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ABSTRACT 1 Introduction

Mosix is a software tool for supporting clustefhis paper describes the Mosix technology for
computing. It consists of kernel-level, adaptivéluster Computing (CC). Mosix [4, 5] is a set
resource sharing algorithms that are geared fdradaptive resource sharing algorithms that are
high performance, overhead-free scalability ageared for performance scalability in a CC of
ease-of-use of a scalable computing cluster. Tény size, where the only shared component is
core of the Mosix technology is the capabilitthe network. The core of the Mosix technology
of multiple workstations and servers (nodes) t®the capability of multiple nodes (workstations
work cooperatively as if part of a single systenand servers, including SMP’s) to work coopera-
The algorithms of Mosix are designed to rdively as if part of a single system.
spond to variations in the resource usage amongdn order to understand what Mosix does, let
the nodes by migrating processes from one nagkecompare a Shared Memory (SMP) multicom-
to another, preemptively and transparently, fputer and a CC. In an SMP system, several pro-
load-balancing and to prevent memory depleessors share the memory. The main advan-
tion at any node. Mosix is scalable and it atages are increased processing volume and fast
tempts to improve the overall performance lgommunication between the processes (via the
dynamic distribution and redistribution of thehared memory). SMP’s can handle many si-
workload and the resources among the nodeswdiltaneously running processes, with efficient
a computing-cluster of any size. Mosix conveesource allocation and sharing. Any time a pro-
niently supports a multi-user time-sharing enveess is started, finished, or changes its computa-
ronment for the execution of both sequential atidnal profile, the system adapt instantaneously
parallel tasks. to the resulting execution environment. The user
So far Mosix was developed 7 times, for difis not involved and in most cases does not even
ferent version of Unix, BSD and most recentlgnow about such activities.
for Linux. This paper describes the 7-th version Unlike SMP’s, Computing Clusters (CC) are
of Mosix, for Linux. made of collections of share-nothing worksta-
tions and (even SMP) servers (nodes), with
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from different generations. Most often, CC'€urrent CC’s lack such capabilities. They rely
are geared for multi-user, time-sharing enviroon user’s controlled static allocation, which is
ments. In CC systems the user is responsiblenconvenient and may lead to significant perfor-
allocate the processes to the nodes and to marance penalties due to load imbalances.

age the cluster resources. In many CC systems\osix is a set of algorithms that support adap-
even though all the nodes run the same operatiiV@ resource sharing in a scalable CC by dy-
system, cooperation between the nodes is rathamic process migration. It can be viewed as a
limited because most of the operating systemisol that takes CC platforms one step closer to-
services are locally confined to each node. Ti@rds SMP environments. By being able to allo-
main software packages for process allocatigate resources globally, and distribute the work-
in CC’s are PVM [8] and MPI [9]. LSF [7] andload dynamically and efficiently, it simplifies
Extreme Linux [10] provide similar servicesthe use of CC’s by relieving the user from the
These packages provide an execution envirdstrden of managing the cluster-wide resources.
ment that requires an adaptation of the appithis is particularly evident in a multi-user, time-
cation and the user’s awareness. They incluslearing environments and in non-uniform CC’s.
tools for initial (fixed) assignment of processes

to nodes, which sometimes use load consider-

ations, while ignoring the availability of other What is M osix

resources, e.g. free memory and I/O overheads.

These packages run at the user level, just ”Kfosix [4, 5] is a tool for a Unix-like ker-

ordlndary afpl)pllcatlpns, ti}ushar(la |ndcapablﬁ 0 rﬁél, such as Linux, consisting of adaptive re-
spond to uctuatg).ns.t()) t eh 0a ?(1 Otd erdr%'ource sharing algorithms. It allows multiple
;\(jglr;:es, or to redistribute the workload a aB_'ni-processors (UP) and SM_P's (nodes) run-
: ning the same kernel to work in close coopera-
In practice, the resource allocation problegipn, The resource sharing algorithms of Mosix
is much more complex because there are majpg designed to respond on-line to variations in
(different) kinds of resources, e.g., CPU, mene resource usage among the nodes. This is
ory, /O, Inter Process Communication (IPChchieved by migrating processes from one node
etc, where each resource is used in a differggtanother, preemptively and transparently, for
manner and in most cases its usage is unpigad-balancing and to prevent thrashing due to
dictable. Further complexity results from thghemory swapping. The goal is to improve the
fact that different users do not coordinate thQ'.bK/era” (duster-wide) performance and to cre-
activities. Thus even if one knows how to opgte a convenient multi-user, time-sharing en-
timize the allocation of resources to processesonment for the execution of both sequen-
the activities of other users are most likely to ifta| and parallel applications. The standard run
terfere with this optimization. time environment of Mosix is a CC, in which
For the user, SMP systems guarantee effie cluster-wide resources are available to each
cient, balanced use of the resources amongde. By disabling the automatic process migra-
all the running processes, regardless of the t@n, the user can switch the configuration into a
source requirements. SMP’s are easy to use p&in CC, or even an MPP (single-user) mode.
cause they employ adaptive resource managefThe current implementation of Mosix is de-
ment, that is completely transparent to the ussigned to run on clusters of X86/Pentium based



workstations, both UP’s and SMP’s that are cotien environment of the UHN. Processes that mi-
nected by standard LANs. Possible configurgrate to other (remote) nodes use local (in the
tions may range from a small cluster of PCieemote node) resources whenever possible, but
that are connected by Ethernet, to a high perfanteract with the user’s environment through the
mance system, with a large number of high-endHN. For example, assume that a user launches
Pentium based SMP servers that are connecsegleral processes, some of which migrate away
by a Gigabit LAN, e.g. Myrinet [6]. from the UHN. If the user executes “ps”, it will
report the status of all the processes, including
processes that are executing on remote nodes. If
2.1 Thetechnology one of the migrated processes reads the current

The Mosix technology consists of two partéi.me’ .. invokeggettimeofday()it will get the

a Preemptive Process Migration (PPM) mecﬁgrrent time "f‘t the UHN'

anism and a set of algorithms for adaptive re- The PPM is the main tool for the resource
source sharing. Both parts are implemented™gnagement algorithms. As long as the require-
the kernel level, using a loadable module, suB#eNts for resources, such as the CPU or main
that the kernel interface remains unmodifief?emory are below certain threshold, the user's
Thus they are completely transparent to the dyocesses are confined to the UHN. When the
plication level. requirements for resources exceed some thresh-

The PPM can migrate any process, at aﬁw levels, then some processes may be migrated
time, to any available node. Usually, migr&p other nodes, to take advantage Qf avallab!e
tions are based on information provided by ogMote resources. The overall goal is to maxi-
of the resource sharing algorithms, but usdf¥Z€ the perfqrmance by efficient utilization of
may override any automatic system-decisiof¥€ network-wide resources.
and migrate their processes manually. Such arhe granularity of the work distribution in
manual migration can either be initiated by tH#0six is the process. Users can run parallel ap-
process synchronously or by an explicit requegications by initiating multiple processes in one
from another process of the same user (or thede, then allow the system to assign these pro-
super-user). Manual process migration can esses to the best available nodes at that time.
useful to implement a particular policy or to tedf during the execution of the processes new
different scheduling algorithms. We note th&esources become available, then the resource
the super-user has additional privileges rega@haring algorithms are designed to utilize these
ing the PPM, such as defining general policigdew resources by possible reassignment of the
as well as which nodes are available for migr@rocesses among the nodes. The ability to as-
tion. sign and reassign processes is particularly im-

Each process has a Unique Home-No@@rtant for “ease-of-use” and to provide an ef-
(UHN) where it was created. Normally thidicient multi-user, time-sharing execution envi-
is the node to which the user has logged-ifPnment.

In PVM this is the node where the task was Mosix has no central control or master-slave
spawned by the PVM daemon. The system imelationship between nodes: each node can op-
age model of Mosix is a CC, in which evergrate as an autonomous system, and it makes
process seems to run at its UHN, and all tladl its control decisions independently. This
processes of a users’ session share the exafesign allows a dynamic configuration, where



nodes may join or leave the network with mirping out of processes [2]. The algorithm is trig-
imal disruptions. Algorithms for scalability engered when a node starts excessive paging due
sure that the system runs well on large configie shortage of free memory. In this case the al-
rations as it does on small configurations. Scaerithm overrides the load-balancing algorithm
ability is achieved by incorporating randomnessd attempts to migrate a process to a node
in the system control algorithms, where eacathich has sufficient free memory, even if this
node bases its decisions on partial knowledgegration would result in an uneven load distri-
about the state of the other nodes, and does hotion.

even attempt to determine the overall state of the

cluster or any particular node. For example, in

the probabilistic information dissemination al3  Process migr ation
gorithm [4], each node sends, at regular inter-

vals, information about its available resourcgg. i, supports preemptive (completely trans-

to a randomly chosen subset of other nOdes'ﬁ&rent) process migration (PPM). After a migra-

th‘e same tme it malntalps a small W'ndow-tion, a process continues to interact with its en-
with the most recently arrived information. Th'@ironment regardless of its location. To imple-

scheme supports scaling, even information difent the PPM, the migrating process is divided
semination and dynamic configurations. into two contexts: the user context — that can be
migrated, and the system context — that is UHN
dependent, and may not be migrated.

The user context, called themote contains
The main resource sharing algorithms of Mostke program code, stack, data, memory-maps
are the load-balancing and the memory ushid registers of the process. Titeenoteencap-
ering. The dynamic load-balancing algorithraulates the process when it is running in the user
continuously attempts to reduce the load diffdevel. The system context, called tleputy
ences between pairs of nodes, by migrating pientains description of the resources which the
cesses from higher loaded to less loaded noda®cess is attached to, and a kernel-stack for the
This scheme is decentralized — all the nodes @xecution of system code on behalf of the pro-
ecute the same algorithms, and the reductionagfss. Theleputyencapsulates the process when
the load differences is performed independenttyis running in the kernel. It holds the site-
by pairs of nodes. The number of processailependent part of the system context of the pro-
at each node and their speed are important faess, hence it must remain in the UHN of the
tors for the load-balancing algorithm. This alrocess. While the process can migrate many
gorithm responds to changes in the loads of thmes between different nodes, thieputyis
nodes or the runtime characteristics of the proever migrated.
cesses. It prevails as long as there is no extrem&he interface between the user-context and
shortage of other resources, e.g., free memontioe¢ system context is well defined. Therefore
empty process slots. it is possible to intercept every interaction be-

The memory ushering (depletion preventiomyeen these contexts, and forward this interac-
algorithm is geared to place the maximal nuntien across the network. This is implemented
ber of processes in the cluster-wide RAM, tat the link layer, with a special communication
avoid as much as possible thrashing or the swapannel for interaction. Figure 1 shows two

2.2 Theresourcesharingalgorithms
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Figure 1: A local process and a migrated process

processes that share a UHN. In the figure, tfais location requirement is met by the commu-
left process is a regular Linux process while threcation channel between them. In a typical sce-
right process is split, with itsemotepart mi- nario, the kernel at the UHN informs thieputy
grated to another node. of the event. Thealeputychecks whether any

for establishing a new process frame in the nd@mote The remotemonitors the communica-

(remote) site, and a linear component, propdien channel for reports of asynchronous events,
tional to the number of memory pages to H&9- Signals, just before resuming user-level ex-
transfered. To minimize the migration overhea@Cution. We note that this approach is robust,

only the page tables and the process’ dirty pag¥¥d IS not affected even by major modifications
are transferred. of the kernel. It relies on almost no machine de-

pendent features of the kernel, and thus does not

'T‘ the execution OT a process in Mosix, I.Oﬁinder porting to different architectures.
cation transparency is achieved by forwarding

site dependent system calls to ttheputyat the

UHN. System calls are a synchronous form of one drawback of theleputyapproach is the

interaction between the two process contexsqra overhead in the execution of system calls.
All system calls that are executed by the procegggitional overhead is incurred on file and net-

are intercepted by the remote site’s link layer. {fork access operations. For example, all net-
the system call is site independent it is execut@rk links (sockets) are created in the UHN,
by theremotelocally (at the remote site). Otheryyys imposing communication overhead if the
wise, the system call is forwarded to Wleputy processes migrate away from the UHN. To over-
which executes the system call on behalf of thgme this problem we are developing “migrat-
process in the UHN. Theeputyreturns the re- 416 sockets”, which will move with the process,
sult(s) back to the remote site, which then cognq thus allow a direct link between migrated
tinues to execute the user’s code. processes. Currently, this overhead can signifi-
Other forms of interaction between the twoantly be reduced by initial distribution of com-
process contexts are signal delivery and pnmrunicating processes to different nodes, e.g. us-
cess wakeup events, e.g. when network dataiag PVM/MPI. Should the system become im-
rives. These events require that theputyasyn- balanced, the Mosix algorithms will reassign the
chronously locate and interact with themote processes to improve the performance [3].



4 Theimplementation In many kernel activities, such as the execu-
tion of system calls, it is necessary to transfer

The porting of Mosix for Linux started by a feadata between the user space and the kernel. This

sibility study. We also developed an interactiie normally done by theopy_t o_user (),

kernel debugger, a pre-requisite for any projecbpy _f romuser () kernel primitives. In

of this scope. The debugger is invoked either osix, any kernel memory operation that in-

a user request, or when the kernel crashes. It\alves access to user space, requiresiqauty

lows the developer to examine kernel memoiyy communicate with itsemoteto transfer the

processes, stack contents, etc. It also allowsntecessary data.

trace system calls and processes from within theThe overhead of the communication due to re-
kernel, and even insert break-points in the kernfibte copy operations, which may be repeated
code. several times within a single system call, could
In the main part of the project, we implepe quite substantial, mainly due to the network
mented the code to support the transparent ¢gtency. In order to eliminate excessive re-
eration of split processes, with the user-contaxiote copies, which are very common, we imple-
running on aremote node, supported by themented a special cache that reduces the number
deputy which runs in the UHN. At the sameof required interactions by prefetching as much
time, we wrote the communication layer thatata as possible during the initial system call re-
connects between the two process contexts gju@st, while buffering partial data at thleputy
designed their interaction protocol. The link bee be returned to theemoteat the end of the
tween the two contexts was implemented on tgpstem call.
of a simple, but exclusive TCP/IP connection. Tq prevent the deletion or overriding of

After that, we implemented the process migrgzemory-mapped files (for demand-paging) in
tion mechanism, including migration away fronhe apsence of a memory map, teputyholds

the UHN, back to the UHN and between two rgy special table of such files that are mapped to
mote sites. Then, the information disseminatigRe remotememory. The user registers of mi-
module was ported enabling exchange of Sigrated processes are normally under the respon-
tus information among the nodes. Using thigpjlity of the remotecontext. However, each
facility, the algorithms for process-assessmeaister or combination of registers, may be-
and automatic migration were also ported. F¢ome temporarily owned for manipulation by
nally, we designed and implemented the MosjKe deputy

application programming interface (API) via the Remotdguest) processes are not accessible to

/'proc. the other processes that run at the same node (lo-
cally or originated from other nodes) - and vice
versa. They do not belong to any particular user
(on the remote node, where they run) nor can
The deputyis the representative of themote they be sent signals or otherwise manipulated by
process at the UHN. Since the entire user spdegal processes. Their memory can not be ac-
memory resides at the remote node, tleputy cessed and they can only be forced, by the local
does not hold a memory map of its own. InsteaglyStem administrator, to migrate out.

it shares the main kernel map similarly to a ker- A process may need to perform some Mosix
nel thread. functions while logically stopped or sleeping.

4.1 Deputy / Remote mechanisms



Such processes would run Mosix functions “ioyclically alternate between a combination of
their sleep”, then resume sleeping, unless tbemputation and 1/O.

event they were waiting for has meanwhile oc-

curred. An example is process migration, pos- )

sibly done while the process is sleeping. F&4 TheMosix AP

this purpose, Mosix maintains a logical stat h
describing how other processes should see
process, as opposed to its immediate state.

e Mosix API has been traditionally imple-

Ented via a set of reserved system calls,
that were used to configure, query and operate
Mosix. In line with the Linux convention, we
4.2 Migration constraints modified the API to be interfaced via ther oc

file system. This also prevents possible binary

Certain functions of the Linux kernel are nghcompatibilities of user programs between dif-
compatible with process context division. Som@rent Linux versions.
obvious examples are direct manipulations of The API was implemented by extending the
I/O devices, e.g., direct access to privileged bysnux / proc file system tree with a new di-
/O instructions, or direct access to device meffectory /proc/mosix. The calls to Mosix via
ory. Other examples include writable shargdyr oc include: synchronous and asynchronous
memory and real time scheduling. The last cagfigration requests; locking a process against au-
is not allowed because one can not guarantegjihatic migrations; finding where the process
while migrating, as well as being unfair towardgyrrently runs; finding about migration con-
processes of other nodes. strains; system setup and administration; con-

A process that uses any of the above is autg|ling statistic collection and decay; informa-
matically confined to its UHN. If the process hagon about available resources on all configured

already been migrated, it is first migrated baglodes, and information about remote processes.
to the UHN.

4.3 Information collection 5 Conclusions
Statistics about a process’ behavior are collecteldsix brings the new dimension of scaling to
regularly, such as at every system call and estuster computing with Linux. It allows the
ery time the process accesses user data. Tdusstruction of a high-performance, scalable
information is used to assess whether the p@€ from commodity components, where scal-
cess should be migrated from the UHN. Thesgg does not introduce any performance over-
statistics decay in time, to adjust for processbead. The main advantage of Mosix over other
that change their execution profile. They afeC systems is its ability to respond at run-time
also cleared completely on the “execve()” sy$ unpredictable and irregular resource require-
tem call, since the process is likely to change itsents by many users.
nature. The most noticeable properties of executing
Each process has some control over the capplications on Mosix are its adaptive resource
lection and decay of its statistics. For instancgistribution policy, the symmetry and flexibil-
a process may complete a stage knowing thatitisof its configuration. The combined effect of
characteristics are about to change, or it m#yese properties implies that users do not have to



know the current state of the resource usage of Journal of Microprocessors and Microsys-
the various nodes, or even their number. Parallel
applications can be executed by allowing Mosix _
to assign and reassign the processes to the b&3t A- Barak, A. Braverman, . Gilderman, and
possible nodes, almost like an SMP.

The Mosix R&D project is expanding in sev-
eral directions. We already completed the de-
sign of migratable socketswhich will reduce
the inter process communication overhead. A
similar optimization ismigratable temporary [4] A. Barak, S. Guday, and R.G. Wheeler.
files which will allow a remoteprocess, e.g. a
compiler, to create temporary files in the remote
node. The general concept of these optimization
is to migrate more resources with the process, to
reduce remote access overhead.

In another project, we are developing new5] A. Barak and O. La’adan. The MOSIX
competitive algorithms for adaptive resource
management that can handle different kind of
resources, e.g., CPU, memory, IPC and 1/O [1].
We are also researching algorithms for network
RAM, in which a large process can utilize avail-

able memory in several nodes. The idea is t
spread the process’s data among many nodes,

and rather migrate the (usually small) process to
the data than bring the data to the process.

In

the future, we consider extending

Mosix to other platforms, e.g., DEC’s Al- [7

tems 22(3-4), Aug. 1998.

O. Laden. Performance of PVM with the
MOSIX Preemptive Process Migration. In
Proc. Seventh Israeli Conf. on Computer
Systems and Software Engineeripgges
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Springer-Verlag, 1993.
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