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We introduce novel profile-based string kernels for use with support vector machines (SVMs) for the
problems of protein classification and remote homology detection. These kernels use probabilistic
profiles, such as those produced by the PSI-BLAST algorithm, to define position-dependent mutation
neighborhoods along protein sequences for inexact matching ofk-length subsequences (“k-mers”) in
the data. By use of an efficient data structure, the kernels are fast to compute once the profiles have been
obtained. For example, the time needed to run PSI-BLAST in order to build the profiles is significantly
longer than both the kernel computation time and the SVM training time. We present remote homology
detection experiments based on the SCOP database where we show that profile-based string kernels
used with SVM classifiers strongly outperform all recently presented supervised SVM methods. We
further examine how to incorporate predicted secondary structure information into the profile kernel
to obtain a small but significant performance improvement. We also show how we can use the learned
SVM classifier to extract “discriminative sequence motifs”—short regions of the original profile that
contribute almost all the weight of the SVM classification score—and show that these discriminative
motifs correspond to meaningful structural features in the protein data. The use of PSI-BLAST pro-
files can be seen as a semi-supervised learning technique, since PSI-BLAST leverages unlabeled data
from a large sequence database to build more informative profiles. Recently presented “cluster ker-
nels” give general semi-supervised methods for improving SVM protein classification performance.
We show that our profile kernel results also outperform cluster kernels while providing much better
scalability to large datasets.

Supplementary website:http://www.cs.columbia.edu/compbio/profile-kernel.
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1. Introduction

There has been much recent work on support vector machine (SVM)4 approaches for the
classification of protein sequences into functional and structural families and for remote
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homology detection. Most of this research effort focuses on finding useful representations
of protein sequence data for SVM training, either using explicit feature vector represen-
tations orkernel functions—specialized sequence similarity functions that define an in-
ner product in an implicit feature space for the SVM optimization problem. Among the
approaches that have been presented are the Fisher-SVM method13, which represents
each protein sequence as a vector of Fisher scores extracted from a profile hidden Markov
model (HMM) for a protein family, and kernels that extend the Fisher kernel method30;
families of efficient string kernels22,21,23, such as the mismatch kernel, which are based
on inexact-matching occurrences ofk-length subsequences (“k-mers”); the SVM-pairwise
approach24, which uses a feature vector of pairwise alignment scores between the input
sequence and a set of training sequences; the eMOTIF kernel3, where the feature vector
represents counts of occurrences of eMOTIF patterns in the sequence; feature vectors de-
fined by structure-based I-sites motifs10; and string alignment kernels29, which detect
sequence similarity by approximating the behavior of the Smith-Waterman score. These
studies show that most of the methods achieve comparable classification performance on
benchmark datasets, though there are significant differences in computational efficiency21.
Interestingly, except for the Fisher kernel method and its extensions, these representations
do not make intrinsic use of standard tools for protein sequence analysis such as profiles9

and profile HMMs19,6,2—more commonly, they use scores based on alignment or proba-
bilistic models to construct a large set of features. It is perhaps surprising that very general
k-mer based string kernels perform as well as the Fisher kernel approach, which makes
well-motivated use of profile HMMs21.

In this paper, we define a natural extension of thek-mer based string kernel framework
to define kernels on protein sequence profiles, such as those produced by PSI-BLAST1. We
choose to use profiles (rather than more complex models) because they can be calculated
by PSI-BLAST in a tractable amount of time and because, once the profiles are obtained,
we can efficiently compute string kernel values using an appropriate data structure; in fact,
the time needed to compute the profile kernel matrix and the SVM training time are signif-
icantly shorter than the time needed by PSI-BLAST to compute profiles. From a machine
learning point of view, use of PSI-BLAST profiles can be viewed as asemi-supervised
approach—that is, a method that learns both from labeled training examples (sequences
whose structural classification is known) and unlabeled examples—an important consider-
ation given the relatively small amount of labeled data in this problem. Through iterative
heuristic alignment, PSI-BLAST leverages unlabeled data from a large sequence database
to obtain a much richer profile representation of each sequence. Intuitively, this richer data
representation, made available to an SVM through a profile-based kernel, should greatly
improve classification performance. Also, profile-based kernels are a significantly different
semi-supervised approach than the Fisher-SVM method: with the Fisher kernel, unlabeled
data in the form of domain homologs are used to train a model for a protein family of
sequences in the training set, and then each sequence is represented by sufficient statis-
tics with respect to the learned model; in our approach, unlabeled data is used to produce
a profile model for each training sequence independently, and then the kernel is defined
on the profiles. Our experimental results for the remote homology detection task, using
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a benchmark based on the SCOP database, show that our profile-based kernel used with
SVM classifiers strongly outperform all the recent purely supervised SVM methods that
we compared against.

There have been several attempts to use predicted local structure, including secondary
structure, for improving remote homology detection18,7, generally resulting in modest
performance improvement. In this paper, we discuss one variation of the profile kernel that
incorporates additional predicted secondary structure profiles to help remote homology
detection. Our experimental results show that secondary structure profiles can help the
profile kernel achieve better performance, but given the current prediction accuracy for
secondary structures, we obtain only limited improvement.

Usually, SVM methods are treated as a “black box” method, since in general it is dif-
ficult to interpret the SVM classification rule. For the case of profile string kernels, we
show how we can use the trained SVM classifiers to define positional scores along the pro-
tein profiles that define a smoothed contribution to the positive classification decision. In
general, we find that a low percentage of positions in the profile is responsible for a high
percentage of the positive contribution to the total discrimination score for positive train-
ing sequences, and thus we can extract distinguished regions that we call “discriminative
sequence motifs”. We give examples from our SCOP dataset to show that these discrimi-
native motifs correspond to meaningful structural features, giving a proof of principle that
the SVM-profile kernel approach allows us to extract useful sequence information.

Recently presented “cluster kernels” approaches31 give general semi-supervised meth-
ods for improving SVM protein classification performance of a base kernel using unlabeled
data together with a similarity measure on input examples. These cluster kernels were suc-
cessfully applied to the protein classification problem using the mismatch kernel as a base
kernel for sequence data and BLAST or PSI-BLAST to define similarity scores. However,
for large amounts of unlabeled data, these more general methods do not scale as well as
our profile kernel approach. We show that our profile kernel results also outperform cluster
kernels while providing much better scalability to large datasets.

The current paper is an expanded version of work that originally appeared in a con-
ference proceedings20. We have added new results on incorporating predicted secondary
structure information into the profile kernel as well as additional examples of superfam-
ilies where our extracted discriminative motif regions correspond to conserved structural
features. We also found and corrected a small bug in our previously reported results20:
there was an error in mapping one of the amino acids in our profile kernel code, resulting
in a kernel that was mathematically valid but deviated slightly from the one we defined in
the text. The corrected classification results that we report here are stronger than those we
obtained previously. Statistics and results relating to our discriminative motif regions, in
particular the overlap with eMOTIF and I-sites motifs and with structural features in our
case studies, have also slightly changed but display the same trends as before. Finally, we
add experiment-by-experiment results on the percentage of positions in the positive training
sequences needed to account for 90% of the total positive contribution to the discriminant
score. Again, the trend that was previously reported—that relatively few positions account
for most of the positive discrimination—was correct, but the mean percentage reported was
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inaccurate, and there is considerable variation across superfamilies in coverage by discrim-
inative motif regions.

2. The Profile Kernel

A key feature of the SVM optimization problem is that it depends only on the inner products
of the feature vectors representing the input data, allowing us to usekernel techniques. If
we define a feature mapΦ from the input space of protein sequences into a (possibly high-
dimensional) vector space called thefeature space, we obtain astring kernel—that is, a
kernel on sequence data—defined byK(x , y) = 〈Φ(x ),Φ(y)〉.

We first show how to define a feature mapping for protein sequence profiles—more
precisely, we consider input examples to be profilesP (x ), wherex is a sequencex =
x1x2 . . . xN from the alphabetΣ of amino acids (|Σ| = 20, and the lengthN = |x |
depends on the sequence), andP (x ) = {pi(a), a ∈ Σ}N

i=1 is a profile for sequencex , with
pi(a) denoting the emission probability of amino acida in positioni and

∑
a∈Σ pi(a) = 1

for each positioni. We then show how to efficiently and directly compute the profile-based
string kernel valuesK(P (x ), P (y)) without storing the feature vector representation.

2.1. Profile-defined Mapping tok-mer Feature Space

Following the framework ofk-mer based string kernels22,21,23, our profile-based kernels
will depend on a feature mapping to the|Σ|k-dimensional feature space indexed by the
set of all possiblek-length subsequences (“k-mers”) of amino acids, wherek is a small
positive integer.

Previous string kernels relied on defining an inexact-matching neigborhood ofk-mers
around eachk-length contiguous subsequence in the input sequence. For example, for the
(k,m)-mismatch kernel, one defines the “mismatch neighborhood” aroundk-mer α =
a1a2 . . . ak to be the set of allk-length sequencesβ from Σ that differ fromα by at most
m mismatches. For ak-merα, the mismatch feature map is defined as

ΦMismatch
(k,m) (α) = (φβ(α))β∈Σk , (1)

whereφβ(α) = 1 if β belongs toN(k,m)(α), andφβ(α) = 0 otherwise, and one extends
additively to full-length sequencesx by summing the feature vectors for all thek-mers in
x :

ΦMismatch
(k,m) (x ) =

∑
k-mersα in x

ΦMismatch
(k,m) (α). (2)

Thus each coordinate of the feature map is a count of the inexact-matching occurrences of
a particulark-mer, where mismatching is used to define inexact matching.

For the profile kernel, we use the probabilistic profileP (x ) to define a mutation neigh-
borhood for eachk-length segment in the input sequencex . Therefore, unlike previous
string kernels, the inexact-matching neighborhoodk-mers are not the same for all the data
but instead vary from sequence to sequence and within different regions of the same se-
quence. For eachk-length contiguous subsequencex [j + 1 : j + k] = xj+1xj+2 . . . xj+k
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in x (0 ≤ j ≤ |x |−k), thepositional mutation neighborhoodis defined by the correspond-
ing segment of the profileP (x ):

M(k,σ)(P (x [j + 1 : j + k])) = {β = b1b2 . . . bk : −
k∑

i=1

log pj+i(bi) < σ}. (3)

Note that the emission probabilitiespj+i(b), i = 1 . . . k, come from the profileP (x )—
for notational simplicity, we do not explicitly indicate the dependence onx . Typically, the
profiles are estimated from close homologs found in a large sequence database and may
be too restrictive for our purposes. Therefore, we smooth the estimates using background
frequenciesq(b), b ∈ Σ, of amino acids in the training dataset via

p̃i(b) =
pi(b) + Cq(b)

1 + C
, i = 1 . . . |x |, (4)

whereC is a smoothing parameter, and we use the smoothed emission probabilitiesp̃i(b)
in place ofpi(b) in defining the mutation neighborhoods.

We now define the profile feature mapping as

ΦProfile
(k,σ) (P (x )) =

∑
j=0...|x |−k

(φβ(P (x [j + 1 : j + k])))β∈Σk , (5)

where the coordinateφβ(P (x [j+1 : j+k])) = 1 if β belongs to the mutation neighborhood
M(k,σ)(P (x [j + 1 : j + k])), and otherwise the coordinate is0.

The profile kernel is simply defined by the inner product of feature vectors:

KProfile
(k,σ) (P (x ), P (y)) = 〈ΦProfile

(k,σ) (P (x )),ΦProfile
(k,σ) (P (y))〉. (6)

2.2. Efficient Computation of the Kernel Matrix

Rather than storing sparse feature vectors in high-dimensionalk-mer space, we directly and
efficiently compute the kernel matrix using atrie data structure, similar to the mismatch
tree approach presented in our previous work22,21,23. The difference for the profile kernels
is that instead of matchingk-mers along the path to a leaf, we passk-length profiles down
the tree branches.

Our new(k, σ)-profile trie is a rooted tree of depthk where each internal node has
|Σ| = 20 branches, each labeled with an amino acid (symbol fromΣ). A leaf node still
represents a fixedk-mer in our feature space, obtained by concatenating the branch symbols
along the path from root to leaf. We perform a depth-first traversal of the data structure and
store, at a node of depthd, a set of pointers to allk-length profilesP (x[j +1 : j +k]) from
the sample data set, whose current cumulative substitution scores, up to depthd, are less
than theσ threshold, that is,−

∑d
i=1 log pj+i(bi) < σ, whereb1...bd is the prefix of the

current node. As we pass from a parent node at depthd to a child node at depth d+1 along
a branch with symbol labelb, we add for eachk-length profileP (x[j + 1 : j + k]) a score
− log pj+d+1(b). Only those profile segments whose cumulative substitution scores are
still less thanσ will be passed to the child node. At the leaf node, we update the kernel by
computing the contribution of active profile segments to the correspondingk-mer feature.
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The complexity of computing each valueK(x , y) depends on the size of the positional
mutation neighborhood ofk-length profiles. IfMσ represents the maximum number ofk-
mers found in any mutation neighborhood defined by ak-length profile from the input data
for thresholdσ, then we can bound the kernel computation complexity byO(kMσ(|x | +
|y |)). In our experiments, we chooseσ so that the typical mutation neighborhood defined
by ak-length profile allows aboutm = 1 or 2 mismatches relative to the originalk-mer.
Thus we can estimate that the running time is bounded by that of the(k,m)-mismatch
kernel, which isO(km+1|Σ|m(|x | + |y |)), with m ≤ 2. More details on the complexity
analysis fork-mer based string kernels can be found in Leslie and Kuang23. See Section 3
for actual running times in benchmark experiments.

2.3. Extending the Profile Kernel with Secondary Structure Information

A natural approach for including secondary structural information in the profile kernel is to
associate with each sequence an additional secondary structure profile, using the true sec-
ondary structures for the training set and predicted secondary structure profiles—produced
with existing methods such as PSI-PRED16 and PHD28—for the test set. Thus eachk-
length segment of the sequence profile has an associatedk-length secondary structure pro-
file over symbols fromΣstr, the alphabet of secondary structure elements (typically the
three symbol alphabet representing alpha helix, beta sheet, and coil). We expand the orig-
inal feature space to a new one, with dimensionk × |Σstr| times larger, by associating to
every originalk-mer featureβ a vector ofk × |Σstr| features in the new space. When a
k-mer β falls within the mutation neighborhood of a particulark-length segment of the
sequence profile, we add the vectorized secondary structure profile for this segment to the
k × |Σstr| vector of features associated withk-mer β. In this way, the feature with in-
dex (j, s) associated to thek-mer β (j = 1 . . . k, s = 1 . . . |Σstr|) is an expected count
of occurrences of secondary structure symbols in positionj of a k-length segment, over
all segments such that thek-merβ is in mutation neighborhood defined by the sequence
profile. Let Pstr(x) represent the probabilistic profile of secondary structures. A formal
definition of the extended profile kernel is given by

ΦProfile-Str
(k,σ) (P (x )) =

∑
j=0...|x |−k

(φstr
β (P (x [j + 1 : j + k])))β∈Σk , (7)

where the vector-valued coordinate functionφstr
β (P (x [j + 1 : j + k])) = Pstr(x [j + 1 :

j + k]) if β belongs to the mutation neighborhoodM(k,σ)(P (x [j + 1 : j + k])), and
otherwise is a0 vector of lengthk × |Σstr|.

The computation of the extended profile kernel is the same as before except that at leaf
nodes in the trie traversal, we increment the kernel value with the dot product between
the vectorized structural profiles of each pair of instancek-mers. This modification intro-
duces an additional multiplicative constant ofk × |Σstr| to the computational complexity
of original profile kernel.

One can also consider other strategies for adding structural information. For example,
one can put a probabilistic threshold on thek-length structure profiles and redefine the
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mutation neighborhood to be the set of pairs ofk-mers andk-length structure sequences
that satisfy a substitution probability both for the sequence profile and the secondary struc-
ture profile. However, two problems may arise: the double threshold approach can cause a
diagonally dominant gram matrix, and one introduces an additional parameter-dependant
constant to the computational complexity, which may make the kernel too expensive for
practical use.

2.4. Extraction of Discriminative Motifs

Using the PSI-BLAST sequence profiles and the learned SVM weights, we can do a po-
sitional analysis to determine which regions of the positive training sequence contribute
most to the classification score and thus extract “discriminative” protein motif regions. For
a training set of protein sequence{xi}n

i=1, the normal vector to the SVM decision hyper-
plane is given by

w =
n∑

i=1

yiciΦProfile
(k,σ) (P (xi)), (8)

where theci are learned weights andyi ∈ {±1} are training labels. For eachk-length pro-
file segment of sequencex , its contribution to the classification score is (up to a constant):

S(x [j + 1 : j + k]) = 〈φProfile
(k,σ) (P (x [j + 1 : j + k])),w〉. (9)

We are mainly interested in discriminative motifs that contribute to the positive decision of
the classifier, so we define a positional score for each positionj in a (positive) training se-
quence by summing up positive contributions ofk-length segments containing the position:

σ(x [j]) =
k∑

q=1

max(S(x [j − k + q : j − 1 + q]), 0). (10)

We now sort these positional scores (for all positions in all positive training sequences)
in decreasing orderσ(x [j1]) ≥ σ(x [j2]) ≥ . . . ≥ σ(x [jN ]), and we find the first in-
dex M such that cumulative sum

∑M
i=1 σ(x [ji]) is greater than0.9 times the total sum∑M

i=1 σ(x [ji]). Thus positionsj1, . . . jM constitute 90% of the positionally averaged pos-
itive classification scores. We will see in the Section 3.3 that these positions tend to fall
in short segments of the protein sequence; we call these segments “discriminative motif
regions”.

3. Experiments

We test SVM classification performance of profile-based string kernels against other re-
cently presented SVM methods on a SCOP benchmark dataset. Methods are evaluated on
the ability to detect members of a target SCOP family (positive test set) belonging to the
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same SCOP superfamily as the positive training sequences; no members of the target fam-
ily are available during training. We use the same experimental set-up that has been used
in several previous studies of remote homology detection algorithms13,24.

We use the same 54 target families and the same test and training set splits as in the
remote homology experiments in Liao and Noble24. The sequences are 7329 SCOP do-
mains obtained from version 1.59 of the database after purging with astral.stanford.edu so
that no pair of sequences share more than 95% identity. Compared to Liao and Noble24,
we reduce the number of available labeled training patterns by roughly a third. Data set se-
quences that were neither in the training nor test sets for experiments from Liao and Noble
are considered to be additional unlabeled data, used for cluster kernel method we compare
against. All methods are evaluated using the receiver operating characteristic (ROC) score
and the ROC-50, which is the ROC score computed only up to the first 50 false positives8.

We computed the profiles needed for our kernels by running PSI-BLAST1 from the
nonredundant protein database with default search parameters and with background fre-
quencies, used for smoothing, estimated from the full dataset of 7329 SCOP domains. We
tried two options for the maximum number of iterative database searches, 2 iterations and 5
iterations, to show the tradeoff between computational efficiency and classification perfor-

mance. We used smoothing parameter corresponding to
1

1 + C
= .8 in the profile kernel

computation. The time needed to compute PSI-BLAST profiles for all sequences was ap-
proximately 36 hours on a 2.2 GHz Linux server using at most 2 iterative database searches
or about 3 days using 5 iterative searches; on the same CPU, the time required to compute
the 7329 x 7329 kernel matrix was 10 hours, and all 54 SVM experiments were completed
in 30 minutes.

3.1. SCOP Experiments: Comparison with Supervised and Semi-Supervised
Methods

We compared the results of profile kernels with five recently presented SVM methods,
using different representations of protein sequence data—the eMOTIF kernel3, the SVM-
pairwise method24, the mismatch kernel21, the string alignment kernel29, and the Fisher
kernel13—as well as recent semi-supervised cluster kernel methods31. We also compared
the SVM methods to PSI-BLAST, used directly as a method for ranking test sequences
relative to positive training sequence queries (see below).

We evaluated the first three SVM methods—the eMOTIF kernel, SVM-pairwise, and
the mismatch kernel—on the SCOP 1.59 benchmark dataset described above. We used the
eMOTIF database extracted from eBlocks and packaged with eBAS version 3.711,26, and
we obtained code for computing eMOTIF feature vectors from the authors3. For the the
SVM-pairwise method, we used PSI-BLAST E-values as pairwise similarity scores (see
Weston et al.31 for details on this representation). We note that this use of PSI-BLAST
with the SVM-pairwise method is not fully-supervised, because the PSI-BLAST scores
themselves make use of unlabeled data. For the mismatch kernel, we use(k,m) = (5, 1)
as presented in the original paper22.

We include results for PSI-BLAST, used directly as a ranking method, in order to pro-
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vide a baseline comparison with a widely used remote homology detection method and
also to demonstrate the added benefit of combining PSI-BLAST with our SVM string ker-
nel approach. The PSI-BLAST algorithm, which iteratively builds up a probabilistic profile
for a query sequence by searching a large database, also gives a faster approximation to the
iterative training method of profile HMMs. (We do not test profile HMMs here due to
computational expense, but in previous benchmark results for the remote homology prob-
lem, SVM string kernel and Fisher kernel methods were both found to outperform profile
HMMs 22,13.) Since PSI-BLAST is not a family-based method, we report results by av-
eraging over queries: for each experiment, we use PSI-BLAST with each of the positive
training sequences as the query and search against the nonredundant protein database in or-
der to produce a set of profiles, and then we use these profiles to rank the test set sequences
by their PSI-BLAST E-values. The ROC (ROC-50) score that we report for the experiment
is the average of all ROC (ROC-50) scores from these rankings. (We note that a more so-
phisticated PSI-BLAST training procedure that uses all positive training sequences at once
might be possible, but it is not clear how best to do this given the diverse positive training
set.) For the PSI-BLAST ranking method, we use PSI-BLAST with the default parameters,
allowing a maximum of 10 iterative searches against the nonredundant protein database in
order to build the profiles.

In our main experiments, we computed the profile kernel with two sets of PSI-BLAST
profiles, one set built using at most 5 iterative searches for better accuracy and the other set
using 2 iterative searches for reduced PSI-BLAST computational cost. We tested profile
kernels with(k, σ) = (4, 6.0), (5, 7.5) and(6, 9.0). These parameters were chosen using
the following heuristics: we took the same range ofk = 4 . . . 6 that we found useful in our
previous string kernel work, and we chose the parameterσ to allow one or two mismatches
from the inputk-mer in a typicalk-length profile. All three parameter choices yield simi-
lar results. Note that we did not try to exhaustively optimize parameter choices, since the
benchmark dataset does not include a cross-validation set. Figure 1 shows the comparison
of SVM performance of the(5, 7.5)-profile kernel against the PSI-BLAST ranking method,
the eMOTIF kernel, the mismatch kernel, and the SVM-pairwise method using PSI-BLAST
across the 54 experiments in the benchmark. A signed rank test with Bonferroni correc-
tion for multiple comparisons concludes that the profile kernel significantly outperforms
the mismatch kernel (p-value1.3e−09), SVM-pairwise kernel (7.2e−09), eMOTIF kernel
(1.3e−09), and mean PSI-BLAST ranking (1.1e−09). Average ROC and ROC-50 scores
across the experiments for all methods are reported in Table 1. Although running PSI-
BLAST for 5 iterations instead of 2 iterations increased the PSI-BLAST computation time
by a multiplicative factor, the results demonstrate that we can have significant improvement
in ROC and ROC-50 scores for the profile kernel method by improving the profiles. In our
subsequent motif analysis, we refer to the second set of SVM classifiers, which use profiles
based on up to 5 PSI-BLAST iterations.

We note that the original authors of the SVM-pairwise used Smith-Waterman scores
(SW) for pairwise comparison scores; however, on a similar benchmark with more training
data than the current dataset, results for SVM-pairwise with SW scores were weaker than
the PSI-BLAST results reported here, and ROC performance was only slightly better (ROC
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= 0.893, ROC-50 = 0.434). Thus the semi-supervised PSI-BLAST scores do indeed give
a richer and more effective representation for SVM-pairwise; however, using PSI-BLAST
profiles to define a profile-based string kernel is clearly more effective than SVM-pairwise
with PSI-BLAST.

Our SCOP dataset is different from and larger than the benchmark on which the eMO-
TIF kernel was originally tested3. In cases where a superfamily has a common eMOTIF
pattern or set of patterns, the eMOTIF kernel should achieve good specificity. We specu-
late that in our 54 experiments, fewer superfamilies are characterized by common eMOTIF
patterns and that accordingly the eMOTIF kernel achieves weaker performance.

To compare with the two remaining kernel representations—the Fisher kernel13 and
the string alignment kernel29—we also tested the (5,7.5)-profile kernel on a second bench-
mark dataset, which is derived from an earlier version of the SCOP database (SCOP 1.53).
In Table 2, we report the average ROC and ROC-50 scores for the profile kernel with pub-
lished results for the other two methods29. The (5,7.5)-profile kernel shows significantly
stronger performance on this dataset over the Fisher kernel (p-value1.8e−10) and the string
alignment kernel (p-value2.3e−07).

Fig. 1. Comparison of recent SVM-based homology detection methods for the SCOP 1.59 benchmark
dataset.The graph plots the total number of families for which a given method exceeds an ROC-50 score thresh-
old. Each series corresponds to one of the homology detection methods described in the text.

Finally, we also compared our profile kernel against recently presented cluster kernels
methods31. These methods use “clustering” of additional unlabeled sequence data to im-
prove the base representation. Here, sequences from the original SCOP dataset of 7329
domains that are not used in the training or test sets of any experiment provide the un-
labeled data. For simplicity, we give results for only one of the two novel cluster kernel
methods from Weston et al.31, the neighborhood kernel. (Results for the bagged kernel
are very similar but more time-consuming to compute.) The neighborhood kernel uses the
(5, 1)-mismatch kernel as the base kernel and uses PSI-BLAST to define “neighborhood
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sets” Nbd(x ) around each input sequencex , consisting of labeled or unlabeled sequences
x ′ with similarity score tox below E-value threshold of 0.05, together withx itself. Then

the implicit feature vector isΦnbd(x ) =
1

|Nbd(x )|
∑

x ′∈Nbd(x) ΦMismatch(x ′).

We see from figure 2 that the profile kernel outperforms the neighborhood kernel (the
preference to profile kernel is significant by a signed rank test with p-value threshold of
1.73e−05). We also note that our profile kernel is making use of more unlabeled data
than the neighborhood kernel, since the neighborhoods are based on a smaller unlabeled
database. However, as we scale up, computing the neighborhood kernel for extremely large
neighborhood sets of sequences becomes expensive (computation time scales linearly with
the size of the neighborhood). One can randomly select sequences from the neighborhood,
but then one still has to devise an appropriate way of computing a sample without stor-
ing many thousands of sequences. (The bagged kernel from Weston et al.31 has similar
scalability issues as the database gets large.) By comparison, the profile-based string ker-
nel approach achieves good SVM performance and computational efficiency while only
representing the sequence profiles.

Fig. 2.Comparison of profile kernel (using 2 PSI-BLAST iterations) with recent cluster kernel approaches
on the SCOP 1.59 benchmark dataset.The graph plots ROC-50 scores of the profile kernel (y-axis) versus the
neighborhood kernel (x-axis), a recent cluster kernel method, for the 54 experiments in the SCOP benchmark.

3.2. Incorporating Secondary Structure into the Profile Kernel

To test the extended version of the profile kernel that incorporates secondary structure pro-
files, we performed one more experiment on the same SCOP dataset with 5-iteration PSI-
BLAST sequence profiles. The true secondary structures are parsed from PDB formatted
files with the DSSP program17. The predicted secondary structure profiles are produced
with PSI-PRED16. For the training set, true secondary structures were encoded with a
bit representation, where the corresponding match of a secondary strucutre element has a
probablity 1 and other probabilities are 0. Both true and predicted secondary structure pro-
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Table 1.Mean ROC and ROC-50 scores over 54 target families (SCOP version 1.59 benchmark).

Kernel ROC ROC-50
eMOTIF 0.711 0.247

PSI-BLAST(mean) 0.743 0.293
Mismatch(5,1) 0.870 0.416

SVM-pairwise(PSI-BLAST) 0.866 0.533
Neighborhood 0.923 0.699

Profile(4,6.0)-2 iterations 0.962 0.767
Profile(5,7.5)-2 iterations 0.973 0.821
Profile(6,9.0)-2 iterations 0.974 0.814
Profile(4,6.0)-5 iterations 0.974 0.837
Profile(5,7.5)-5 iterations 0.984 0.874
Profile(6,9.0)-5 iterations 0.987 0.866

Table 2.Mean ROC and ROC-50 scores over 54 target families (SCOP version 1.53 benchmark).

Kernel ROC ROC-50
Profile(5,7.5)-5 iterations 0.971 0.796

String alignment 0.923 0.661
Fisher 0.773 0.25

Table 3.Mean ROC and ROC-50 scores over 54 target families (SCOP version 1.59 benchmark).

Original Profile With Structure Profile
Kernel ROC ROC-50 ROC ROC-50

Profile(4,6.0)-5 iterations 0.975 0.834 0.983 0.861
Profile(5,7.5)-5 iterations 0.985 0.873 0.989 0.883
Profile(6,9.0)-5 iterations 0.987 0.863 0.989 0.869

files were also smoothed by a background frequency over secondary structure elements, as
in equation 4. Results of adding secondary structure profile to original profile kernels of
different parametersa are shown in Table 3. With p-value threshold 0.05, a signed rank test
suggests the improvement of the extended profile kernel over the original kernel is small
but significant for the (4,6.0)-profile kernel (p-value 0.0023) but insignificant for (5,7.5)-
profile kernel and (6,9.0)-profile kernel. Given the current accuracy of secondary structure
prediction, we find that combining sequence information and local structural information
leads only to modest improvements in remote homology detection.

3.3. Motif Extraction from SVM Predictions

We next calculated positional contribution scoresσ(x [j]) for our trained SVM classifiers,
as outlined in Section 2.4, to analyze which parts of the positive training sequences were
most important for positive classification. Typically, we found peaky distributional plots of
σ(x [j]) along positive training sequences, as shown for one experiment in Figure 3: the
peaks in these plots correspond to “discriminative motif regions”. In Table 4 we show by

aDue to post-processing of secondary structure, there are slight discrepancies between thek-length segments of
SCOP sequences used in the two versions of the experiments. In the secondary structure experiments, we used
only those sequence regions for which secondary structure can be determined, and we reproduced all results with
the original profile kernels for consistency.
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Table 4.Coverage of positive training sequences by discriminative motif regions in 54 experiments.Each
experiment is identified by its SCOP target (test) family (SCOP version 1.59 identifiers). The coverage statistic
indicates the fraction of positions in the positive training sequences that contribute 90% of the positive SVM
discrimination score. Experiments for which the coverage statistic is small correspond to positive training su-
perfamilies where the discriminative sequence information is concentrated in a small percentage of sequence
positions.

SCOP Target Coverage SCOP Target Coverage SCOP Target Coverage SCOP Target Coverage
a.26.1.1 0.701 b.1.1.5 0.583 c.1.8.1 0.317 c.47.1.1 0.421
a.26.1.2 0.659 b.10.1.2 0.583 c.1.8.3 0.336 c.47.1.10 0.444
a.35.1.2 0.665 b.10.1.3 0.632 c.2.1.2 0.325 c.47.1.5 0.379
a.35.1.5 0.601 b.10.1.4 0.651 c.2.1.3 0.391 g.3.11.1 0.685
a.39.1.2 0.46 b.29.1.1 0.54 c.2.1.4 0.397 g.3.6.2 0.703
a.39.1.5 0.412 b.29.1.3 0.526 c.2.1.5 0.412 g.3.7.1 0.661
a.4.1.1 0.588 b.40.4.1 0.586 c.2.1.6 0.407 g.3.7.2 0.69
a.4.1.2 0.609 b.40.4.3 0.577 c.2.1.7 0.4 g.3.7.5 0.662
a.4.1.3 0.6 b.40.4.5 0.557 c.3.1.2 0.295 g.39.1.2 0.687
a.43.1.2 0.654 b.47.1.2 0.44 c.3.1.5 0.209 g.39.1.3 0.683
b.1.1.1 0.558 b.55.1.2 0.417 c.37.1.1 0.411 g.41.5.1 0.764
b.1.1.2 0.568 b.6.1.1 0.403 c.37.1.11 0.38 g.41.5.2 0.696
b.1.1.3 0.583 b.6.1.3 0.521 c.37.1.13 0.4
b.1.1.4 0.626 b.60.1.2 0.224 c.37.1.8 0.347

superfamily the percentage of the positions in the positive training sequences give a cumu-
lative total of 90% of the SVM classification scores for these sequences. We found that for
some superfamilies low percentage (20%-30%) of positions contributed 90% of the SVM
classification scores and on average below 50% of positions contribute 90% of classifi-
cation scores. We manually examined the motif candidates for positive training sequence
sets in 13 experiments (2 sets from all-α class, 5 from all-β class, 5 fromα+β class, and
1 from small proteins class) with high ROC scores. By comparing them with PDB anno-
tations, we tried to identify common functional and structural characteristics captured by
motif candidates for these superfamilies. We found results of four experiments to be of
particular interest. For all examples we take the expected number of top-scored positions
as motif regions for each sequence given the percentage of positions contributing 90% of
SVM classification scores for the superfamily. We describe these four experiments below.

The first interesting example came from the homology detection experiment for PH
domain-like protein superfamily (SCOP 1.59 superfamily b.55.1). Proteins in this super-
family share a conserved fold made up of a beta-barrel composed of two roughly perpen-
dicular, anti-parallel beta-sheets and a C-terminal alpha helix. Previous studies have shown
that PH domains bind to their inositol phosphate ligands via a binding surface composed
primarily of residues from theβ1/β2, β3/β4, andβ6/β7 loops12. The motif candidates
we extracted correspond well with the C-terminal alpha helix and the ligand-binding re-
gions on the beta-sheets but not in the loop regions at theβ1/β2, β3/β4, andβ6/β7. This
may suggest those binding sites on the main structural components are more conserved
than those in loop regions. In Figure 4, we show the motif regions for one member of this
superfamily, mouse beta-spectrin protein, together with structural and functional annota-
tions.

The second example was the EF-hand calcium-binding protein superfamily (SCOP ver-
sion 1.59 superfamily a.39.1). The motif candidates that we extracted correspond well with
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the two calcium-binding loops with adjacent helices, forming a local helix-loop-helix struc-
ture. In PDB annotations, these regions are labeled as EF-hand PROSITE patterns, which
are important for calcium coordination. As an example, we show the SVM-extracted motif
regions for one member of this superfamily, shark parvalbumin protein, in the Figure 5,
together with with structural and functional annotations.

In the third example, the homology detection experiment for the scorpion toxin-like
superfamily (SCOP 1.59 superfamily g.3.7), we found a common motif region that forms
a beta-hairpin with two adjacent disulphides. Previous studies have found that this hairpin
structure might be structurally important in interacting with membrane receptors and ionic
channels for proteins in this superfamily, and the disulphide bridges can help to stabilize
the toxin protein. Figure 6 gives an example from this superfamily, the scorpion OSK1
toxin protein, to demonstrate the structure of the motif candidate14.

The last example was the superfamily of homeodomain-like proteins (SCOP version
1.59 superfamily a.4.1). A common structural feature of the superfamily consists of 3 he-
lices containing a helix-turn-helix (HTH) DNA-binding motif (also referred to as a home-
odomain in eukaryotes). This structural motif is believed to interact with the major groove
of DNA double strands, which facilitates the binding of many transcription regulators27.
Motif candidates extracted from all sequences in our training dataset from this superfam-
ily align well with the HTH region as indicated by the PDB annotations. In Figure 7, we
show an example from the homeodomain-like protein superfamily, the MarA protein from
E. Coli, with functional and structural annotations of the HTH motif regions.

3.4. Discriminative regions versus protein motif databases

To analyze our discriminative motif candidates further, we consider whether the discrimina-
tive regions that we found coincide with known protein motifs from the eMOTIF database
(Version 3.6)3 or structural motifs from the I-sites library (Version 16.2)5. For a simple
comparison, we compute the extent to which eMOTIF and I-sites motifs contribute to the
overall positive discriminative scores for positive training sequences. We calculate accu-
mulated discriminative scores falling into the sequence regions matched by any motif from
the eMOTIF database or the I-sites database, and then we compare it with the expected
contribution based on motif coverage, which is estimated by the ratio between total length
of motif regions and the sequence length. We also compute the ratio of the eMOTIF/I-sites
contribution to the expected contribution.

Interestingly, we found that on average, the eMOTIF/I-sites contribution to the discrim-
inative score is slightly, but not dramatically, higher than expected. We show this compar-
ison in Table 5 for eMOTIF and Table 6 for I-sites, giving results for different confidence
thresholds using the eBAS and I-sites software, respectively. We conclude that our discrim-
inative motif regions provide information that is complementary or additional to eMOTIF
or I-sites motifs in many experiments.
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Fig. 3.Positional contribution analysis of SVM classification score for SCOP superfamily 3.2.1 (target fam-
ily 3.2.1.7).The plot shows the the contribution of each position along the sequence, obtained by averagingk-mer
profile SVM scores for allk-mers containing the position, for positive training sequences in the experiment.

Table 5.Comparison of eMOTIF motifs versus SVM discriminative scores.

eBAS Average Average Average ratio
cutoff eMOTIF expected of eMOTIF

threshold contribution contribution over expected
-1 0.476 0.362 1.316
-4 0.334 0.255 1.311
-8 0.271 0.207 1.306
-15 0.190 0.146 1.302

Table 6.Comparison of I-sites motifs versus SVM discriminative scores.

I-sites Average Average Average ratio
confidence I-sites expected of I-sites
threshold contribution contribution over expected

0.7 0.541 0.467 1.159
0.8 0.358 0.318 1.126
0.9 0.122 0.125 0.971

4. Discussion

We have presented a novel string kernel based on protein sequence profiles, such as those
produced by PSI-BLAST. The profile kernel extends the framework ofk-mer based string
kernels but dramatically improves SVM classification and remote homology detection over
these earlier kernels. In our SCOP benchmark experiments, the SVM-profile kernel also
outperformed other recently presented SVM approaches such as the eMOTIF kernel and
SVM-pairwise and gave far better performance than PSI-BLAST used directly as a ranking
method. Furthermore, the profile kernel is competitive with recent semi-supervised cluster



December 2, 2004 13:4 WSPC/INSTRUCTION FILE jbcb-profile-kernel

16 Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund and Christina Leslie

Fig. 4.Motif regions on the Mouse beta-spectrin protein that belongs to the PH domain-like protein super-
family. (a) PDB sequence annotation (PDB id 1btn) and SVM-extracted motif regions. (b) 3D structure of the
mouse beta-spectrin showing the SVM-extracted motif regions on the protein structure. The yellow regions are
the motif regions; the molecule is shown in pink and the ligand in green.

kernels, such as the neighborhood kernel, while achieving much better scalability to large
datasets. We note that the cluster kernel approaches are general methods that can be used
for a variety of applications, while the profile kernel is specialized for protein sequence
data; profiles are often computed and stored for other kinds of protein sequence analysis,
so profile-based kernels are particularly convenient. We then extend the profile kernel with
predicted secondary structure information to obtain further small but significant improve-
ment in remote homology detection performance.

We also show how to compute positional scores along profiles for the positive train-
ing sequences and thus extract discriminative sequence motifs. As a proof of principle, we
give examples from preliminary analysis where these discriminative regions indeed map to
important functional and structural features of the corresponding superfamilies. These dis-
criminative motifs may be of use to structural biologists for improving comparative models.
Moreover, we observed that motifs from known protein motif libraries like eMOTIF and
I-sites were only slightly over-represented in our discriminative regions, suggesting that
discriminative motifs for structural categories provide information that is complementary
or supplementary to known motif databases. Moreover, in cases where the protein classifi-
cation to be learned is a functional category, such as enzymatic activity, the method could
be used to find discrimative sites associated with protein function.

Several authors have recently defined kernels on probabilistic models like HMMs25,15.
One may be able to extend the semi-supervised methodology we introduce here to use these
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Fig. 5.Motif regions on the shark parvalbumin protein, from the EF-hand calcium-binding protein super-
family. (a) PDB sequence annotation (PDB id 5pal) and SVM-extracted motif sequences. (b) 3D structure of the
parvalbumin protein showing the motif regions on the protein structure. The yellow regions are the motif regions;
the two silver balls represent the calcium molecules.

kernels on suitable probabilistic models for protein sequences; for example, one could use
PSI-BLAST profiles to estimate profile HMMs and then use kernels defined on HMMs
for SVM training. However, these probability kernels are more computationally expensive
than the profile kernel, which scales linearly with sequence length.

One significant finding from the analysis of our method is that for some superfamilies,
only 20%-30% of the positions in the positive training sequences give a cumulative total of
90% of the SVM classification score for these sequences in remote homology detection ex-
periments. This result may suggest that the multiple alignment of protein domain sequences
from a superfamily—which would be used, for example, in a superfamily-based profile
HMM approach—might be unnecessary for this problem, since the discriminative infor-
mation is concentrated in relatively short subregions of the protein sequences. Our profile-
based string kernel approach does implicitly use heuristic alignment via PSI-BLAST, but
this is only to build a local profile model around each sequence, not to build a model for
all the positive sequences at once. We find that local profile information, when combined
with an effective profile-based string kernel representation and a powerful classification
algorithm, allows us to implement a new and compelling alternative approach to remote
homology detection.
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Fig. 6. Motif regions on the scorpion OSK1 Toxin from the Scorpion toxin-like superfamily. (a) PDB se-
quence annotation (PDB id 1sco) and SVM-extracted motif regions. (b) 3D structure of the OSK1 toxin showing
the SVM-extracted motif regions on the protein structure. The yellow regions are the motif regions; the yellow
bars represent the disulphide bridges.
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