Rio uses virtual memory protection to
prevent operating system errors such as wild stores from
corrupting the file cache during a system crash. This protec-
tion does not significantly affect performance. After a crash,
Rio writes the file cache data in memory to disk, a process
calledwarm reboot.

To verify Rio’s reliability against software crashes,
Chen et al. crashed the operating system several thousand
times using a wide variety of randomly chosen program-
ming bugs. Their results showed that Rio is even more reli-
able than a file system that writes data immediately through
to disk. To further establish Rio’s ability to make memory as
safe as disk, the Rio team has been storing their home direc-

memory

database redo

CPU

transaction
writes log truncationbegin

transaction
end

memory

database redo

CPU

memory

database redo

CPU

log log log

memory

database redo

CPU

log

. . .

undo log

Figure 1: Operations in a Typical Recoverable Memory System. Recoverable memory systems perform up to three copies
for each transaction. They first copy the before-image to an in-memory region called the undo log, which is used to support
user-initiated aborts. When the transaction commits, they reclaim the space in the undo log and synchronously write the
updated data to an on-disk region called the redo log. After many transactions commit and the redo log fills up, they truncate
the log by propagating new data to the database on disk and reclaiming space in the redo log.

 3

tories, source trees, and mail on Rio for a year with no loss
of data.

Rio improves both performance and reliability over
current systems. Under normal operation, Rio improves per-
formance by obviating the need for synchronous I/O and by
using an infinite write-back delay rather than the more com-
mon 0-30 second delay. The longer delay allows more data
to be deleted or overwritten in the file cache, and hence
fewer writes need to be propagated to disk. When the sys-
tem crashes, Rio improves reliability by preserving data
waiting to be written to disk.

There are two main ways systems can use the reliable
memory Rio provides:write andmmap (Figure 2).

Applications commonly modify data in the file cache
using thewrite system call. This explicit I/O operation
copies data from a user buffer to the file cache. In Rio, each
write also changes twice the protection on the modified
page. To guarantee immediate permanence, applications
running on non-Rio systems must usefsync or other syn-
chronous I/O to force new data to disk, or they must bypass
the file cache and write directly to the raw disk. On Rio, the
data being written is permanent as soon as it is copied into
the file cache.

In contrast towrite , mmap maps a portion of the file
cache directly into the application’s address space. Once
this mapping is established, applications can use store
instructions to manipulate the file cache data directly; no
copying is needed. Applications usingmmap on non-Rio
systems must usemsync to ensure that newly written data
is stored on disk. On Rio, however, data from each individ-
ual store instruction is persistent immediately; nomsync is
needed. This allows each store instruction to be its own

atomic, durable transaction, a capability that is feasible only
with some form of reliable memory. Vista builds on this
layer to group several memory operations into a single,
durable, atomic action.

Each method of modifying the file cache has advan-
tages and disadvantages.mmap has significantly lower over-
heads, especially on Rio. Stores to a mapped region incur no
system calls, while writes require one system call. In addi-
tion, write requires an extra memory-to-memory copy,
which can lead to keeping each datum in memory twice.

The main advantage ofwrite is that it may isolate
the file cache from application errors. The protection mech-
anism in Rio focuses only on kernel errors. Users are still
responsible for their own errors and can corrupt their file
data through erroneouswrite calls or store instructions.
Because store instructions are much more common than
calls to write , applications may damage the file cache
more easily usingmmap [GM92]. While other systems,
such as Mach’s Unix server [Golub90], have mapped files
into the application address space, we are aware of only two
papers that quantify the increased risk [Chen96, Ng97].
Both papers indicate that (1) the risk of corruption increases
only marginally when mapping persistent data into the
address space and (2) memory protection can be used to fur-
ther reduce this risk to below that of using awrite inter-
face. The first study was done on the Rio file cache and is
discussed earlier in this section. The second study compares
the reliability ofmmap andwrite in the Postgres database
and finds little difference. Users can enhance reliability by
applying virtual memory techniques to their address space
[Sullivan91, Chen96]. They can also use transactions to
reduce the risk of corrupting permanent data structures in
the event of a crash.

4. The Vista Recoverable Memory
The Rio file cache automatically intercepts writes that

would otherwise need to be propagated synchronously to
disk. For example, when RVM runs on Rio, writes to the
redo log and database are not forced further than the file
cache. Short-circuiting synchronous writes in this manner
accelerates RVM by a factor of 20. However, it is possible to
improve performance by another factor of 100 by tailoring a
recoverable-memory library for Rio.

Vista is just such a recoverable-memory library. While
Rio accelerates existing recoverable memories by speeding
up disk operations, Vista can eliminate some operations
entirely. In particular, Vista eliminates the redo log, two of
the three copies in Figure 1, and all system calls. As a result,
Vista runs 100 times as fast as existing recoverable memo-
ries, even when both run on Rio. Because Vista is light-
weight (5µsec overhead for small transactions) and simple
(720 lines of code), it is an ideal building block for higher
layers. Like RVM, Vista provides only the basic transaction
features of atomicity and persistence; features such as con-
currency control, nested transactions, and distribution can
be built above Vista. Also like RVM, Vista is targeted for
applications whose working set fits in main memory.

Figure 3 shows the basic operation of Vista. After call-
ing vista_init andvista_map to map the database
into the address space, applications start a transaction with

disk

file cache

write mmap

I/O

Figure 2: Using the Rio File Cache. Applications may
modify persistent data in the Rio file cache in two ways:
write andmmap. Most applications usewrite , which
copies data from an application buffer to the file cache.
mmap maps a portion of the file cache directly into the
application’s address space. Once this mapping is
established, applications may use store instructions to
manipulate file cache data directly; no copying is needed.

application memory

CPU

 4

vista_begin_transaction . As with RVM, applica-
tions call vista_set_range to declare which area of
memory a transaction will modify. We insert these calls by
hand, but they could also be inserted by a compiler
[OToole93]. Vista also has an option to automatically gener-
ate the range of modifications on a page granularity by
using the virtual memory system [Lamb91]; however this is
much slower than callingvista_set_range explicitly.
Vista saves a before-image of the data to be modified in an
undo log. Like the main database, the undo log resides in
mapped persistent memory provided by Rio.

After invoking vista_set_range one or more
times, the transaction modifies the database by storing
directly to its mapped image. Because of Rio, each of these
stores is persistent. The transaction commits by calling
vista_end_transaction . This function simply dis-
cards the undo log for the transaction. The transaction may
abort by calling vista_abort_transaction . This
function copies the original data from the undo log back to
the mapped database.

Rio and Vista cooperate to recover data after a system
crash. During reboot, Rio writes the contents of the file
cache back to disk, including data from any Vista segments
that were mapped at the time of the crash. Each time a Vista
segment is mapped, Vista inspects the segment and deter-
mines if it contains uncommitted transactions. Vista rolls
back the changes from these uncommitted transactions in
the same manner as user-initiated aborts. Recovery is idem-
potent, so if the system fails during recovery, Vista needs
only to replay the undo log again.

Designing a transaction library with Rio’s persistent
memory in mind yields an extremely simple system. Vista

totals only 720 lines (not including comments), including
the recovery code, begin/end/abort transaction, two versions
of vista_set_range (explicit calls and VM-generated),
and the persistent memory allocator described below. Sev-
eral factors contribute to Vista’s simplicity:
• All modifications to the mapped space provided by Rio

are persistent. This enables Vista to eliminate the redo
log and log truncation. Satyanarayanan, et al. report that
the log truncation was the most difficult part of RVM to
implement, so eliminating the redo log reduces com-
plexity significantly [Satyanarayanan93].

• Recovery is simplified considerably without a redo log
[Haerder83]. Checkpointing and recovery code are often
extremely complex parts of transaction systems. In con-
trast, Vista does not need to checkpoint, and its recovery
code is fewer than 20 lines.

• High-performance transaction-processing systems use
optimizations such as group commit to amortize disk
I/Os across multiple transactions. Vista issues no disk
I/Os and hence does not need these optimizations and
their accompanying complexity.

• Like RVM, Vista handles only the basic transaction fea-
tures of atomicity and persistence. We believe features
such as serializability are better handled by higher levels
of software. We considered and rejected locking the
entire database to serialize all transactions. While Vista’s
fast response times (5µsec overhead for small transac-
tions) makes this practical, adopting any concurrency
control scheme would penalize the majority of applica-
tions, which are single-threaded and do not need lock-
ing.

transaction
writesbegin

transaction
end

Figure 3: Operations in Vista. Vista’s operation is tailored for Rio. The database is demand-paged into the file cache and
mapped into the application’s address space. At the start of a transaction, Vista logs the original image of the data to an undo
log, which is kept in the persistent memory provided by Rio. During the transaction, the application makes changes directly to
the persistent, in-memory database. At the end of the transaction, Vista simply discards the undo log.

file cache

application memory

databaseundo
log

CPU

file cache

application memory

databaseundo
log

CPU

 5

Vista provides a general-purpose memory allocator
that applications can use to dynamically allocate persistent
memory. vista_malloc and vista_free can be
invoked during a transaction and are automatically undone
if the transaction aborts. Vista enables this feature by logi-
cally loggingvista_malloc andvista_free calls. If
a transaction commits, all memory that was freed in the
transaction is returned to the heap. Similarly, if the transac-
tion aborts, all memory that was allocated during the trans-
action is returned to the heap. As a result, aborted
transactions leave the heap unchanged. Vista uses the persis-
tent heap internally to store undo records for transactions.

Persistent heaps provide functionality similar to tradi-
tional file systems but have some unique advantages and
disadvantages. Persistent heaps may be more flexible than
file systems, because programs can manipulate permanent
data structures in their native form—programs need not
convert between persistent and non-persistent formats
[Atkinson83]. For example, programs can store native mem-
ory pointers in the persistent heap, as long as the system
maps the heap in a fixed location.

With the increased flexibility of heaps comes increased
danger, however. Whereas metadata of a file system is inac-
cessible to ordinary users, the metadata describing a persis-
tent heap is mapped into the user’s address space. Vista
reduces the risk of inadvertent corruption by mapping each
segment’s metadata into an isolated range of addresses (Fig-
ure 4). This is similar to the technique used in anonymous
RPC [Yarvin93]. Other approaches to protecting the meta-
data could also be used, such as software fault isolation and
virtual memory protection [Wahbe93].

5. Performance Evaluation
Vista’s main goal is to drastically lower the overhead

of atomic, durable transactions. In order to evaluate how

well Vista achieves this goal, we compare the performance
of three systems: Vista, RVM, and RVM-Rio (RVM running
on a Rio file system).

We use RVM (version 1.3) as an example of a standard
recoverable memory. We maximize the performance of
RVM by storing the database and log on two raw disks. This
saves the overhead of going through the file system and pre-
vents the system from wasting file cache space on write-
mostly data. The log size is fixed at 10% of the database
size.

We also run RVM unmodified on a Rio file system
(RVM-Rio) to show how Rio accelerates a standard recover-
able memory. Storing RVM’s log and data on a Rio file sys-
tem accelerates RVM by allowing Rio to short-circuit
RVM’s synchronous writes. However, it causes the system
to duplicate the database in both the file cache and applica-
tion memory.

5.1. Benchmarks
We use three benchmarks to evaluate performance. We

use a synthetic benchmark to quantify the overhead of trans-
actions as a function of transaction size. We also use two
benchmarks based on TPC-B and TPC-C, industry-standard
benchmarks for measuring the performance of transaction-
processing systems.

Each transaction in our synthetic benchmark modifies
data at a random location in a 50 MB database. The size of
the database was chosen to fit in main memory on all three
systems. We vary the amount of data changed by each trans-
action from 8 bytes to 1 MB. We use the synthetic bench-
mark to calculate the overhead per transaction of each
system. Overhead per transaction is defined as the time per
transaction of a given system minus the time per transaction
of a system that does not provide atomic durability. Time
per transaction is the running time divided by the number of
transactions.

TPC-B processes banking transactions [TPC90]. The
database consists of a number of branches, tellers, and
accounts. The accounts comprise over 99% of the database.
Each transaction updates the balance in a random account
and the balances in the corresponding branch and teller.
Each transaction also appends a history record to an audit
trail. Our variant of TPC-B, which we calldebit-credit, fol-
lows TPC-B closely. We differ primarily by storing the audit
trail in a 2 MB, circular buffer. We limit the size of the audit
trail to 2 MB to keep it in memory and better match our tar-
get applications.

TPC-C models the activities of a wholesale supplier
who receives orders, payments, and deliveries for items
[TPC96]. The database consists of a number of warehouses,
districts, customers, orders, and items. Our variant of the
benchmark, which we callorder-entry, uses three of the
five transaction types specified in TPC-C: new-order, pay-
ment, and delivery. We do not implement the order-status
and stock-level transactions, as these do not update any data
and account for only 8% of the transactions. Order-entry
issues transactions differently from TPC-C. In TPC-C, a
number of concurrent users issue transactions at a given
rate. In contrast, order-entry issues transactions serially as
fast as possible. Order-entry also does no terminal I/O, as

heap management

undo records for
main database

undo records for
heap operations

persistent heap

Figure 4: Memory Allocation in Vista. Metadata such as
free lists and undo records are vulnerable to corruption
because they are mapped into the application’s address
space. Vista reduces the risk of inadvertently corrupting
this data by separating it from the user data.

not
addressable

metadata

user data

 6

we would like to isolate the performance of the underlying
transaction system.

For all graphs, we run each benchmark five times, dis-
card the best and worst runs, and present the average of the
remaining three runs. The standard deviation of these runs is
generally less than 1% of the mean. We run each benchmark
long enough to reach steady state; hence RVM and RVM-
Rio results include truncation costs.

5.2. Environment
All experiments use a 175 MHz DEC 3000/600 Alpha

workstation with 256 MB of memory. We use Digital Unix
V3.0 modified to include the Rio file cache.

The workstation has three data disks (Table 1). RVM
and RVM-Rio use ST31200N to page out the database when
it overflows memory. This disk is attached via a separate
SCSI bus from ST15150N and ST12550N. RVM and RVM-
Rio use ST15150N to store the redo log and ST12550N to
store the database. Vista uses ST15150N to store the data-
base.

5.3. Results
The graphs in Figure 5 compare the performance of

Vista, RVM-Rio, and RVM on our three benchmarks. The
synthetic benchmark measures transaction overhead as a
function of transaction size, so lower values are better.
Debit-credit and order-entry measure transaction through-
put, so higher values are better. Note that all y-axes use log
scales.

Results for the synthetic benchmark show that Vista
incurs only 5µsec of overhead for small transactions. This
overhead represents the cost of beginning the transaction,
saving the old data with a singlevista_set_range , and
committing the transaction. For transactions larger than 1
KB, overhead scales roughly linearly with transaction size
at a rate of 17.9µsec/KB. The increasing overhead for

larger transactions is due to the need to copy more data to
the undo log. Each transaction in RVM-Rio incurs a mini-
mum overhead of 500µsec. The higher overhead comes
from thewrite and fsync system calls, copying to the
redo log, and log truncation. Without Rio, RVM incurs one
synchronous disk I/O to the redo log per transaction, as well
as some portion of an I/O per transaction during log trunca-
tion. This results in an overhead of 10 ms for the smallest
transaction.

Debit-credit and order-entry show results similar to the
synthetic benchmarks when the database fits in memory. For
debit-credit, Vista improves performance by a factor of 41
over RVM-Rio and 556 over RVM. For order-entry, Vista
improves performance by a factor of 14 over RVM-Rio and
150 over RVM. These speedups are smaller than the
improvement shown in the synthetic workload because the
body of the debit-credit and order-entry transactions have
larger fixed overheads than synthetic, and because they
issue severalvista_set_range calls per transaction.

RVM and Vista both begin thrashing once the database
is larger than available memory (roughly 200 MB). Note
that RVM-Rio begins thrashing at half the database size of
RVM and Vista due todouble buffering. Double buffering
results from frequent writes to the database file, effectively
copying the database into the file cache. The result is two
copies of the database: one in the process’s address space
and another in the Rio file cache.

Most transaction processing systems amortize the redo
log I/O across multiple concurrent transactions, a technique
known asgroup commit [DeWitt84]. Systems that perform
this optimization wait for a number of committing transac-
tions to accumulate, then synchronously write to disk all
commit records for this group in one I/O. We implement a
simple form of group commit in RVM to measure how
much it improves performance. Figure 6 shows the perfor-
mance of RVM when 1, 8, or 64 transactions are grouped
together to share a single write to the redo log. While group
commit does improve performance, it suffers from several
problems. First, it does not improve response time; waiting
for a group of transactions to accumulate lengthens the
response time of an individual transaction. Second, through-
put for large transactions can be limited by the speed of
writing to the redo log. Third, group commit works only if
there are many concurrent transactions. Single-threaded
applications with dependent transactions cannot use group
commit because earlier transactions are delayed; these
applications need the fast response times provided by Vista.

The performance improvements we have demonstrated
can be broken into two components. As we expected, Rio
improves performance for RVM by a factor of 11-20 by
absorbing all synchronous disk writes. The biggest surprise
from our measurements was how much Vista improved per-
formance over RVM-Rio (a factor of 14-100). Once Rio
removes disk writes, factors such as system calls, copies,
and manipulating the redo log comprise a large fraction of
the remaining overhead in a transaction. Vista does away
with the redo log, all system calls, and all but one of these
copies. The performance improvement resulting from the

Table 1: Disk Parameters.

Seagate ST31200N

spindle speed 5411 RPM

average seek 10 ms

transfer rate 3.3-5.9 MB/s

Seagate ST15150N

spindle speed 7200 RPM

average seek 9 ms

transfer rate 5.9-9.0 MB/s

Seagate ST12550N

spindle speed 7200 RPM

average seek 9 ms

transfer rate 4.3-7.1 MB/s

 7

Figure 5: Performance of Vista, RVM-Rio, and RVM. This figure shows the performance of three recoverable memories
on three benchmarks. Figure 5a shows the overhead per transaction for a synthetic, 50 MB database. For small transactions,
Vista improves performance by a factor of 100 over RVM-Rio and a factor of 2000 over RVM. Figures 5b and 5c show the
throughput for debit-credit and order-entry. Vista improves performance by a factor of 14-41 over RVM-Rio and 150-556
over RVM.

(a) synthetic (overhead)

0 100 200 300
Database Size (MB)

10

100

1,000

10,000

100,000

T
ra

ns
ac

tio
ns

/S
ec

on
d

Vista

RVM-Rio

RVM

(b) debit-credit (c) order-entry

100 101 102 103 104 105 106

Transaction Size (bytes)

100

101

102

103

104

105

106

T
ra

ns
ac

tio
n

O
ve

rh
ea

d
(

µs
ec

)

Vista

RVM

0 100 200 300
Database Size (MB)

10

100

1,000

10,000

100,000

T
ra

ns
ac

tio
ns

/S
ec

on
d

Vista

RVM-Rio

RVM

RVM-Rio

 8

Figure 6: RVM Group Commit Performance. Group commit improves throughput by amortizing the synchronous write to
the redo log over multiple transactions (the group commit size). However, group commit only improves throughput; response
time for individual transactions actually gets slightly worse. Also, group commit works only if there are many concurrent
transactions. Single-threaded applications with dependent transactions cannot use group commit because earlier transactions
are delayed; these applications require fast response times. Vista’s performance is shown for reference.

(b) debit-credit (c) order-entry

(a) synthetic (overhead)

RVM-group size 64

RVM-group size 8

RVM

RVM-group size 64

RVM-group size 8

RVM

100 101 102 103 104 105 106

Transaction Size (bytes)

100

101

102

103

104

105

106

T
ra

ns
ac

tio
n

O
ve

rh
ea

d
(

µs
ec

)

Vista

0 100 200 300

Database Size (MB)

10

100

1,000

10,000

100,000

T
ra

ns
ac

tio
ns

/S
ec

on
d

RVM-group size 64

RVM-group size 8

RVM

Vista

0 100 200 300

Database Size (MB)

10

100

1,000

10,000

100,000

T
ra

ns
ac

tio
ns

/S
ec

on
d

Vista

 9

simplicity of Vista—Vista is less than 1/10 the size of
RVM—is hard to quantify but is probably also significant.

Current architectural trends indicate that the perfor-
mance advantage of Vista will continue to increase. RVM-
Rio is slower than Vista because of the extra copies and sys-
tem calls, while RVM is slower than Vista primarily because
of synchronous disk I/Os. Many studies indicate that mem-
ory-to-memory copies, system calls, and disk I/Os will scale
more slowly than clock speed [Ousterhout90, Anderson91,
Rosenblum95].

6. Uses for Vista
Rio and Vista provide a very useful set of services:

free persistent memory and nearly free transactions. The
minimal 5 µsec overhead of a Vista transaction is small
enough that it can be used even for fine-grained tasks such
as swapping two pointers atomically—tasks for which disk
I/Os are too expensive. We are exploring a number of ways
to take advantage of Vista’s fast persistence and atomicity:
• Participants in two-phase commit [Gray78] can store

commit records in Vista rather than on disk to accelerate
an important technique for reliable, distributed comput-
ing.

• Fault-tolerant applications can buffer network messages
in Vista, then atomically send these message as part of a
local transaction. Once the transaction commits, these
messages will be delivered even if the system crashes.

• Software that uses a token-passing protocol can store the
token in Vista and pass the token using messages within
local transactions. Such a system would survive system
crashes without losing the token.

• A distributed shared memory can be built on Vista to
provide free persistence and transactions on the distrib-
uted memory.

7. Conclusions
The persistent memory provided by the Rio file cache

is an ideal abstraction on which to build a recoverable mem-
ory. Because stores to Rio are automatically persistent, Vista
can eliminate the standard redo log and its accompanying
overhead, two out of the three copy operations present in
standard recoverable memories, and all system calls. The
resulting system achieves a performance improvement of
three orders of magnitude and a reduction in code size of
one order of magnitude.

Vista’s minimum overhead of 5µsec per transaction is
small enough that it can be used even for fine-grained tasks
such as atomically swapping two pointers. We believe Rio
and Vista have brought transactions into the realm of every-
day computing.1

1. Source code for Vista and all benchmarks used in this
paper are available at http://www.eecs.umich.edu/Rio. Vista
can run on non-Rio systems, however recent changes will be
lost if the operating system crashes.

8. Acknowledgments
We are grateful to Jeff Chase (our shepherd), Jim Gray,

Margo Seltzer, Willy Zwaenepoel, and the SOSP reviewers
for providing timely insights that improved this paper sig-
nificantly.

9. References

[Anderson91] Thomas E. Anderson, Henry M. Levy,
Brian N. Bershad, and Edward D. Lazows-
ka. The Interaction of Architecture and Op-
erating System Design. InProceedings of
the 1991 International Conference on Ar-
chitectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-
IV), pages 108–120, April 1991.

[APC96] The Power Protection Handbook. Technical
report, American Power Conversion, 1996.

[Atkinson83] Malcolm Atkinson, Ken Chisholm, Paul
Cockshott, and Richard Marshall. Algo-
rithms for a Persistent Heap.Software–
Practice and Experience, 13(3):259–271,
March 1983.

[Bensoussan72] A. Bensoussan, C.T. Clingen, and R.C. Da-
ley. The Multics Virtual Memory: Concepts
and Design.Communications of the ACM,
15(5):308–318, May 1972.

[Chang88] Albert Chang and Mark F. Mergen. 801
Storage: Architecture and Programming.
ACM Transactions on Computer Systems,
6(1):28–50, February 1988.

[Chen96] Peter M. Chen, Wee Teck Ng, Subhachan-
dra Chandra, Christopher M. Aycock, Gu-
rushankar Rajamani, and David Lowell. The
Rio File Cache: Surviving Operating Sys-
tem Crashes. InProceedings of the 1996 In-
ternational Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS), pages 74–83,
October 1996.

[DeWitt84] D. J. DeWitt, R. H. Katz, F. Olken, L. D.
Shapiro, M. R. Stonebraker, and D. Wood.
Implementation Techniques for Main Mem-
ory Database Systems. InProceedings of
the 1984 ACM SIGMOD International Con-
ference on Management of Data, pages 1–8,
June 1984.

[GM92] Hector Garcia-Molina and Kenneth Salem.
Main Memory Database Systems: An Over-
view. IEEE Transactions on Knowledge
and Data Engineering, 4(6):509–516, De-
cember 1992.

[Golub90] David Golub, Randall Dean, Allessandro

 10

Forin, and Richard Rashid. Unix as an Ap-
plication Program. InProceedings of the
1990 USENIX Summer Conference, 1990.

[Gray78] J. N. Gray.Operating Systems: An Ad-
vanced Course. Springer-Verlag, 1978.
Notes on Database Operating Systems.

[Gray93] Jim Gray and Andreas Reuter.Transaction
Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, Inc., 1993.

[Haerder83] Theo Haerder and Andreas Reuter. Princi-
ples of Transaction-Oriented Database Re-
covery. ACM Computing Surveys,
15(4):287–317, December 1983.

[Lamb91] Charles Lamb, Gordon Landis, Jack Oren-
stein, and Dan Weinreb. The ObjectStore
Database System.Communications of the
ACM, 34(10):50–63, October 1991.

[Lampson83] Butler W. Lampson. Hints for Computer
System Design. InProceedings of the 1983
Symposium on Operating System Princi-
ples, pages 33–48, 1983.

[Ng97] Wee Teck Ng and Peter M. Chen. Integrat-
ing Reliable Memory in Databases. InPro-
ceedings of the 1997 International
Conference on Very Large Data Bases
(VLDB), August 1997.

[OToole93] James OToole, Scott Nettles, and David
Gifford. Concurrent Compacting Garbage
Collection of a Persistent Heap. InProceed-
ings of the 1993 Symposium on Operating
Systems Principles, pages 161–174, Decem-
ber 1993.

[Ousterhout90] John K. Ousterhout. Why aren’t operating
systems getting faster as fast as hardware?
In Proceedings USENIX Summer Confer-
ence, pages 247–256, June 1990.

[Rosenblum95] Mendel Rosenblum, Edouard Bugnion,
Stephen Alan Herrod, Emmett Witchel, and
Anoop Gupta. The Impact of Architectural
Trends on Operating System Performance.
In Proceedings of the 1995 Symposium on
Operating Systems Principles, pages 285–
298, December 1995.

[Satyanarayanan93] M. Satyanarayanan, Henry H. Mash-
burn, Puneet Kumar, David C. Steere, and
James J. Kistler. Lightweight Recoverable
Virtual Memory. InProceedings of the 1993
Symposium on Operating System Princi-
ples, pages 146–160, December 1993.

[Sullivan91] M. Sullivan and M. Stonebraker. Using

write protected data structures to improve
software fault tolerance in highly available
database management systems. InProceed-
ings of the 1991 International Conference
on Very Large Data Bases (VLDB), pages
171–180, September 1991.

[TPC90] TPC Benchmark B Standard Specification.
Technical report, Transaction Processing
Performance Council, August 1990.

[TPC96] TPC Benchmark C Standard Specification,
Revision 3.2. Technical report, Transaction
Processing Performance Council, August
1996.

[Wahbe93] Robert Wahbe, Steven Lucco, Thomas E.
Anderson, and Susan L. Graham. Efficient
Software-Based Fault Isolation. InProceed-
ings of the 14th ACM Symposium on Oper-
ating Systems Principles, pages 203–216,
December 1993.

[Yarvin93] Curtis Yarvin, Richard Bukowski, and Tho-
mas Anderson. Anonymous RPC: Low La-
tency Protection in a 64-Bit Address Space.
In Proceedings of the Summer 1993 US-
ENIX Conference, 1993.

