Testing for Concise Representations

llias Diakonikolag Homin K. Le€ Kevin Matulef Krzysztof Onak
Columbia University ~ Columbia University MIT MIT
ilias@cs.columbia.edu homin@cs.columbia.edu matulef@mit.edu konak@mit.edu
Ronitt Rubinfeld Rocco A. Servedio Andrew Wari*
MIT Columbia University Columbia University
ronitt@theory.csail.mit.edu rocco@cs.columbia.edu atwl2@columbia.edu
July 26, 2007
Abstract

We describe a general method for testing whether a function put variables has a concise
representation. The approach combines ideas from the fiesttaf Fischeet al. [FKR*04] with ideas
from learning theory, and yields property testers that maddg(s/e) queries (independent of) for
Boolean function classes such &term DNF formulas (answering a question posed by Paehas.
[PRS02]), sizes decision trees, sizeBoolean formulas, and sizeBoolean circuits.

The method can be applied to non-Boolean valued functiossekas well. This is achieved via
a generalization of the notion ofariation from Fischeret al. to non-Boolean functions. Using this
generalization we extend the original junta test of Fis@te. to work for non-Boolean functions, and
give poly(s/e)-query testing algorithms for non-Boolean valued functitasses such as sizealgebraic
circuits ands-sparse polynomials over finite fields.

We also prove &(+/s) query lower bound for nonadaptively testiggparse polynomials over finite
fields of constant size. This shows that in some instancesgeneral method yields a property tester
with query complexity that is optimal (for nonadaptive aligfoms) up to a polynomial factor.

*Supported in part by NSF grant CCF-04-30946 and an AlexaBd@nassis Foundation Fellowship.

TSupported in part by NSF award CCF-0347282 and by NSF awafe-@23664.

tSupported in part by an NSF graduate fellowship.

$Supported in part by NSF grant 012702-001.

YSupported in part by NSF grant 012702-001.

ISupported in part by NSF award CCF-0347282, by NSF award G8283664, and by a Sloan Foundation Fellowship.
**Supported in part by NSF award CCF-0347282 and by NSF awaft@23664.

0

1 Introduction

Suppose you are given black-box access to a program corgpatininknown function. You would like to
gain some understanding of the program by querying it asifeestas possible. A natural first question is
whether the program has some sort of concise representéibmepresentable by a small decision tree? a
small DNF formula, Boolean circuit, or algebraic circuit®3marse polynomial?

In this paper we study the problem of testing whether a fondtias a concise representation for various
different types of representations, including those noetil above. We work in the standard model of
property testing Namely, we assume that we have black-box query access tolamown functionf :

Q" — X, and we are interested in algorithms that accept any fumetioich has a concise representation
of the desired type and reject any function which-far from having such a representation (i.e. for every
function f’ which has such a representatighand f’ disagree on at least anfraction of inputs). As is
standard in property testing, we assume that queries tautietion are the limiting resource (rather than
computation time), and we would like to obtain algorithmsost query complexity is independentrgfthe
number of inputs to the function.

1.1 Previous work on testing function classesThere has been considerable research on testing functions
for various types of representations. Our work is most diyemotivated by the paper of Parnas al.
[PRS02], who gave algorithms for testing whether Boolearefions f : {0,1}"—{0, 1} have certain very
simple representations as Boolean formulae. They gave(&y)-query algorithm for testing whethgris

a single Boolean literal or a Boolean conjunction, anc@ésQ/e)-query algorithm for testing whethgris

an s-term monotone DNF. Parna&s$ al. posed as an open question whether a similar testing resubbea
obtained for the broader class of general (non-monote#ie)m DNF formulas.

Other closely related results include the following: AX1/e¢)-query algorithm for testing whether
a function can be represented as a linear form over a finit@ ifsegiven in Blumet al. [BLR93]. This
algorithm was subsequently generalized in several workedbwhetherf can be represented as a low-
degree polynomial. In particular, [AKKO3, JPRZ04, KR04] consider the case wheis defined over a
small finite field. Fischeet al.[FKR™04] gave an algorithm to test whether a Boolean funcfiar€)” —
{0,1} is aJ-junta (i.e. depends only on at mo5bDf its n arguments) with query complexity polynomial in
J andl/e.

Other research in the area includes the work of Kearns andiR®00], who gave testing algorithms
for the classes of interval functions over the continuotisriral [0, 1] and for neural networks and decision
trees over the continuous cufie1]™. Their results are not comparable to ours because they fiifi@ the
“standard” property testing results in several ways; fog tning, they view the dimensiom as a constant
and their algorithms have query complexity that dependsdiesntially) onn.

1.2 Our results. Our main result is a general algorithm that can be used towbsther an unknown
function f : Q™ — X belongs to one of many different representation classdengsas the representation
class satisfies certain conditions. We show that this dlyaoriyields property testers for many classes
that were not previously known to be testable. These incligtgsion lists, size-decision trees, size-
branching programss-term DNF (resolving the aforementioned open question ohd&set al.), sizes
Boolean formulas, size-Boolean circuits, and-sparse polynomials ovéh,.! For each of these classes the
testing algorithm uses pdly, 1/¢) many queries, independent of the numbef inputs to the function (the
running time is exponential in, though linear im). These testing results are summarized in the top part of
Table 1. We note that our general algorithm can also be esisdwn to yield property testers for all of the
classes tested in [PRS02]; the query complexities wouldigbtly larger than in [PRS02], but would not
require a specialized algorithm for each problem.

"We remind the reader thatdfis a subclass of’, the existence of a testing algorithm f8F doesnotimply the existence of a
testing algorithm foc; thus, for example, our testing result for Boolean circddes not imply the results for weaker representations
such as Boolean formulas or DNF formulas.

\ Class of functions \ Number of Queries \ Reference |
Boolean functionsf : {0,1}" — {0,1}
Boolean literals (dictators), conjunctions O(1/¢) [PRS02]
s-term monotone DNFs O(s%/e) [PRS02]
J-juntas O(J?%/¢), Q(J) (adaptive) | [FKRT04], [CG04]
decision lists O(1/€%) this paper
sizes decision trees, sizebranching programs, O(s*/€?), this paper
s-term DNFs, sizes Boolean formulas Q(log s/ log log s) (adaptive)
s-sparse polynomials ovét, O(s*/e?), Q(y/s) this paper
sizes Boolean circuits O(s%/€?) this paper
functions with Fourier degres d 0(254/€%), Q(V/d) this paper
General functions f : Q" — X
J-juntas O(J?/e) this paper
s-sparse polynomials over field of siZe| Q(\/Og()(fs(‘)lrwy%;\/f)o’(l) this paper
size algebraic circuits, ~ :
sizes algebraic?:omputation trees oveér O(s" log [F|/€?) this paper

Table 1: Selected previous results on testing functiorselasOur upper bounds are for adaptive algorithms,
though in all cases very similar bounds for non-adaptiverdlgms can be achieved (see Appendix C). The
lower bounds are for non-adaptive algorithms unless otiserimdicated by (adaptive).

Our second contribution is a generalization of the notionasfation given in [FKR"™04] to functions
with non-Boolean ranges. This generalization, and thegut@s we establish for the generalized variation,
lets us extend the junta test of [FKR4] to functions with non-Boolean ranges. It also allows aisise
our general algorithm to achieve testers for non-Booledunedafunction classes such as sizalgebraic
circuits, sizes algebraic computation trees, aseparse polynomials over finite fields (see the bottom of
Table 1).

Our third main contribution is a lower bound; we show that aoyp-adaptive algorithm to testsparse
polynomials over finite fields of constant size must m@KQ/E) queries. Since this is within a polynomial
factor of our upper bound, this result shows that in at leastinstance our general algorithm yields a tester
that is nearly optimal. (For testing other representatiasses, there is a larger gap between our upper
and lower bounds. We give some simple but fairly weak lowams for other representation classes in
Appendix E.)

1.3 Our techniques. Our approach combines ideas from the junta test of Fisehat. [FKR™04] with
ideas from learning theory. The basic idea of using a legralgorithm to do property testing goes back to
Goldreichet al. [GGR98]. They observed that any proper learning algoritbmafclasg’ can immediately
be used as a testing algorithm ©r (If f belongs taC, then a proper learning algorithm can be used to
find a functionf’ € C that f is ¢/2-close to, while if f is e-far from C then clearly the proper learning
algorithm cannot find any functiofi € C that f is evene-close to.) However, it is well known that proper
learning algorithms for virtually every interesting clags:-variable functions (such as all the classes listed
in Table 1, including such simple classes as Boolean Iggmalust make at least(logn) queries. Thus
this testing-by-learning approach did not previously ¢iahy strong results for testing interesting function
classes.

We get around this impediment by making the key observatiahrany interesting classéof func-
tions are “well-approximated” by juntas in the followingse: every function i is close to some function

in Cy, whereC; C C and every function i is a.J-junta. For example, eversrterm DNF over{0, 1}" is
T-close to ans-term DNF that depends on ondylog s/7 variables, since each term with more thag s/
variables can be removed from the DNF at the cost of at mpserror. Roughly speaking, our algorithm
for testing whetherf belongs toC works by attempting to learn the “structure” of the juntaCip that f

is close towithout actually identifying the relevant variables on walhithe junta dependdf the algorithm
finds such a junta function, it accepts, and if it does notgjieets. Our approach can be characterized as
testing by implicit learningas opposed to the explicit proper learning in the approdchoddreichet al.
[GGR98)), since we are “learning” the structure of the jurtavhich f is close without explicitly identi-
fying its relevant variables. Indeed, avoiding identifyitne relevant variables is what makes it possible to
have query complexity independentraf

We find the structure of the juntd in C; that f is close to by using the techniques of [FKe4].

As in [FKR104], we begin by randomly partitioning the variablesfointo subsets and identifying which
subsets contain an influential variable (the random pamiitig ensures that with high probability, each
subset contains at most one such variablgig indeed inC). Next, we create a sample of random labeled
examplegz!,y'), (22, 9?), ..., (z™,y™), where each’ is a string of length/ (not lengthn; this is crucial

to the query complexity of the algorithm) whose bits cormgpto the influential variables gf, and where
y* corresponds with high probability to the value of jurfteon z*. Finally, we exhaustively check whether
any function inC; — overJ input variables — is consistent with this labeled samplds $tep takes at least
|Cs| time steps, which is exponential jrfor the classes in Table 1; but singk | is independent of we are
able to get away with an overall query complexity that is petedent of.. (The overall time complexity is
linear as a function of; note that such a runtime dependencends inevitable since it takes time steps
simply to prepare a length-query string to the black-box function.) We explain our itegtalgorithm in
more detail in Section 3.

In order to extend our testing results and the junta testisglts in [FKR™04] to functions with non-
Boolean ranges, we extend the technical definitioveofation given in [FKR™04] to more general functions
(intuitively, the variation is a measure of the ability of et ®f variables to sway a function’s output). We
show that this extended definition has the necessary prepea carry the analysis of the junta tests and
our test over to this more general setting. We present angzmaur extended definition of variation in
Section 3.3.

Finally, we prove our lower bound for testingsparse polynomials over finite fields in two stages. We
first show that any non-adaptive algorithm that can sucatgddistinguish a linear forme;, + - - - + x;,
(over s randomly selected variables from, ..., z,) from a linear formz;, + --- + z;, (overs +p

randomly selected variables, wheres the characteristic of the finite field) must mefke\/g) queries. This

is a technical generalization of a similar result forin [FKR*04]; the heart of our proof is an extension of
a convergence type result about random walks @/ewith arbitrary step distribution to random walks over
Z}. (As an interesting side product, the latter also partiatigwers a question posed in [FK84] as to
what groups possess a similar convergence type properg/thgv prove that everyrsparse polynomiaj
over finite fieldF is “far” from every affine function with at leasty- 1 non-zero coefficients. This result does
not have an analogue in [FK®4] (that paper establishes a lower bound on distinguishings parities
from size{s + 2) parities, and it is trivially true that every sizeparity is far from every sizés + 2) parity)
and its proof requires several ideas; our argument usesmargstrictions chosen according to a distribution
that depends on the structure of the polynomidiVe present these results in Section 4.

2 Preliminaries

Fori € IN, we denotéi] e {1,2,...,4}. Throughout the papef) denotes an arbitrary finite set aid
denotes an arbitrary finite range set. We will be interestddnctionsf that map from2™ to X. In keeping
with the notation of Fischeet al.[FKRT04] we sometimes writ@®([n]) to denote the domaift”, and we
write z = (z1,...,z,) to denote an element of the dom&i[n]). An important special case for many of
the applications of our main result, discussed in Appendik, 3 whenf is a Boolean function over the

Boolean hypercube, i.€ = {0,1}" andX = {—1,1}.

We view the domairP(|n]) as endowed with the uniform probability measure. Two fuorify, fs :
P([n]) — X are said to be-closeif Pr[f(z) # fa(x)] < ¢, and aree-far if Pr[fi(z) # fa(x)] > €. We
write [E to denote expectation afidto denote variance.

Let f : P([n]) — X be afunction and lef C [n] be a subset of the input coordinates. We defiié)
to be the set of all partial assignments to the input cootdsg for i € I. ThusP([n]) = Q" is the entire
domain of all input vectors of length. Forw € P([n] \ I) andz € P(I), we writew Ll z to denote the
assignment whoséeth coordinate isv; if i € [n] \ I andisz; if i € I.

A function f : P([n]) — X is said to be a/-juntaif there exists a sel/ C [n] of size at most/ such
that f(z) = f(y) for every two assignments, y € P([n]) that agree o1y/.

Let .S be a finite set ant®, Q be probability measures on it. Th&atistical distancdetweernP andQ is

defined byi|P — Q|| ' max g [P(A) — Q(A)].

3 The test and an overview of its analysis

In this section we present our testing algorithm and givenauitive explanation of how it works. We close
this section with a detailed statement of our main theordmeofem 4, describing the correctness and query
complexity of the algorithm.

3.1 Subclass approximators.Let C denote a class of functions frof([n]) to X. We will be interested
in classes of functions that can be closely approximatediiiag in the class. We have the following:

Definition 1. For 7 > 0, we say that a subclag¥7) C Cis a(r, J(7))-approximatoffor C if

e C(7) is closed under permutation of variables, i.efif,...,x,) € C(7) thenf(zs,,...,25,) IS
also inC(r) for every permutatior of [n]; and

e for every functionf € C, there is a functionf’ € C(r) such thatf’ is 7-close tof and f’ is a
J(7)-junta.

Typically for usC will be a class of functions with size boundn some particular representation, and
J(7) will depend ons and 7. (A good running example to keep in mind@ = {0,1}, X = {-1,1},
andC is the class of all functions that hageterm DNF representations. In this case we may ke to
be the class of ali-termlog(s/7)-DNFs, and we havd (1) = slog(s/7).) Our techniques will work on
function classe€ for which J(7) is a slowly growing function of. /7 such adog(1/7). In Section 3.7 we
will consider many different specific instantiations@énd corresponding choices ©fr).

We writeC(7);, to denote the subclass©fr) consisting of those functions that depend only on variables
in{x1,...,zr}. We may (and will) view functions i€ (7); as takingk arguments fron§2 rather tham.

3.2 The independence testAn important sub-test that will be used throughout the mest is the inde-
pendence test from [FKR04].

Independence testGiven a functionf, and a set of variables choosew € P([n]\I) andzy, zo €g P(I).
Acceptif f(w U z1) = f(wU z9) and reject iff (w Ll z1) # f(w U 29).

If fis independent of the coordinates inthe independence test always accepts. On the other hand,
intuitively if I contains highly relevant variables that are likely to swag output off, the independence
test is likely to reject.

3.3 Extended variation and testing juntas with non-Booleamanges. Fischeret al. [FKR™04] defined
the notion of thevariation of a function on a subset of input variables. The variatioa measure of the
extent to which the function is sensitive to the values ofvigéables in the set. Let us recall their definition
of variation.

Definition 2. Let f be a function fronP([n]) to {—1,1}, and let/ C [n] be a subset of coordinates. We
define thevariationof f onI as

vip(l) Ewermhn [Vaer) [f(w U 2)]] . 1)

Fischeret al. showed that the variation is monotone and sub-additivé féh@ subsef of the variables,
the probability that the independence test rejects is tyx%dfrf(l); and that ifVr(I) < 2e thenf is
e-close to a function which does not depend on the variablds irhe analysis of their junta tests depends
crucially on these properties of variation.

Unfortunately, the variation properties stated above daivweays hold for functions with non-Boolean
range, and the original analysis of the junta test does oy o&er to the non-Boolean setting. Intuitively,
however, the fact that a function may take on more than tweegshould not make the junta test incorrect.
The independence test, which is the main component of the jaest, only checks if values of the function
are equal or different. Can one modify the definition of vidmimand the analysis of the junta test so that the
non-Boolean case is captured too?

An approach that we manage to successfully apply is mappméunction range to the Boolean range.
The general idea is to pick a mapping from the function rakige the set{—1, 1} that preserves as much
of the sensitivity of the function as possible. If we look afuation 1 defining variation, we could choose
the best mapping t¢—1,1} either before or after the expectation operator. It turrtstioet depending on
the context, one or the other is more suitable, so we definausadoth. Denote by (X) the set of all
functions fromX to {—1,1}.

Definition 3. Let f be a function fronP([n]) to X, and let] C [n] be a subset of coordinates. We define
thebinary variationof f onI as

. def
BirVey (1) = max Vigos(I) = max Euep(ann [Vaep l9(f(w U],

and theextreme variatiorof f on I as

def
xtVry(1) eP(nn\1) | 02X Veep() [g(f(w L 2))]
To be able to use both new notions of variation, we need to shatwthey are related. Probabilistic
analysis shows that these two quantities are always witfactar of 4 of each other:

iExtVrf(I) < BinVry(I) < ExtVrs(I).

In Appendix A, we prove that theinary variationhas almost identical properties to the original varia-
tion. Namely, we show that the binary variation is also monetand sub-additive; that the independence
test rejects with probability at leagBinVr;(I); and that ifBinVr (1) < €/4 for some subsef of the
variables off then f is e-close to a function that does not dependonFurthermore, in Appendix A.6
we explain how these properties imply that the three jurdestgiven by Fischeet al. essentially work for
functions with non-Boolean ranges as well (with minor madifions). Indeed, the first step of our general
testing algorithmA is essentially the junta test of Fischefral. modified to apply to non-Boolean valued
functions. We carefully analyze this first step in Appendig;Bhe results there are easily seen to imply that
this first step gives af®(J2/¢)-query junta test for non-Boolean functions as claimed inld4.

3.4 Explanation of our testing algorithm. Our algorithm for testing whether a functigh: P([n|)—X
belongs taC or is e-far from C is given in Figures 1 through 3. Given> 0 and black-box access t the
algorithm performs three main steps:

Identify-Critical-Subsets (input is black-box access tb: 2" — X ande > 0)

1. Partition the variables,, ..., x,, into r random subsets by assigning eachqf. . . , x,, equiprob-
ably to one ofl4, ..., I,.

2. Chooses random subsetd;, ... ,A; C [r] of size J(7*) by uniformly choosing without repeti

tions J(7*) members ofr|. Each set\; determines a blociB; o Ujen, Ij- (Note that we do

not guarantee that the blocks are disjoint.)

3. Apply h iterations of theindependence tegsee Section 3.2) to each blodk. If all of the
independence test iterations applied to bldgkaccept, themB; is declared to beariation-free
and all the subsets; with j € A; are declared to be variation-free on its behalf.

4. If:

(a) atleast half of the blockBy, ..., B, are variation-free; and

(b) except for at mosi (7*) subsets, every subset in the partitin. . . ,7, is declared variation
free on behalf of some block,

then output the list; , ..., I;; of those subsets that anet declared to be variation-free. (We ca
these theritical subsets.) Otherwise, halt and output “Notifi

Figure 1: The subroutinkelentify-Critical-Subsets.

1. Identify critical subsets. In Step 1, we first randomly partition the variables . . . , x,, into r disjoint
subsetdy, ..., I,. We then attempt to identify a set ¢f< J(7*) of theser subsets, which we refer
to ascritical subsets because they each contain a “highly relevant”’blarigFor now the value™
should be thought of as a small quantity; we discuss how tilisevis selected below.) This step is
essentially the same as the 2-sided test/fguntas from Section 4.2 of Fischet al.[FKR™04]. We
will show that if f is close to aJ(7*)-junta then this step will succeed w.h.p., andfifs far from
everyJ(7*)-junta then this step will fail w.h.p.

2. Construct a sample.Let I;,, ..., I;; be the critical subsets identified in the previous step. &p&t
we construct a sef of m labeled example$(zt, y!), ..., (z™,y™)}, where each’ is independent
and uniformly distributed ove®” (™). We will show that if f belongs taC, then with high probability
there is a fixedf” € C(7*) j(,+) such that eacly’ is equal tof”(z"). On the other hand, if is far
from C, then we will show that w.h.p. no sugf € C(7*) ;(,+) exists.

To construct each labeled example, we again borrow a tegbmigtlined in [FKR 04]. We start with

a uniformly randonr € Q™. We then attempt to determine how thaighly relevant coordinates af
are set. Although we don't know which of the coordinates afe highly relevant, we do know that,
assuming the previous step was successful, there shouldebeighly relevant coordinate in each of
the critical subsets. We use the independence test repettedietermine the setting of the highly
relevant coordinate in each critical subset.

For example, suppose that= {0, 1} and; is a critical subset. To determine the setting of the highly
relevant coordinate of in critical subsetl;, we subdividel; into two sets: the subsél, C I; of
indices where: is set to0, and the subsé?; = I;\Q of indices where: is set tol. We can then use
the independence test on bddy and(?; to find out which one contains the highly relevant variable.
This tells us whether the highly relevant coordinate: af subset!; is set to0 or 1. We repeat this
process for each critical subset in order to find the settiidie j highly relevant coordinates af;
these form the string. (The otherJ(7*) — j coordinates of: are set to random values; intuitively,

6

Construct-Sample (input is the listl;,, ..., I;, output byldentify-Critical-Subsets and black-box
access tq)

1. Repeat the followingn times to construct a sét of m labeled exampleér, y) € 0/ x X,
whereQ) = {wo, w1, ..., wjg|-1}:

a) Drawz uniformly from Q™. Let X def 1:2;, =w,t, foreachd) < ¢ < Q| — 1.
q q

(b) Fort=1,...,5

. def
i w =0

i. Fork=1,...,[1g|Q]

A. Q0 % union of (X, N I;,) taken over alb < ¢ < || — 1 such that the:-th bit of
q is zero

B. Q1 % union of (X, N I;,) taken over alb < g < |Q2] — 1 such that the:-th bit of
g is one

C. Apply g iterations of thandependence tesd 2. If any of theg iterations reject,
mark€)y. Similarly, applyg iterations of theéndependence tesb €24 ; if any of the
g iterations reject, mark;.

D. If exactly one of)y, 1 (say(2) is marked, set thé-th bit of w to b.
E. If neither ofQ)g, €21 is marked, set thé-th bit of w to unspecified.
F. If bothQq, Q; are marked, halt and output “no”.
iii. If any bit of w is unspecified, choose at random from{0, 1, ..., |Q| — 1}.
iv. If w ¢ [0,|Q] — 1], halt and output “no.”
V. Setzy = wy.
(c) Evaluatef on z, assign the remaining(7*) — j coordinates of: randomly, and add the pa
(z, f(z)) to the sample of labeled examples being constructed.

=

Figure 2: The subroutin€onstruct-Sample.

Check-Consistencyinput is the samplé& output byldentify-Critical-Subsets)

1. Check every function i€ (7*) .+, to see if any of them are consistent with samgle If so
output “yes” and otherwise output “no.”

Figure 3: The subroutin€heck-Consistency.

this is okay since they are essentially irrelevant.) We theput(x, f(z)) as the labeled example.

3. Check consistency.Finally, in Step 3 we search throug@t7*) ;(,+) looking for a functionf” over

Q7™ that is consistent with ath examples inS. (Note that this step také(|C(7*) ;,-)|) time but
uses no queries.) If we find such a function then we acg¢eptherwise we reject.

3.5 Sketch of the analysisWe now give an intuitive explanation of the analysis of thst.te

CompletenessSupposef is in C. Then there is som¢ € C(7*) that ist*-close tof. Intuitively, 7*-close

is so close that for the entire execution of the testing @lgor, the black-box functiory might as well
actually bef’ (the algorithm only performs< 1/7* many queries in total, each on a uniform random string,
so w.h.p. the view of the algorithm will be the same whetherttie target isf or /). Thus, for the rest of

this intuitive explanation of completeness, we pretend ttablack-box function ig”.

Recall that the functiorf’ is a.J(7*)-junta. Let us refer to the variables;, that haveBinVr¢(z;) > 6
(recall thatBinVr s (x;) is a measure of the influence of variablg and¢ is some threshold to be defined
later) as thehighly relevantvariables of f/. Since f’ is a junta, in Step 1 we will be able to identify a
collection ofj < J(7*) “critical subsets” with high probability. Intuitively, #se subsets have the property
that:

e each highly relevant variable occurs in one of the criticddsets, and each critical subset contains at
most one highly relevant variable (in fact at most one reievariable forf’);

e the variables outside the critical subsets are so “irr@lgvhat w.h.p. in all the queries the algorithm
makes, it doesn’t matter how those variables are set (ralyditipping the values of these variables
would not change the value ¢f w.h.p.).

Given critical subsets from Step 1 that satisfy the aboveetees, in Step 2 we construct a sample of
labeled exampleS = {(z!,4'),..., (z™,3™)} where each’ is independent and uniform over' (™). We
show that w.h.p. there is.&(7*)-junta f” € C(7*) ;) with the following properties:

e there is a permutation : [n] — [n] for which f"(z5(1y, ..., Zs(s(r))) iS close tof'(x1, ..., zy);
e The sampleS is labeled according t¢”.

Finally, in Step 3 we do a brute-force search over all @f*) ;(,+) to see if there is a function consistent
with S. Since f” is such a function, the search will succeed and we output’‘with high probability
overall.

SoundnessSuppose now that is e-far fromC.

One possibility is thaf is e-far from every.J (7*)-junta; if this is the case then w.h.p. the test will output
“no” in Step 1.

The other possibility is thaf is e-close to aJ(7*)-junta f’ (or is itself such a junta). Suppose that
this is the case and that the testing algorithm reaches Stép Step 2, the algorithm tries to construct a
set of labeled examples that is consistent wfith The algorithm may fail to construct a sample at all; if
this happens then it outputs “no.” If the algorithm succedsonstructing a sampl§, then w.h.p. this
sample is indeed consistent wifhy but in this case, w.h.p. in Step 3 the algorithm will not fimy dunction
g € C(7%) s+ that is consistent with all the examples. (If there were saidhinctiong, then standard
arguments in learning theory show that w.h.p. any such fomgt € C(7*) ;(-+) that is consistent wittt
is in fact close tof’. Sincef’ is in turn close tof, this would mean tha is close tof. But g belongs to
C(7*) s~y and hence t@, so this violates the assumption tifais e-far fromC.)

3.6 The main theorem. We now state our main theorem, which is proved in detail in é&mjix B. The
algorithm A is adaptive, but in Appendix C we discuss how to make it ncepéde with only a slight
increase in query complexity.

Theorem 4. There is an algorithm4 with the following properties:
LetC be a class of functions frof1” to X. Suppose that for every > 0, C(7) C Cis a(r, J(1))-
approximator forC. Suppose moreover that for every 0, there is ar satisfying

62

= () - ()2 () - (I (7)) - W2(C() s) - (2D 1 e (7))

(2)

wherex > 0 is a fixed absolute constant. Let be the largest value satisfying (2) above. Then algorithm
A makes

0 (221

many black-box queries tf, and satisfies the following:
e If f € C then.A outputs “yes” with probability at leas®/3;
e If fise-far fromC then.A outputs “no” with probability at leas/3.

Here are some observations to help interpret the bound (8)e that if /() grows too rapidly as a
function of1/7, e.g.J(7) = Q(1/4/7), then there will be ne- > 0 satisfying inequality (2). On the other
hand, if J(7) grows slowly as a function dof/7, e.g.log(1/7), then it is may be possible to satisfy (2).

In all of our applications/(7) will grow as O(log(1/7)), andIn |C(7) s)| will always be at most
poly(J(7)), so (2) will always be satisfiable. The most typical case fowill be that/(7) < poly(s)log(1/7)
(wheres is a size parameter for the class of functions in questiod}@@fC'(7) ;)| < poly(s)-poly log(1/7),

which yields = O(¢?) /poly(s) and an overall query bound pbly(s)/O(€?).

3.7 Applications to Boolean and Non-Boolean Function§heorem 4 can be used to achieve testing
algorithms, in most cases polynomial-query ones, for a wégige of natural and well-studied classes of
Boolean functions over the-dimensional Boolean hypercube (if¢.= {0,1} and X = {—1,1}), such as
s-term DNF. We use Theorem 4 to achieve testing algorithmsdueral interesting classes of non-Boolean
functions as well.

These testing results are noted in Table 1; we give detatbtdraents and proofs of these results in
Appendix D.

4 Lower bounds for testing sparse polynomials.

One consequence of Theorem 4 is a [poly)-query algorithm for testing-sparse polynomials over finite
fields of fixed size (independent 0j. In this section we present a polynomial lower bound for-adaptive
algorithms for this testing problem. (Detailed proofs frasults in this section are given in Appendix E.)

Theorem 5. LetF be any fixed finite field, i.dF| = O(1) independent of. There exists a fixed constant
€ > 0 (depending ofi'|) such that anyion-adaptive-testing algorithm for the class efsparse polynomials
overF"™ must make2(/s) queries.

To prove Theorem 5 we use Yao’s principle [Yao77] in (what basome) a standard way for proving
lower bounds in property testing (e.g. see [Fis01]). Wegmetwvo distributionsDy s and Do, the former
on inputs satisfying the property (i.e-sparse polynomials fro™ to), the latter on inputs that akefar
from satisfying it, and show that any deterministic (nomyatil’e) algorithm making “few” queries cannot
distinguish between a random draw frdir gg versus a random draw frofno. By standard arguments
(see for example Lemma 8.1 in [Fis01]), it suffices to argw tor any query se@ C F™ of cardinality
q = O(y/s) the induced distributions ofi? (obtained by restricting the randomly chosen functionsese
g points) have statistical distance less thda.

We define bothDygrs and Dyo to be distributions over linear forms frofii* to F. A random func-
tion from Dygg is obtained by independently and uniformly (with repetisd picking s variables from
x1,...,T, and taking their sum.Dyo is defined in the same way, but instead we pick p variables,
wherep is the characteristic of the fielfl. Clearly, every draw fronDygg is ans-sparse polynomial over
IF, and forn = w((s + p)?), the birthday paradox implies that almost all the probgbitiass ofDyo is on
functions withs + p distinct nonzero coefficients. We claim that, for any sej ef O(,/s) points inF", the
corresponding induced distributions have statisticahdise less thaih/3.

Let (G, +) be a finite group. A probability measufeon G induces a random walk off as follows:
Denoting by X, its position at timen, the walk starts at the identity element and at each steptsed@
element,, € G according tdP and goes toX,,,1 = &, + X,,. By arguments parallel to those in Section 6
of [FKR™04], the aforementioned claim can be reduced to the follgwi@orem about random walks over
7.1, which we prove in Section E.1.1:

Theorem 6. Letr be a primeg € IN* andP be a probability measure o#;. Consider the random walk
on Z with step distributionP. LetP; be the distribution of{ at stept. There exists an absolute constant

C > 0 such that for everg < § < 1/2,ift > C% -4 logr - ¢*log?(q + 1) then||P; — Pyy,| < 6.

Theorem 6 is a non-trivial generalization of a similar regubved in [FKR"04] for the special case
r = 2. We now give a high-level overview of the overall strategyyAyivenz € (Z7)* partitions the space
into r non-empty subspacé§” = {y € Z! : (y,z) =i} fori =0,1,...,r — 1. We say that an € (Z})*
is degeneratéf there exists soméwhose probability measut®(V;*) is “large”. We consider two cases: If
all the Fourier coefficients df are not “very large”, then we can show by standard arguméatghe walk
is close to its stationary (uniform) distribution after tthesired number of steps. If, on the other hand, there
exists a “very large” Fourier coefficient, then we argue thate must also exist a degenerate direction and
we use induction on.

So far we have shown that any algorithm that can successfigtinguish a random linear formy;, +
--» + x;, from a random linear form;, + --- + x;_, must make2(,/s) queries. To complete the proof
of Theorem 5, we must show that evergparse polynomial ovef” is “far” from every linear function of
the formz;, + -+ + w;,,,. We do this via the following new theorem (stated and provechore detail as
Theorem 36 in Appendix E), which may be of independent iistere

Theorem 7. There exists a function= ¢(|F|) such that for any : F* — F that is ans-sparse polynomial
with s < n — 1, g is e-far from every affine function with at least+ 1 non-zero coefficients.

The high-level idea of the proof of Theorem 7 is as followst L& be a particular monomial ig, and
consider what happens wheris hit with a restriction that fixes all variables that do netor in M. M
itself is not affected by the restriction, but it is possilibe a longer monomial to “collapse” ontd/ and
obliterate it (i.e. ifM is z12% andg contains another monomidl’ = —x1 2323, then a restriction that fixes
x3 +— 1 would causeM’ to collapse ontdl/ and in fact obliteraté/). We show thayy must have a short
monomial M (which, however, has degree at least 2) with the followingpprty: for a constant fraction
of all possible restrictions of variables not d, no longer monomial collapses ondd. This implies that
for a constant fraction of all such restrictiopsthe induced polynomigj, is “substantially” different from
any affine function (since, — a polynomial of degree at least two — is not identical to dfipefunction,
it must be “substantially” different since there are onlgdéh /) surviving variables), and hengeitself
must be “far” from any affine function.

Lower bounds for other function classes By adapting techniques of Chockler and Gutfreund [CGO04],
we can also obtaif(log s) lower bounds for many of the other testing problems liste@able 1. We state
and prove these lower bounds at the end of Appendix E.

5 Conclusion

Our positive results are all achieved via a single genegoréghm that is not geared toward any particular
class of functions. For many classes of interest, the quamptexity of this algorithm ipoly(s, 1/¢), but
the running time is exponential i It would be interesting to study algorithms that are morecsijrally
tailored for classes such asterm DNF, sizes Boolean formulas, etc. with the aim of obtaining pely
runtimes.

One approach to achieving better runtimes is to replaceimplitit learning” step with a more efficient
proper learning algorithm (the current learning algoritsimply gathers random examples and exhaustively
checks for a consistent hypothesis in the concept clgss ;(,+)). For some specific concept classes, proper
learning is known to be NP-hard, but for other classes, timeptexity of proper learning is unknown. The
existence of a time-efficient proper learning algorithmsome specific class(7*) ;(~) would likely yield
a time-efficient test in our framework.

Another goal for future work is to strengthen our lower bosindan polys) query lower bounds be
obtained for classes such as sizdecision treess-term DNF, etc?

10

References

[AKK T03] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Roilesting low-degree polynomials
overgf(2). In Proceedings of RANDOM-APPROXages 188-199, 2003.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testingfcecting with applications to numerical
problems.J. Comp. Sys. S¢i47:549-595, 1993. Earlier version in STOC’90.

[CGO4] H. Chockler and D. Gutfreund. A lower bound for tegtimntas. Information Processing
Letters 90(6):301-305, 2004.

[Dia88] P. Diaconis. Group Representations in Probability and Statistidsistitute of Mathematical
Statistics, Hayward, CA, 1988.

[Fis01] E. Fischer. The art of uninformed decisions: A prirt@property testing. IlComputational
Complexity Column of The Bulletin of the European Assamiafor Theoretical Computer Sci-
ence 75pages 97-126, 2001.

[FKRT04] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorns#gi Testing juntas.Journal of
Computer & System Scien¢@&8:753—787, 2004.

[GGR98] O. Goldreich, S. Goldwaser, and D. Ron. Propertiingsand its connection to learning and
approximation.Journal of the ACM45:653-750, 1998.

[JPRZ04] C. Jutla, A. Patthak, A. Rudra, and D. Zuckermarstifig low-degree polynomials over prime
fields. InProceedings of the 45th Annual IEEE Symposium on FoundatibBomputer Science
(FOCS '04) pages 423-432, 2004.

[KROOQ] M. Kearns and D. Ron. Testing problems with sub-l@agrsample complexityJ. Comp. Sys.
Sci, 61:428-456, 2000.

[KRO4] T. Kaufman and D. Ron. Testing polynomials over gah@elds. InProceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Scieno€8-'04) pages 413-422,
2004.

[NS92] N. Nisan and M. Szegedy. On the degree of Boolean ifumetas real polynomials. IRro-
ceedings of the Twenty-Fourth Annual Symposium on TheoBowofputing pages 462—-467,
1992.

[PRS02] M. Parnas, D. Ron, and A. Samorodnitsky. Testingchasolean formulae.SIAM J. Disc.
Math.,, 16:20-46, 2002.

[Ste00] D.Stefankovit. Fourier transform in computer science. Misthesis, University of Chicago,
2000.

[Ter99] A. Terras. Fourier Analysis on Finite Groups and Application€ambridge University Press,
Cambridge, UK, 1999.

[Ver90] K. Verbeurgt. Learning DNF under the uniform dibtrtion in quasi-polynomial time. In
Proceedings of the Third Annual Workshop on Computatiorerhing Theory pages 314—
326, 1990.

[Yao77] A. Yao. Probabilistic computations: towards a wdfimneasure of complexity. IRroceedings
of the 18th Annual Symposium on Foundations of Computen&ei@-OCS)pages 222227,
1977.

11

A Variation and testing juntas for non-Boolean ranges

For a random variabl&’, we writeE[X] to denote its expectation a’ X] to denote its variance. We write
F(X) to denote the set of all functions froii to {—1, 1}.

A.1 The original variation notion. In the paper of Fischeat al.[FKR*04] on testing juntas, the notion of
variation played a central role in the proof of correctnelstheir algorithms. Unfortunately, their definition
of variation only works for functions with Boolean range. Wal redefine the notion of variation so that it
works for non-Boolean ranges, and we will argue that the tegFischeet al.indeed work for non-Boolean
ranges, with the only difference being multiplicative camss.

Let us recall the original defnition of variation.

Definition 8. Let f be a function frontP([n]) to {—1,1}, and let/ C [n] be a subset of coordinates. We
define thevariationof f onI as

def
Vrp(I) = Eyepapn [Veepn [f(wL 2)]] .

Fischeret al. showed the following two facts on the variation, which wére heart of the proofs of the
soundness of their algorithms.

Lemma 9 (probability of detection [FKR*04]). Let f be a function fronfP([n]) to {—1,1}, and let
I C [n] be a subset of coordinates.uf € P([n]\I) andzy, zo € P(I) are chosen independently, then

Pr[f(w U z1) £ f(w U 22)] = %Vrf(l).

Lemma 10 (monotonicity and sub-additivity [FKR*04]).
VI‘f(A) < VI‘f(A U B) < VI‘f(A) +Vrf(B).

A.2 The binary and extreme variation. Now we will define the notion of theinary variationand the
extreme variatiorwhich work also for functions of non-Boolean ranges. Evesuth now we may have
more than 2 different values, we will map the range to only tlifferent values, which results in not
distinguishing some values of a function. We will try to nmmze the negative effects of such a mapping
by taking a mapping that maximizes what we can distinguisht Us start with the notion of the binary
variation.

Definition 11. Let f be a function fron¥°([n]) to X, and let] C [n] be a subset of coordinates. We define
thebinary variationof f onI as

. def
BinVry (1) = max Vigor(I) = max Evep(un) [Vaern lo(f(wU)]

By Lemma 9 and by the definition of the binary variation, thibofeing simple fact follows.

Lemma 12 (probability of detection). Let f be a function fronP([n]) to X, and let/ C [n] be a subset of
coordinates. Ifw € P([n|\I) andz, z, € P(I) are chosen independently, then

Prif(wlU z) # f(wU z)] > %BinVrf(I).

The binary variation also is monotone and sub-additive ctvidiirectly follows from the sub-additivity
and monotonicity of the original variation (Lemma 10).

12

Lemma 13 (monotonicity and sub-additivity).
BinVr¢(A) < BinVrf(A U B) < BinVrs(A) + BinVr(B).
Proof.
BinVr;(4) = max Vrgor(A) < max Vrgor (AU B)
max (Vrgof(A) + Vrgor(B))

IN

IN

max Vrgof(A) + max Vrger(B)
g g

IN

BinVr(A) + BinVr¢(B).
|

Now we will define the extreme variation which differs fronethinary variation by switching the order
of the expectation and maximization in the definition.

Definition 14. Let f be a function fron¥°([n]) to X, and let] C [n] be a subset of coordinates. We define
theextreme variatiorof f on I as

def
ExtVr¢(I) = Eyuep(in V., U
xtVry (1) eP(nn\1) | 02X Veep() [9(f(w U 2))]
It turns out that the two new notions of variation are clogelgted. Namely, they stay within a constant
factor.

Lemma 15.
BinVrs(I) < ExtVry(I) < 4 - BinVrg(1).

Proof. The first inequality is trivial, and directly follows from ¢éhdefinitions of the binary and extreme
variations.

Focus now on the second inequality. kixc P([n]\I). To maximizeV,cpp[(go f)(wU z)], we need
to takeg such that splitsX into two sets such that the probability that the functiorueabelongs to each of
them is as close td/2 as possible. If is the probability thatg o f)(w U z) = —1, then

V(p) ¥ V.epl(go f)(wU2)] = 4p(1 — p).

Becausé/ is concave irp, we have
2V (p/2) = V(p)

for p € [0,1]. Letp, be the greatest in the range[0, 1/2] that we can achieve. This means that the
corresponding functiom, splits X into two setsX; and X5 of probability p, and1 — p,, respectively,
where the first one is mapped tdl, and the other ta.

Now consider a functiog € F(X) that is uniformly chosen at random. Sucly anaps at least half
(measured by probability) ok to either—1 or 1; assume w.l.0.g. that it maps at least halfXof to —1.
Independently, with probability at leakt2 we have thay maps at least half oK, to 1. This means that for
a randomly chosen, with probability 1 /2 we have thap is in the rangép../2, 1 — p,/2], which implies in

13

turn thatV'(p) > V(p4)/2. Therefore,
BinVry(I) = maxEyep(nn) [Veerm (g0 f)(w U 2)]]

Eg [Ewep(nr) [Vaer [(9 0 f)(w U 2)]]]

Ewer(npn) [Eg [Veera) (90)(wU 2)]]]

1 1
Evermv) |5 5 max Veep() [(go flwU 2)]

v

1
|

A.3 The independence testAn important sub-test that will be used throughout the mest its the inde-
pendence test.

Independence testGiven a functionf, and a set of variables choosew € P([n]\I) andzy, zo € P(I).
Accept if f(w U z1) = f(w U z) and reject iff (w U z1) # f(w U z3).

The independence test always accepisig independent of the coordinatesifinand Lemma 12 states
that it rejects with probability at Iea%tBinVr #(I) in the non-Boolean setting, and with probability exactly
$Vr¢(I) in the Boolean setting.

A.4 Small variation and closeness to juntasDenote byPlur, f(x) the most commonly occuring output
of f for argumentse with ties broken arbitrarily (often referred to as the plity

Fischeret al. [FKR104] showed that if the variation of some subset of variabéesnnall, then the
function is close to a function that does not depend on thasahles. We will show that an almost identical
claim holds for the binary variation.

Lemma 16. Let 7 be a set of coordinates such tHainVr ;(7) < 1e. Let

h(z) € Plar,p o [f (20 T) U 2)).

The functiom is a|.J |-junta, depends only on variables jh, and agrees witlf on a set of assignments
of measure more thah— e.

The original lemma stated that it suffices to ha¥e (J) < 2e to bee-close to a junta o/ for a
Boolean-valued functiorf. Because of the difference in the required bound on variaiiq7 in the non-
Boolean settingd/4 vs. 2¢) we need to run the independence test, which is a subroutitieeijunta test,
more times to get the required result. Fortunately, it isugiato replace each single run of the independence
test byc independent runs for some constan(lt is also possible that actually the original algorithwith
the original constants work for non-Boolean ranges, buthtmasthis, a more careful analysis would be
necessary.)

We start with the following lemma that helps us connect seygsbbabilities for multi-valued functions
with probabilities for two-valued functions.

Lemma 17. Let f be a function from a seD (with some probability measure on it) £6. It holds that

Prif (@) = Pluy f(y)] 2 2 min Pri(ge f)(z) = Plury(g o f)(y)] 1.

Proof. Letp = Pr,[f(x) = Plur, f(y)]. This means that for anyin X it holds thatp > Pr,[f(z) = r].
Enumerate elements of. They arery, ro, r3, and so forth. Denote by, the probability thatf (x) equals

14

r; for j > 4. Obviously,p; = piy1 + Pry[f(x) = ri] < pip1 + p, that isp;1 > p; — p. Since
p1 = 1 and the sequenge converges td) and does not drop too quickly, there is an indg»such that
Pi, € [(1—]?)/2, (1+p)/2]. LetX1 = {7“1, A ,7"2'*_1}, andX2 = {ri*,ri*ﬂ, .. } Defineg* : X—>{—1, 1}

as
()def —1 forr e Xy,
T =
I 1 forr € Xo.

It holds that

Jmax. Prl(g o [)(@) # Phury g0))(y)] > Prllg o f)(@) # Phury(g 0 £.)(3)] > L

which can be rearranged to the required form:

. 1
L= min Prl(go f)(r) = Phuy(go)] > 5 (1-Prlf(e) = Pl f(y)]).
Prlf(x) = Plur,f(y)] > 2 min Prl(go f)(a) = Plur,(go f)(y)] - L
z gEF(X) =

Now we can prove our main lemma on binary variation and clesgmo juntas:

Proof of Lemma 16Lety € P(J) andz € P(J). We have
h(yUz) = Plurtep(j)f(y Lit).

Assume now that: € P([n]), y, z andt are random over their respective domains and independeat. W
have

Pr{f(x) = h(x)] = E, |Prlf(yUz) = h(yU2)]
= B, [Prlf(yu2) = Pluref(y)]
> E, 296151:1&) Pzr[(g o f)(yUz) =Plury(go f)yut)] — 1] (3)
= & min B (g0 ML) Plunge £y o] @

= Ey _gglgi(g() E-[(go f)(y U 2)]-sign(E[(g o f)(y U t)])}

= [E, | min
L9EF(X)

. 2
> 5 | i Gl)

= B [1- max Vol(go o1

=1 —_ExtVrf(j) >1—-4BinVry(J) > 1 —¢, (5)

B (g0 Ny 2]

where (3) is by Lemma 17 applied to the functiffyL!-), (4) is becausg o g andPlur are both+1-valued,
and the first inequality in (5) is by Lemma 15. |

15

A.5 Unique variation. We will make use of the following technical tool which was defil by Fischeet
al. [FKR™04].

Definition 18. Let f be a function that mapB([n]) to {—1,1}, and let7 C [n] be a set of coordinates. For
each coordinate € [n], we define theinique variation of with respect tQ7 as

. def . .
Ury(i) = Vrp(i\T) = Vrp([i = 1N\T),
and forI C [n] we define the unique variation défas
def .
Urp(1) =) Urg(d).
i€l

The most important property of the unique variation thatiniggishes it from the other notions of
variation is that for any set of coordinates, its variationgy equals the sum of the variations of each of its
coordinates. This makes it easy to compute the expected waéline unique variation on a random subset
of coordinates. Furthermore, the following propertiesdhol

Lemma 19 (Fischeret al. [FKR T04]).
e For any coordinate € [n], Urs({i}) < Vry({i}).
e For every sefl C [n] of coordinatesUrs(I) < Vr(I\J).
o Ury([n]) = Urp([n\T) = Vr([n]\J)-
We will also use the following technical claim.

Lemma 20 (Fischeret al.[FKR T04]). LetX = Zﬁzl X, be a sum of non-negative independent random
variablesX;, and denote expectation &f by «. If everyX; is bounded above by then

«
Pr[X < na] < exp (5(776 — 1))
for everyn > 0.

A.6 Application to testing juntas. It turns out that one can use the binary variation in placéef/aria-
tion of Fischeret al. to carry out the proof that their algorithms work in the nooeBean setting. The only
difference is in some constant factors — we want to make $atethe set of variables that we classify as
non-relevant has binary variation at megt, instead of variatiore in the original analysis. This results
in an increase in the number of runs of the independence yestdonstant factor. Other than this small
difference, the properties established above for the pivariation let the proofs given by Fischet al. go
through directly for non-Boolean functions, so we do noe@ghem. Summarizing, we get three tests for
J-juntas for functions with non-Boolean ranges from [FKER]:

e anon-adaptive one-sided test with query complegity’ /¢),
e an adaptive one-sided test with query complexity/> /¢),
e anon-adaptive two-sided test with query complexiti/? /e).

The last of these is simply tHdentify-Critical-Subsets subroutine from Figure 1, modified to output “yes”
in Step 4 instead of the list of critical subsets.

16

B Proof of Theorem 4
For convenience we restate Theorem 4 in somewhat more Hetail:
Theorem 4. There is an algorithmA with the following properties:

LetC be a class of functions frof1” to X. Suppose that for every > 0, C(7) C Cis a(r, J(1))-
approximator forC. Suppose moreover that for every- 0, there is ar satisfying

€2

In(|Q2]) - J(r)2 - (I (7)) - InIn(J (7)) - n*(|C(7) o)

wherex > 0 is a fixed absolute constant. Let be the largest value satisfying (2) above. Then algorithm
A makes:

T< K-

A - (22, 1o (7)

2sh + (2gJ () [1g |Q]] + 1)m

S) (%J(T*)z In?(J(7*)) loglog J(7*) 1n(|C(T*)J(T*)|)>
+0 (BRI U(C() s D ())

6

Ll *>21n2<|c<7*>J<T*)|>>

many black-box queries tf, and satisfies the following:
e If f € C thenA outputs “yes” with probability at leas®/3;

e If fise-far fromC then.A outputs “no” with probability at leas2/3.

Let us describe how the parameters, g andm mentioned above (and others) are set. (The table below
should perhaps be glossed over on a first pass through the papeill be useful for subsequent reference.)
Givene > 0, let 7* be as described in the theorem statement. We set:

r % 95,7 (1%)2 O(J (7)),
s & 25J(m*)(7T+ In7r) O(J(r*)In J(1%)),
ey < ©(e),
m < L1n6|C(7) yre] O(: (IC(T%) s()]),
a0 ©(e/In(|C(7%) s(r4)))
il I O(e/(n(IC(r*) sire) DI (7)),
dcf 2 210 (100mJ () [1g|9[]) | © (%J() In(|C(7*) y(70)l) - 1 <lle|J(T*)1n(|C(¢*)J(T*)|)>),
hdé 7(3+2Ins) @(%ln(\C(T)J(T* DJ () In J(7*) Inln J(77)),

wheree is the base of the natural logarithm. Note that- e; < e.
Observe that for some suitable (small) absolute constan®), our setting of parameters and choice of
7* yields the following bounds that we will use later:

e 2mgJ(7*)[1lg|?|] - 7 < 1/100 (used in Lemma 26)
e 2sh-7* < 1/100 (used in Corollary 25),
e m(e; +7*) < 1/100 (used in Lemma 26).

17

Identify-Critical-Subsets (input is black-box access tb: 2" — X ande > 0)

1. Partition the variables,, ..., x,, into r random subsets by assigning eachqf. . . , x,, equiprob-
ably to one ofl4, ..., I,.

2. Chooses random subsetd;, ... ,A; C [r] of size J(7*) by uniformly choosing without repeti

tions J(7*) members ofr|. Each set\; determines a blociB; o Ujen, Ij- (Note that we do

not guarantee that the blocks are disjoint.)

3. Apply h iterations of theindependence tegsee Section A.3) to each blodk;. If all of the
independence test iterations applied to bldgkaccept, themB; is declared to beariation-free
and all the subsets; with j € A; are declared to be variation-free on its behalf.

4. If:

(a) atleast half of the blockBy,...,B, are variation-free; and

(b) except for at mosi(7*) subsets, every subset in the partitin. . . ,7, is declared variation
free on behalf of some block,

then output the list; , ..., I;; of those subsets that anet declared to be variation-free. (We ca
these theritical subsets.) Otherwise, halt and output “Notifi

Figure 4: The subroutinelentify-Critical-Subsets.

B.1 Step 1: Identifying critical subsets.Step 1 of the algorithm consists of running the procedure
Identify-Critical-Subsets, reproduced for convenience in Figure 4. This proceduréopas 2sh queries
to f. The procedure is nearly identical to the “two-sided” juteat of Section 4.2 of Fischat al. with
two small differences. The first is that we have adjustedousriconstant factors slightly (we need a smaller
failure probability because we are using this in the contéxd larger test). The second is tHdentify-
Critical-Subsetsoutputs the list of subsets that are declared to be not i@rifiee (whereas the Fischer
al. test simply accepts or rejecfs, since we will need these subsets for the rest of our test.

We now prove two quick lemmata that will be useful in estdiitig the soundness and completeness of
the algorithm.

Lemma 21. Let f be a function with at mosf(7*) variablesz; that haveBinVr¢({i}) > 6. Then with
probability at leastl — 1/400, each of the variables; that haveBinVr¢({i}) > 6 occurs in some subsét
that is not declared variation-free dgentify-Critical-Subsets.

Proof. Fix a variablex; such thatBinvrs({i}) > 6. Let I, denote the subset to which belongs. By
Lemma 13 we have that
6 < BinVrs({i}) < BinVrs(I;) < BinVrs(By,)

where By, is any block such that € A.. This implies that for any such blocky, the probability that alk
iterations of the independence test accept is at rfiost §)" < 515 < W. So the probability that
any block that containsg; is declared variation-free is at m%. By a union bound over all at most
J(7*) variablesz; that haveBinVr;({i}) > 6, the probability that any block that contains such a vaeabl

causes any subsét containing the variable to be declared variation-free imast1/400. |

Lemma 22. Let V' be any set of at moskt(7*) variables fromx, ..., z,. Then with probability at least
1 —1/25, every subsei,, 1 < ¢ < r, contains at most one variable from

18

Proof. Let ;' denote the number of variables¥ The probability that no two variables il end up in the
same subsef; is

! -1\ /(7 — 1 /(7 1 1
B C A R A Vel VS
(r — j")ri r r 25J (7*)? 25

So the probability that any subskt . . ., I, ends up with two or more variables frovhis at mostl /25. B

Let £ C [n] denote a set of coordinates satisfyiBynVr;(K) < ie;. Lemma 16 states that the
following function:

h(z) aof Plur, .o &) [f ((x N K) U 2)] (6)

is e1-close tof.

Let 7 denote the set of those coordinates on whichas binary variation at leagt To prove the
soundness ofdentify-Critical-Subsets, we must prove that iff passeddentify-Critical-Subsets with
probability greater than 1/3, then it ég-close to aJ(7*)-junta. This is accomplished by showing that
|J| < J(7*), and that7 can be used in place df above,i.e., BinVr;(7) < te;. Then we can invoke
Lemma 16 to finish the proof. In addition, we will also proversoproperties about the subséts ..., I;;
output by the algorithm.

Lemma 23. If f passeddentify-Critical-Subsets with probability higher than 1/3, then:
) |7 < J(7);

(i) BinVrp(J) < %ei,

and f is thuse; -close to aJ(7*)-junta by Lemma 16.

Let h be defined as in Equation (6) usigg as the setC. Suppose thaf passeddentify-Critical-
Subsetswith probability greater than 1/3. Then given th#tpasses, the sets output by the algorithm,
L, ..., 1;;, have the following properties with probability at leas76/

(i) Every xz; € J occurs in some subsé}, that is output;

(iv) Every subsel;,, 1 < ¢ < j, contains at most one variable frofh.

0

Proof. Condition (i): (paraphrasing Prop. 3.1 and Lemma 4.3 of [FiR]) Suppose.7| > J(7*). Then
with probability at leas8/4 (using the same argument as in the proof of Lemma 22), the auoflsubsets
I;, containing an element fronY is at least/(7*) + 1. For any fixed subsef;, that contains an element
from J and any fixed block3 containingl;,, the probability ofB being declared variation-free is bounded

by:
1

20s(J(m*)+ 1)’

Union bounding over the at mostblocks to which the subsdf, can belong, and union bounding over
J(*) + 1 subsets that contain an element frgfp we have that with probability at leagt- 12 > 2, at
leastJ(7*) 4+ 1 subsets are not declared variation-free and consequguihes not pasklentify-Critical-
Subsets Thus, if f passeddentify-Critical-Subsets with probability at least /3, it must be the case that
7| < ().

Condition (ii): (paraphrasing Prop. 3.1 and Lemma 4.3 of [Fi0&]) Suppos8inVr;(J) > %61, and
let g be a function such tha@inVr ;(J) = Vryer(J). We will show that each block, has high variation
with high probability. This will imply that the number of kd&s not declared variation-free is larger than

s/2 with high probability, so the test will reject with probaibyl at least2/3.

(1 . 9/2)h _ (1 i 9/2)2(3+21ns)/9 <

19

Fix any valuel € [s]. The blockB;, is a random set of variables independently containing eadbhle
x; coordinate with probability/(7*)/r. Let Ur,.¢(I) be the unique variation of a sétwith respect t7
(see Definition 18). Then the expected value of the uniquatan of B, is

61J(T*).

E[Urgor(Br)] = 1r

90f (7)

elJ(

yOf (7)

Iy J(T) s

By Lemma 19 and Lemma 20 (taking= 1/2e, t = 6§ anda =) in Lemma 20), we have

Elfj(7*) EIJ(J*) Elfj(7*) -3 1
V < [.
Pr I‘gof(Bg) < Ser Pr I‘gof(Bg) < Ser < exp Serd =€ < —12

Hence the probability that the variation &, is less thane, J(7*)/8er = 36 is less thanl/12. This
implies that the expected number of blocks with variatiass lhar36 is smaller thars/12. From Markov’s
inequality we get that with probability at leabt— %, there are less thasy2 blocks with variation smaller
than36.

The probability of a block with variation greater thaf being declared variation free is at most:

h 2(3+21ns)/0
1_% _ 1_% 3+)/ <e—(9+61ns) < 1
1000s’

and therefore with probability at least— 100 none of these blocks are declared variation free. So with
overall probability at least — (% + ﬁ) > 3, more thars/2 blocks are declared variation-free and the test
rejects.

Condition (iii): We may suppose thgtpasseddentify-Critical-Subsets with probability greater than
1/3. Then we know thdt7| < J(7*) by Condition (i). By Lemma 21, given thgtpassesdentify-Critical-
Subsets the probability that some; € J does not occur in some subdgt output by the algorithm is at
most3/400. (The bound is3/400 rather thanl /400 because we are conditioning ghpassingldentify-
Critical-Subsets which takes place with probability at leaist3.)

Condition (iv): As above we may suppose thatpasseddentify-Critical-Subsets with probability
greater than 1/3. By Condition (i) we know that| < J(7*), so we may apply Lemma 22. Hence condi-
tioned onf passinddentify-Critical-Subsets (an event which has probability at ledst3), the probability
that any subset;, output by the algorithm includes more than one relevanaeiofh is at most3/25.

Summing the probabilities, we get that conditions (iii) g are true with probability at least —

3 3 6
(m+%)>7. [|

Fischeret al. establish completeness by showing thaf i a junta then with probability at leagy'3
conditions (a) and (b) are both satisfied in Step 4. Howevenegsl more than this, since we are going to
use the subset§, , . .., [;; later in the test. We will prove:

Lemma 24. Suppose thaf is a J(7*)-junta. LetKC be the set of variables satisfyiigjnVr¢({i}) > 6.
Then with probability at leadi/7, algorithm Identify-Critical-Subsets outputs a list ofj < J(7*) subsets
Ly, ..., I;; with the property that:

(i) each variabler; € K occurs in some subsét that is output;
(i) BinVr(K) < €1/4;
(iif) Every subset/;,, 1 < ¢ < j, contains at most one relevant variable fr

Proof. Condition (a): Fix any partition/y, ... ,I.. If fisaJ(7*)-junta, then it is independent of all but at
most.J(7*) subsets in the partition. Hence for any fixedhe probability over the selection of the blocks

20

that f is independent o3, is at least:

- * . K\ N\ J(TF) % J(T%) *\2
r—J(1) / r ~(r 2J(7*) (i J(1) o1 J(1) EQ.
J(7*) J(7*) r— J(m*) r—J(1%) r—J(m*) — 24
The probability thatf depends on more than half of the blocks is therefore smaldméii using the Markov

inequality. (See [FKR04], Lemma 4.2).
Condition (b) fails with probability at most:

1 s 1 25J(7*)(T+Inr) 1 1
l-——) =r({l—- —— <r-S =—
" (25J(7’*)> " (25.](7*)) " 27000 — 10007

(see [FKR 04], Lemma 4.2, which uses= 20J (3 + Inr) instead).

Condition (i): Since we assume thgtis a.J(7*)-junta we may apply Lemma 21, and thus the prob-
ability that any variabler; that hasVry({i}) > 6 occurs in a subsel, that is declared variation-free by
Identify-Critical-Subsets is at mostl /400.

Condition (ii): Let £ denote the relevant variables fothat are not iriC, and letZ denoteln]\ (KUL).

By Lemma 10 we have

BinVr(£) < > BinVry({i}) < J(7)0 = J(T*)ﬁ% < %.
€L

We have thatC = £ U 7, so by Lemma 10 we get

BinVr¢(K) = BinVr (L U T) < BinVr¢(L£) + BinVr(7) = BinVrf(£) < €1 /4.

Condition (iii): Suppose there are precisgly< J(7*) many relevant variables. Then by Lemma 22,
the probability that any subsét, . .., I, ends up with two or more relevant variables is at mog6.

Summing failure probabilities, we find that all the requihditions are fulfilled with probability at
leastl — (1/12 + 1/1000 + 1/400 + 1/25) which is greater thafi/7. [|

We are ultimately interested in what happens witkmtify-Critical-Subsets is run on a function from
C. Using the above, we have:

Corollary 25. Supposef is 7*-close to somd (7*)-junta f’. Then with probability at least/6, algorithm
Identify-Critical-Subsets outputs a list ofj < J(7*) subsetd;,, ..., I;; with the property that

(i) each variablex; which hasBinVr ({i}) > 6 occurs in some subsét that is output;

(i") BinVrp (K) < e1/4;
(i) Every subsetl;,, 1 < ¢ < j, contains at most one relevant variable ft

Proof. The crucial observation is that each of thé: queries thatdentify-Critical-Subsets performs is

on an input that is selectadiformly at randonfrom Q™ (note that the query points are not all independent
of each other, but each one considered individually is umif distributed). Sincef and f’ disagree on at
most ar* fraction of all inputs, the probability thatlentify-Critical-Subsets queries any point on which

f and f’ disagree is at mo2sh - 7* < 1/100. Since by Lemma 24 we know that conditions (i’), (ii’) and
(iii") would hold with probability at least /7 if the black-box function werg’, we have that conditions (i),
(i) and (iii) hold with probability at leas6/7 — 1/100 > 5/6 with f as the black-box function. |

21

Construct-Sample (input is the listl;,, ..., I;, output byldentify-Critical-Subsets and black-box
access tq)

1. Repeat the followingn times to construct a sét of m labeled exampleér, y) € 0/ x X,
whereQ) = {wo, w1, ..., wjg|-1}:

a) Drawz uniformly from Q™. Let X def 1:2;, =w,t, foreachd) < ¢ < Q| — 1.
q q

(b) Fort=1,...,5

. def
i w =0

i. Fork=1,...,[lg||]
A. Q0 % union of (X, N I;,) taken over alb < ¢ < || — 1 such that the:-th bit of
qis zero
B. Q1 % union of (X, N I;,) taken over alb < g < |Q2] — 1 such that the:-th bit of
qisone
C. Apply g iterations of thandependence tesd 2. If any of theg iterations reject,
mark€)y. Similarly, applyg iterations of theéndependence tesb €24 ; if any of the
g iterations reject, mark;.
D. If exactly one of)y, 1 (say(2) is marked, set thé-th bit of w to b.
E. If neither ofQ)q, 2, is marked, set thé-th bit of w to unspecified.
F. If bothQq, Q; are marked, halt and output “no”.
iii. If any bit of w is unspecified, choose at random from{0, 1, ..., |Q| — 1}.
iv. If w ¢ [0,|Q2 — 1], halt and output “no.”
V. Setzy = wy.
(c) Evaluatef on z, assign the remaining(7*) — j coordinates of: randomly, and add the pa
(z, f(z)) to the sample of labeled examples being constructed.

=

Figure 5: The subroutin€onstruct-Sample.

B.2 Step 2: Constructing a sample.Step 2 of the algorithm consists of running the procedioastruct-
Sample The algorithm make&gj[lg |©2|]+1)m many queries tg, and either outputs “no” or else outputs
a sample ofn labeled examplegr, y) where each: belongs a2/ (7).

We introduce some notation. Given functiohs Q" — X andf’ : 97— X with j < n and a permutation
o : [n]—[n], we write f < f’ to indicate thatve € Q" : f'(x,1).....%0()) = fla1,...,2n). If
7 Q"—X is a function withj relevant variables, we usg’ to mean the function ovef variables that
results by mapping theth relevant variable undef to thei-th character of g-character string ove®; i.e.
if o is a permutation which induces such a mapping, tfiens the function satisfyingf 2 f7. Given a

function f : &/ — X and permutatiow : [n]—[n], we write f7 to denote thg-junta satisfyingf{ 2 f.
Lemma 26. Given f : Q"— X and some/(7*)-junta f’ that isT*-close tof, let K be the set of variables

satisfyingBinVr/ ({i}) > 0. Suppos€onstruct-Sampleis given oracle access tband inputsl;, , ..., I;;,
with j < J(7*), where:

1. Each variabler; € K is contained in one of;, , ..., [; ;

J

2. BinVrf/(IC) < 61/4;

3. Every subsef;,, 1 < ¢ < j, contains at most one relevant variable fft

22

Check-Consistencyinput is the samplé& output byldentify-Critical-Subsets)

1. Check every function i€ (7*) .+, to see if any of them are consistent with samgle If so
output “yes” and otherwise output “no.”

Figure 6: The subroutin€heck-Consistency.

Leth be the function defined as in Equation 6 using theGdtet’ C K be the set of relevant variables for
h, and leto : [n]—[n| be some permutation which maps the variable ffgnn bin I;, to bit £. Then with
probability at leastl — 3/100, Construct-Sample outputs a set ofn uniform, random examples labeled
according to aJ(7*)-junta ¢ which depends on no variables outsidekofand satisfiePr,cqn [g?(z) %

f(2)] < e

Proof. By Lemma 16 we have thdtr.cq»[h(z) # f/(2)] < e1. We now show that except with probability

less tharB/100, Construct-Sampleproduces a sef of m examples that are uniform, random, and labeled

according tay aof hG) (note thatg? =).

Consider a particular iteration of Step 1@bnstruct-Sample The iteration generates an example
that is uniform random and labeled according; tié

(a) for every bin/;, which contains a variable fror, Step 1(b)ii constructs the index such thatX,,
contains that variable;

(b) for every binI;, that contains no variable frofit, in every iteration of Step 1(b)ii(C) at most one of
0o, is marked, and the value that is considered in Step 1(b)iv lies|in |©2| — 1]; and

(©) h(z) = f(2).

Item (a) ensures that if;, contains a variable frorfi{, thenz, takes the value of that variable under the
assignment (and, sincez is a uniform random value, so ig). Item (b) ensures that if;, contains no
variable fromH, Construct-Sampledoes not output “no” and assigmg a uniform random value, because
xy either gets a fresh uniform random value in Step 1(b)iii ds glee value ot (which is uniform random).
Together, these ensure thal) = g(z,(1), - - - Z-(J(+))), @nd item (c) ensures that the label for the example
z will be h(z) = g(x).

It remains to bound the probability that any of (a), (b), orf@l to hold. Suppose first that every query
of every iteration of the independence test is answeredrdicgpto /. Then item (3) implies that (a) can
only fail to hold if we do not manage to figure out some bitwin Step 1(b)ii for some for which I;,
contains a variable frort (which means that aly executions of the independence test pass for that bit
failed), and it also implies that condition (b) holds (it isgsible for a bit ofw to be unspecified, but not for
both g, ©2; to be marked or fotv to be set to an out-of-range value). Thus the probability eitaer (a) or
(b) fails to hold is at most

JNg Q11 = 0/2)7 + 2j9[1g [Q] - 77,

where the first term bounds the probability thatdllg |2|] executions of the independence test pass for
some/ and the second term bounds the probability that any exetoficthe independence test queries a
point z such thatf (z) # f'(z). Finally, the probability that (c) fails to hold is at mast+ 7*.

Now considering allm iterations, we have that the overall probability of eitheitputting “no” or
obtaining a bad example in the-element sample is at most;[lg ||| (1 — 0/2)9 + 25gm[lg Q]| - 7% +
(e1 +7*)m < 1/100 + 1/100 + 1/100, and the lemma is proved. [|

23

B.3 Step 3: Checking consistencyThe final step of the algorithm, Step 3, is to il@heck-Consistency
This step makes no queries fo

The following two lemmata establish completeness and swsglof the overall test and conclude the
proof of Theorem 4.

Lemma 27. Suppose thaf € C. Then with probability at least 2/3, algorithpd outputs yes.

Proof. Let ' be someJ(7*)-junta inC(7*) that ist*-close tof. By Corollary 25, we have that except with
probability at most /6, f passesdentify-Critical-Subsets and the inputd;, , . . ., I;; given toConstruct-
Samplewill satisfy conditions (i")-(iii"). Let K be the set consisting of those variables that have binary
variation at least under /. We use Lemma 26 to conclude that with probability at lelast 3/100,
Construct-Sampleoutputsm uniform, random examples labeled according to softe")-junta g satisfy-

ing Pr.[g7(z) # f'(2)] < e1. Leto’ map the variables ifC to the same values as but also map the re-

maining, possibly relevant variables ffto the remaining/ (7*) — j bits. ClearlyPr.[g?' (z) # f'(2)] < €1,
and since the relevant variablesg?f (which are contained iiC) are a subset of the relevant variables 6f

!

we have thaPr,[g(z) # (f’)g(T*)(m)] < €.

Assuming thatConstruct-Sample outputsm uniform random examples labeled accordingytdhey
are also labeled according ygﬂ(;*) € C(77) j(~+) €xcept with probability at most;n. Summing all the
failure probabilities, we have th&heck-Consistencydoes not output “yes” with probability at most6 +
3/100e;m < 1/3, and the lemma is proved. [|

Lemma 28. Suppose thaf is e-far fromC. Then the probability that algorithndl outputs “yes” is less than
1/3.

Proof. We assume that passeddentify-Critical-Subsets with probability greater than 1/3 (otherwise we
are done), and show that ffpassesdentify-Critical-Subsets, it will be rejected byConstruct-Sampleor
Check-Consistencywith probability at least 2/3.

Assumef passesdentify-Critical-Subsets and outputd;,, ..., I;;. Using Lemma 23, we know that
except with probability at most 1/¢7, the set of variables with binary variation at le@stnder f, satisfies:

e BinVry(J) < e1/4;
e each variable i is contained in some bify, that is output;
e each bin/;, contains at most one variable fram

As in Lemma 26, we construct a functi@rusing the variables ity according to Equation 6 in Section B.1.
Let H C J be the set of relevant variables foy and leto : [n]—[n] be as in Lemma 26. We have that
Pr.can[h(z) # f(2)] < e1. We show that with probability greater than— 2/100, Construct-Sample

either outputs “no” or a set of: uniform, random examples labeled according fj@C:f RS iy
Consider a particular random draw o0& Q™ As in Lemma 26, this draw will yield a uniform, random
examplex € /(7" for g as long as

(a) for every binZ;, which contains a variable fror{, Step 1(b)ii constructs the index such thatX,,
contains that variable;

(b) for every bin/;, that contains no variable frofH, in every iteration of Step 1(b)ii(C) at most one of
0o, is marked, and the value that is considered in Step 1(b)iv lies|in |©2| — 1]; and

(©) h(z) = f(2).

24

The probability of (c) failing is bounded by . The probability of (a) failing is at mogt1lg |2|](1—-6/2)¢ <
ﬁ. If neither (a) nor (c) occurs, then the example satisfieglggand (c) unless it fails to satisfy (b), but
if it fails to satisfy (b)Construct-Sampleoutputs “no” in Step 1(b).ii.F or Step 1(b).iv. a Thusfipasses

Identify-Critical-Subsets, we have that with probability at least
1—-1/7—-1/100 —eym >1—1/7—-2/100 > 1 —1/6

Construct-Sampleeither outputs “no” or it outputs a set of uniform random examples far.
SupposeConstruct-Sample outputs such a set of examples. We claim that with probgkilitleast
1 — 1/6 over the choice of random examples fgrCheck Consistencywill output “no”. Suppose that
Check Consistencyfinds somey’ € C(7*) (-~ consistent with alln examples. Thep’ cannot be:»-close
to g. (Otherwise, we have thaitr.[¢}7 (2) # g7 (2)] < €2, from which it follows thatPr.[¢)7 (2) # f(z)] <
€2 + €1 < e sinceg? (z) is er-close tof. Butg’ € C(7) s(r+), SO g € C(7*) C C which contradicts our
assumption thaf is e-far fromC.) By choice ofm, the probability there exists@ € C(7*) J(r+) consistent
with all m examples that is nak-close tog is at most|C(7*) j+)|(1 — e2)™ = 1/6. Thus, if f passes
Identify-Critical-Subsets, thenConstruct-Sampleand Check-Consistencyoutput “yes” with probability
less thanl /6 + 1/6 < 1/3. This proves the lemma. []

C Making the algorithm non-adaptive

The algorithmA presented in the previous section is adaptive. In this@gcive show thagd can be made
non-adaptive without considerably increasing its quemglexity.

The only part of our current algorithm that fails to be nomyatilze is Step 2, th€onstruct-Sample
subroutine, which relies on knowledge of the critical stbhsadentified in Step 1. To remove this reliance,
one approach is to modify theonstruct-Sample subroutine (in particular theor -loop in step 1(b)) so
that it iterates over every subset rather than just thecatitines. This modified subroutine can be run before
the critical subsets are even identified, and the querieakesican be stored for future use. Later, when the
critical subsets are identified, the queries made duringéhetions over non-critical subsets can be ignored.
Since there ar®(J(7*)?) total subsets compared to thg.J(7*)) critical ones, the cost of this modified
algorithm is an additional factor &d(.JJ(7*)) in the query complexity given in Theorem 4. For all of our
applications, this translates to only a small polynomiatéase in query complexity (in most cases, merely
an additional factor 0B (s)).

We briefly sketch a more efficient approach to nonadaptititi is done essentially by combining Steps
1 and 2. Specifically, each of tme examples that we currently generate in Step 2 can be gedersitgy the
techniques from Step 1. To generate a single example, weatedkedom assignment to all of the variables,
and we split each sdt of variables into(2| setsJ; ,,, wherel, ,, consists of those variables i that were
assignedv. We getO(|Q2|.J(7*)?) sets of variables. Now, as in theentify-Critical-Subsets subroutine,
we createk = O(J(7*)log(|2|J(7*))) blocks, each consisting of exactl2|.J(7*) setsI; . chosen at
random. We run the independence s log(km)) times on each of these blocks, and declare variation
free those not rejected even once. If for each critical dubsat leasi(2| — 1 sets/; ., are declared variation
free on behalf of some block, the remainifig, which are not declared variation free give us the values of
the influential variables. One can show that this happenis pritbability 1 — O(1/m). Therefore when
the procedure is repeated to generateraixamples, the probability of overall success is constarif it
going into a detailed analysis (which we will give in the fplper), the query complexity of this modified

algorithm is essentially the same as that given in Theoremarhely O (@J(T*F lnz(]C(T*)J(T*)\))

Thus, for all of our applications, we can achieve non-adaptéesters with the same complexity bounds
stated in Theorems 29 and 33.

25

D Applications to Testing Classes of Functions

The algorithmA in Theorem 4 can be applied to many different classes of inmethat were not previously
known to be testable. The following two subsections statk @move our results for Boolean and non-
Boolean functions, respectively.

D.1 Boolean Functions

Theorem 29. For any s and anye > 0, Algorithm A yields a testing algorithm for
(i) decision lists using)(1/€?) queries;

(i) size-s decision trees usin@(s*/€?) queries;

(iii) size-s branching programs usin@(s*/e?) queries;

(iv) s-term DNF usingD(s*/€?) queries;
(v) sizes Boolean formulas usin@(s*/e?) queries;

(vi) sizes Boolean circuits using) (s /¢?) queries;

(vii) functions with Fourier degree at mogtusingO(26¢ /€2) queries.

Proof. We describe each class of functions and apply Theorem 4 t@ @ach part of the theorem.

Decision Lists. A decision listL of lengthm is described by a listl1,b1), . .., (€, bm), bn+1 Where each
¢; is a Boolean literal and eadh is an output bit. Given an input € {0,1}" the value ofL on x is b;,
wherej > 1 is the first value such thdt is satisfied byz. If ¢; is not satisfied by: forall j = 1,...,m
then the value of.(x) iS by,+1.

Let C denote the class of all Boolean functions computed by detigsts. Since only a/27 fraction of

inputsz cause thej + 1)-st literal; in a decision list to be evaluated, we have that the a&s$ o {all

functions computed by decision lists of lendtiy(1/7)} is a(r, J(7))-approximator foiC, where.J(7) o

log(1/7). We have|C(7) ;)| < 2 - 41°8(1/7) (log(1/7))!. This yieldst* = O(e?), so Theorem 4 thus yields
part (i) of Theorem 29.

Decision Trees.A decision treds a rooted binary tree in which each internal node is labeli¢ll a variable
x; and has precisely two children and each leaf is labeled witbwput bit. A decision tree computes
a Boolean function in the obvious way: given an inputhe value of the function om is the output bit
reached by starting at the root and going left or right at éatelinal node according to whether the variable’s
value inz is 0 or 1. Thesizeof a decision tree is simply the number of leaves of the trdedfwis one more
than the number of internal nodes).

LetC denote the class of all Boolean functions computed by dectisees of size at most It is obvious

that any sizes decision tree depends on at mestariables. We may thus tak&) ' ¢ and we trivially

have thatC(7) is a(r, J(7))-approximator folC with J(7) L,

Now we bound/C(7) ;)| by (8s)®. It is well known that the number of-leaf rooted binary trees in

which each internal node has precisely two children is thel@a numbeiC,_; = 1(**7?), which is at

most4®. For each of these possible tree topologies there are atsfiosways to label thes — 1 internal
nodes with variables from, ..., z,. Finally, there are precisely¥ ways to choose the leaf labels. So the
total number of decision trees of siz@ver variablescy, . . ., r, is at most® - s5~1 . 25 < (8s)*.

We thus have* = O(¢?/s*) in Theorem 4, and we obtain part (i) of Theorem 29.

Branching Programs. Similar results can be obtained foranching programs.A branching program of
sizes is a rooteds-node directed acyclic graph with two sink nodes labéleehd 1. Each internal node has

26

fanout two (and arbitrary fan-in) and is labeled with a vialeefromz+, .. . , z,,. Given an inputz, the value
of the branching program anis the output bit reached as described above.

Let C denote the class of aftnode branching programs ov, 1}". As with decision trees we may
takeC(7) “e andJ(7) L 5. We show thatC(7) j(r)| < s%(s + 1),

The graph structure of the DAG is completely determined ®cEping the endpoints of each of the two
outgoing edges from each of tkenternal vertices. There are at mast 1 possibilities for each endpoint
(at mosts — 1 other internal vertices plus the two sink nodes), so thezeaamost(s + 1)2* possible graph
structures. There are at mostways to label thes nodes with variables fronizy, . .., z}. Thus the total
number of possibilities for a sizebranching program over, . .., x4 is at mosts®(s + 1)%.

Again we have have* = O(¢2/s*), so Theorem 4 yields part (iii) of Theorem 29.

DNF Formulas. An s-term DNF formula is an-way OR of ANDs of Boolean literals. A-DNF is a DNF
in which each term is of length at maist

It is well known that anys-term DNF formula over{0,1}" is 7-close to alog(s/7)-DNF with at
most s terms (see e.g. [Ver90] or Lemma 30 below). Thu€ iis the class of alk-term DNF formulas
over {0,1}", we may takeC(7) to be the class of ali-termlog(s/7)-DNF, and we have that(7) is a

(7, J(7))-approximator foC with .J(7) def log(s/7). An easy counting argument shows th@tr) ;)| <
(2slog(s/7))*18(/7) We getr* = O(e?/s*), so Theorem 4 yields part (iv) of Theorem 29.

Boolean Formulas. We define aBoolean formulato be a rooted tree in which each internal node has
arbitrarily many children and is labeled with either AND oR@nd each leaf is labeled with a Boolean
variablez; or its negatiorz;. The size of a Boolean formula is the number of AND/OR gatesiitains.

Let C denote the class of all Boolean formulas of size at moSimilar to the case of DNF, we have the
following easy lemma:

Lemma 30. Any sizes Boolean formula (or size-circuit) over{0,1}" is T-close to a size-formula (or
sizes circuit) in which each gate has at mdsi;(s/7) inputs that are literals.

Proof. If a gateg has more thatvg(s/7) many inputs that are distinct literals, the gate is-approximated
by a constant function (1 for OR gates, 0 for AND gates). Rariiog such a replacement for each of the
gates in the circuit yields a-approximator for the overall formula (or circuit). |

We may thus take€(7) to be the class of all size-Boolean formulas in which each gate has at most
log(s/7) distinct literals among its inputs, and we have tdéat) is a (7, J(7))-approximator forC with

J(7) s log(s/7). An easy counting argument shows th@tr) ;)| < (2s log(s/7))*'°8(s/T)+s; for each
of the s gates there is a two-way choice for its type (AND or OR) andtam@sts-way choice for the gate
that it feeds into. There are also at masi(s/7) literals fromzy,. .., T4105(s/7)s T15- -+ Tslog(s/r) that

feed into the gate. Thus there are at m@stlog(s/7))°&(/7)+1 possibilities for each of the gates, and
consequently at mog®s log(s/7))*'°8(s/7)+s possibilities overall. Again we get* = O(e?/s*), which
gives part (v) of Theorem 29.

Boolean Circuits. An even broader representation scheme is th&auflean circuits A Boolean circuit
of sizes is a rooted DAG withs internal nodes, each of which is labeled with an AND, OR or Nfate.
(We consider circuits with arbitrary fan-in, so each AND/®@Bde is allowed to have arbitrarily many
descendants.) Each directed path from the root ends in ahe of+ 2 sink nodesty, ..., z,,0, 1.

ForC the class of all size-Boolean circuits, using Lemma 30 we may take) to be the class of all
sizes Boolean circuits in which each gate has at mosgts/7) distinct literals among its inputs, and we

have thaC(7) is a(r, J(7))-approximator folC with J(7) def log(s/7). Itis easy to see thal (1) ;)| <
225" +4s_To completely specify a sizeBoolean circuit, it suffices to specify the following for dacf the s

gates: its label (three possibilities, AND/OR/NOT) and se¢ of nodes to which it has outgoing edges (at
most225+2 possibilities, since this set is a subset of the 2 sink nodes and theinternal nodes).

27

This results inr* = 0(62/36), and consequently Theorem 4 yields part (vi) of Theorem 29.

Functions with bounded Fourier degree.For convenience here we take= {—1, 1}. Recall that every
Boolean functionf : {—1,1}" — {—1,1} has a unique Fourier representation, i.e. a representai@a
multilinear polynomial with real coefficientsf(z) = 3 g, f(S) [L;cgzi- The coefficientsf (S) are the
Fourier coefficientof f. TheFourier degreeof f is the degree of the above polynomial, i.e. the largest value
d for which there is a subsé§| = d with f(S) # 0.

Let C denote the class of all Boolean functions oyerl, 1}" with Fourier degree at most Nisan and
Szegedy [NS92] have shown that any Boolean function withriEodegree at most must have at mosi2?
relevant variables. We thus may takeér) ¢ and J(T) 424, The following lemma gives a bound on
IC(T)a:

Lemma 31. For anyd > 0 we havelC(7) ()| < 2

.22d

Proof. We first establish the following simple claim:

Claim 32. Suppose the Fourier degree pf {—1,1}" — {—1,1} is at mostd. Then every nonzero Fourier
coefficient off is an integer multiple of /291,

Proof. Let us viewf : {—1,1}" — {—1,1} as a polynomial with real coefficients. Define the polynomial
p(z1,...,x,) @S
fQxy—1,...,2z, — 1)+ 1

5 .
The polynomialp maps{0,1}" to {0,1}. Sincef is a multilinear polynomial of degree at maktso isp.
Now it is well known that there is a unique multilinear polynial that computes any given mapping from
{0,1}™ t0 {0, 1}, and it is easy to see that this polynomial has all integeffictents. Since

p(xy,...,xn) =

1+ 1+
flz1,...;2n) =2p (5 1,..., 5 7L> -1,

it follows that every coefficient of is an integer multiple O%, and the claim is proved. |

To prove Lemma 31 we must bound the number of distinct Boofeantions with Fourier degree

at mostd over variablesz, ...,z q. First observe that there are at mdst = Z?:o (dfd) < (d24)d
monomials of degree at mastover these variables.

If f:{—1,1}92" — {—1,1} has Fourier degree at maktthen by Claim 32 every Fourier coefficient is
an integer multiple of /2¢~!. Since the sum of squares of all Fourier coefficients of angl&m function
is 1, at most229-2 of the D monomials can have nonzero Fourier coefficients, and eaxth cefficient
takes one of at mo&X! values. Thus there can be at most

<2£_2> @2 < (D2 < 2B

many Boolean functions over, . ..,z that have Fourier degree at mast

We thus get that* = O(e2/26%), and Theorem 4 yields part (vii) of Theorem 29.

D.2 Non-Boolean Functions
Theorem 33. For any s and anye > 0, Algorithm A yields a testing algorithm for

(i) s-sparse polynomials over finite fieflusingO((s|2|)*/€?) queries;

28

(i) size=s algebraic circuits over finite ring or fiel usingO(s* log® || /€?) queries;
(i) size-s algebraic computation trees over finite ring or fiélUusingO(s4 log® |Q|/€?) queries.
Proof. We describe class of functions and apply Theorem 4 to prosie part of the theorem.

Sparse Polynomials over Finite FieldsLet 2 denote any finite field and lef = 2. An s-sparse polyno-
mial over(2 is a multivariate polynomial in variables, .. . , z,, with at mosts nonzero coefficients.

Let us say that théength of a monomial is the number of distinct variables that occeuiti(so for
example the monomialz?z3 has length two). We have the following:

Lemma 34. Any s-sparse polynomial ovef? is 7-close to ans-sparse polynomial ove®2 in which each
monomial has length at mo?| In(s/7).

Proof. If a monomial has lengtli greater thariQ2|In(s/7), then it can ber/s-approximated by 0 (for a
uniform randomz € Q", the probability that the monomial is not 0 undeis (1 — 1/|22])¢). Performing
this approximation for alk terms yields a-approximator for the polynomial. |

For C = the class of alk-sparse polynomials in variables over finite field2, we have that the class
C(7) of all s-sparse polynomials over finite field with all monomials of length at mos$f2| In(s/7) is a
(7, J(7))-approximator with/(7) = s|2| In(s/7). The following counting argument shows that

1C(7) s(my] < (]2 In(s/7))eI U ml/),

Consider a single monomidl/. To specify M we must specify a coefficient ift, a subset of at most
of the J(7) possible variables that have nonzero degree (at thast’ possibilities), and for each of these
variables we must specify its degree, which we may assumen®st|Q2| — 1 sincea!®l = « for everya
in finite field Q. Thus there are at moe|(.J(7)|Q2|)¢ possibilities for each monomial, and consequently at
most|Q*(J(7)|Q])%¢ = [Q5(s|Q]? In(s/7))s1@n/7) < (5Q)3 In(s/7))5IU™(/7) possible polynomials
overall.

Settingr* = O(e?/(s|Q|)*) and applying Theorem 4 yields part (i) of Theorem 33.

Algebraic Circuits. Let 2 denote any finite ring or field and let = . A size-s algebraic circuit (or
straight line program overQ™ is a rooted directed acyclic graph withinternal nodes (each with two inputs
and one output) and + k leaf nodes for somé > 0 (each with no inputs and arbitrarily many outputs).
The firstn leaf nodes are labeled with the input variabigs. .. ; z,,, and the lask leaf nodes are labeled
with arbitrary constants; from Q. Each internal node is labeled with a gate frém, x, —} and computes
the sum, product, or difference of its two input value<{iis a field we allow division gates as well).

Let C denote the class of all Boolean functions computed by atgelwircuits of size at most over
variableszq, ..., z,. (Here we analyze the simpler case of circuits withx, — gates; our analysis can
easily be extended to handle division gates as well.) Ang-sialgebraic circuit depends on at mast
variables. We may thus takr) ¢ and we trivially have thaf(7) is a(r, J(7))-approximator forC
with J () ' 2. Now we show thalC(7) ()| < (75/Q[2s).

A size s algebraic circuit can read at mast leaves as each internal node has two inputs. Thus it can
read at mos2s constant leaves, and at mastinput leaves. To completely specify a sizedgebraic circuit,
it suffices to specify th@s constant leaf nodes and the following for each of ¢tgates: its label (at most
three possibilities) and the two nodes to which it has ouig@dges (at mogts)? possibilities, since it
can hit two of the at mosts leaves and the internal nodes). Thus there are at meys (75s2)* different
algebraic circuits.

Equation 2 in Theorem 4 is satisfied for smal, but we do not care how large the optimurhis as
J(7) does not depend on Eventually, Theorem 4 yields part (ii) of Theorem 33.

Algebraic Computation Trees. Let (2 denote any finite ring or field and I&f = Q. A size-s algebraic
computation tre@ver input variables, ..., z, is a rooted binary tree with the following structure. There

29

are s leaves, each describes an output value which is either dastnsn input variable, or one of the
variables computed in the ancestors of the leaf. Each ate@ade has two children and is labeled with
wherey, = v, © vy, andy,,, y,, are either inputs, the labels of ancestor nodes, or cossi@md the operator
o is one of{+, —, x, =} (the last one only if2 is a field). An input that reaches such a node branches left
if y, = 0 and branches right if, # 0.

Let C denote the class of all functions computed by algebraic coatipn trees of size at mostover
x1,- .., T,. Any Sizes algebraic computation tree depends on at mestariables. So similar to algebraic

circuits, we can také(r) “e andJ(7) 1 35. Now we show thalC(7) sy | < 16°(|Q2| + 45)%.

As inthe boolean case, the numberédéaf rooted binary trees in which each internal node hasigely
two children is at most®. A tree hass — 1 internal nodes and leaves. For each of these possible tree
topologies there are at most|2| + 4s)? ways to label thes — 1 internal nodes (with one of 4 operations
on two constants, variables or ancestor nodes). Finakyethre at most|Q2| + 4s)° ways to choose the
leaf labels. So the total number of decision trees of siaeer variables:y, . .., x5 is at mostd® - (4(|Q| +
45)2)571 . (|Q] + 4s)° < 165(|Q| + 45)%.

As before we do not care what the optimdl in Theorem 4 is. Finally, we obtain query complexity
O(s*log?®|Q|/€?) by Theorem 4, that is, we obtain part (jii) of Theorem 33. [|

E Lower Bound Proofs

In this section we restate and prove the testing lower bodistsissed in Section 4. The main result in that
section was Theorem 5, the lower bound for testirgparse polynomials over finite fields of constant size.
In Subsection E.1, we prove Theorem 5. In Subsection E.2,reepsome simpler (and weaker) lower
bounds for other function classes.

E.1 Lower Bound for s-Sparse PolynomialsThroughout this section we wriiéto denote the finite field
with P elements, wher@® = p¥ is a prime power. For convenience, we restate Theorem 5:

Theorem 5. Let IF be any fixed finite field, i.e|F| = O(1) independent of.. There exists a fixed constant
¢ > 0 (depending ofiF|) such that anyon-adaptive:-testing algorithm for the class efsparse polynomials
overF™ must make(y/s) queries.

To prove Theorem 5, we consider the following two distribng over functions mappirig” to F:

e A draw from Dvygg is obtained as follows: independently and uniformly (widpetitions) draws
variablese;, , ..., x;, fromzy, ..., x,, and letf(z) = x; + - + x4,

e A draw from Dy is obtained as follows: independently and uniformly (wigpetitions) dravs + p
variables;, , ...,z fromay, ... x,, and letf(r) = z;; +--- +2;,.
Itis clear that every draw fromygs is ans-sparse polynomial ové, and that for any: = w((s+p)?)
almost all the probability mass @iy is on functions withs + p distinct nonzero coefficients.

Theorem 5 then follows from the following two results:
Theorem 35. Let A be any non-adaptive algorithm which is given black-box asde a functiory : F" —
[F and outputs either “yes” or “no.” Then we have

Pr [A outputs “yes] — [A7 outputs “yes’]| <

Pr
fe€DvyESs f€Dno

Wl =

unlessA makes(1/s) queries to the black-box functigh

30

Theorem 36. Let ,
def 2 10P“+426
d(P) = 1/(PPHP).

Fix anys < n — 1. Letg be ans-sparse polynomial iff[z1, ..., z,]. Theng is ®(P)-far from every affine
function overF in whichs + 1 or more variables have nonzero coefficients, i.e. everytiomof the form

121 + -+ sy Tsgr + b (7)

where0 # a; € F,b € F,andr > 1.

Theorem 35 shows that any non-adaptive algorithm that cecessfully distinguish a random linear
form z;, + --- + x;, from a random linear formx;, + --- + x;_, must makeQ(y/s) queries; this is a
technical generalization of a similar result oy in [FKRT04]. Theorem 36 establishes that every function
xy +---+xy,,, is far from everys-sparse polynomial ovelf. Together these results imply that any testing
algorithm fors-sparseF polynomials must be able to distinguish lengtlinear forms from lengths + p)
linear forms, and must make(/s) queries. We prove these theorems in the following subsestio

We note that it is conceivable that a stronger version of @036 might be true in whick(P) is
replaced by an absolute constant such &5 however Theorem 36 as stated suffices to give our desired
lower bound.

E.1.1 Proof of Theorem 35.First, let us recall the definition of statistical distance:

Definition 37 (statistical distance).Let S be a finite set an@®, Q be probability measures off, 2°). The
statistical distanceetweer? andQ is defined by|P — Q|| o maxacs [P(A) — Q(A)].

The following fact is an immediate consequence of the dédimit
+
Fact38. [P — Q| = 13,5 [P(z) — Q@)| = X,e (P(2) — Q(2)) ™.

We now explain how Theorem 35 can be reduced to a converggpeaesult about random walks on
the groupZ;} (Theorem 6). We remark that the argument given here is an diateegeneralization of the
corresponding argument in Section 6 of [FK&4]. Our main technical contribution is in fact the proof of
Theorem 6.

Recall that a non-adaptive testing algorithm queries a foudgbetQ of the domainF™, where|F| =
P = p”* is a prime power. To prove Theorem 35, it suffices to argue fthraany query seQ@ c F" of
cardinalityq = |Q| = O(,/s) the induced distributions dR? (obtained by restricting the randomly chosen
functions to these points) have a statistical distance less tihas

Let us now describe the distributions inducedyrs and Dxo onFe. Letry, 7o, ..., 7, € F" be the
queries, and led/ be ag x n matrix with rowsry, ..., r,. To choose an elementc F? according to the
first (induced) distribution, we choose at random (with tgje®s) s columns ofM and sum them up. This
gives us an element d@?. The same holds for the second distribution, the only difiee being that we
chooses + p columns.

Forzx € F1 = Z’;q, let P(x) be the probability of choosing when we pick a column of/ at random.

Consider a random walk on the gromﬁq, starting at the identity element, in which at every step ha@ose
an element of the group accordinglkaand add it to the current location. LBt be the distribution of this
walk aftert steps. Observe th&@t; andP,,, are exactly the distributions induced s and Dxo. We
want to show that fos sufficiently large compared tg the distributions?, andP,,, are close with respect
to the statistical distance. To do this, it suffices to pranefbllowing theorem (restated from Section 4):

Theorem 6. Letr be a prime,g € IN andP be a probability measure on the additive grodf. Consider
the random walkX on Z with step distributior. LetP; be the distribution of{ at stept. There exists an

absolute constant’ > 0 such that for every < § < 1/2, if t > C% -r*logr - ¢*log?(q + 1) then
”]P)t - Pt-ﬁ-r” < J.

31

Indeed, since the underlying additive group of the figls Z’;, by applying the above theorem for= p
andq’ = kq the result follows. We prove Theorem 6 in the following sudbien.

E.1.2 Proof of Theorem 6 To prove Theorem 6, we start with some basic definitions ants fabout
random walks on (finite) groups. For a detailed treatmerti@Subject, see [Dia88] and references therein.
For basic facts about Fourier Analysis on finite groups, $¢ed0, Ter99].

Let (G, +) be a finite group. For any probability measufe€) on G, the convolutionP « Q) of P and
Q is the probability measure ai defined by:

PxQ)(y) = Y P(z)Q(z +y)

zelG
LetPy,..., P, be probability measures @r. Theconvolution producbf theP;’s, is defined as follows:
(+TIH_P: = P
(+TD Py dﬁf]p s (TTV Py B>
Similarly, P**, the n-fold convolution product oP with itself is defined by:P*! = ef p andprn &

P01 4« P if n > 1.

A distribution (probability measurdé) on G induces a random walk off as follows: Denoting byX,,
its position at timen, the walk starts at the identity element@f(n = 0) and at each step selects an element
&, € G according tdP and goes toX,,. 1 = &, + X,,. Denote byP,, the distribution ofX,,. SinceX,, is the
sum ofn independent random variables with distributiBnit follows thatP,, = P*".

We will be interested in such random walks finite abelian groupsand in particular on the group
(Z1,+) , where+ denotes componentwise addition modulo We remark that for abelian groups, the
convolution operation is commutative. In fact, commuigtivs crucially exploited in the proof of the
theorem.

For a functionf : Z} — C, we define its Fourier transforﬁ: 71 — C by

def 1
Fay ™ 3 f)en)e
yeZ
wherew, % 27/" and forz, y € Z¢ we denote(z, y) << (S0, z;y;) mod r.

Fact 39. LetP, Q be probability measures dfi?. Then,P Q(y) = r? - P(y) - Q(y), y € ZJ.

Forp > 1andf : Z! — C, thel, norm of f is defined by|| /||, e {Epezallf(z)|P]}!/?. The inner product

of f,g: 7 — Cis defined as(f, g) < E, cza[f (x)g(x))].

Fact 40 (Parseval’s identity). Let f : Z} — C.

= (1) = Loers 1/’ (@).

Proof of Theorem 6.

The special case of this theorem for= 2 was proved by Fischegt al. [FKR*T04]. Our proof is a
technical generalization of their proof. Moreover, ourgirbas the same overall structure as the one in
[FKRT04]. However, one needs to overcome several difficultiesdeioto achieve this generalization.

WEe first give a high-level overview of the overall strategyyAgivenz € (Z})* partitions the space into
r non-empty subspacé§” = {y € Z! : (y,z) =i} fori =0,1,...,r — 1. We say that an: € (Z?)* is

32

degeneratéf there exists soméwhose probability measut®(V;”) is “large”. (We note that the definition
of degeneracy in the proof of [FKF04] is quite specialized for the case= 2. They define a direction to be
degenerate if one of the subspadgs V;* has “small” probability. Our generalized notion - that ed&sly
reduces to their definition for = 2 - is the conceptually correct notion and makes the overgdt@grh
work.)

We consider two cases: If all the Fourier coefficientsPoére not “very large” (in absolute value),
then we can show by standard arguments (see e.g. [Dia8&phimavalk is close to stationarity after the
desired number of steps. Indeed, in such a case the walkrgasveapidly to the uniform distribution (in
the “classical” sense, i.¢[P; — U|| — 0 ast approaches infinity).

If, on the other hand, there exists a “very large” Fourierfiicient of P, then we argue that there must
also exist a degenerate direction (this is rather nonaljiand we use induction on the dimensign It
should be noted that in such a case the vmadly not converge at all in the classical sen§&n extreme such
case would be, for example,lifwas concentrated on one element of the group.)

Remark: It seems that our proof can be easily modified to hold forfanite abelian group (We remind the
reader that any such group can be uniquely expressed asdoe slim of cyclic groups.) Perhaps, such a
result would be of independent interest. We have not attednjat do so here, since it is beyond the scope of
our lower bound. (We intend to investigate this possibilitghe full version of this paper.) Note that, with
the exception of the inductive argument, all the other camepts of our proof work (in this generalized
setting) without any changes. It is very likely that a morenpticated induction would do the trick.

Now let us proceed with the actual proof. We make essent@lofigwo lemmata. The first one is a
simple combinatorial fact that is used several times in these of the proof:

Lemma 41. Letn be a positive integer greater thanande € (0, 1/2] be a constant. Consider a complex
numberv € C expressible as a (non-trivial) convex combination of th#éh roots of unity all of whose
coefficients are at mogt— e. Then, we havéev| < 1 — ¢/2n?.

n—1 j

Proof. We can writev = ijo ijﬁl with w,, = e2mi/n, vj > 0, Z?:_ol v; = landmax;jv; <1 —e.
For the proof it will be helpful to view they,’s as unit vectors in the complex plane (the angle between two
“adjacent” such vectors beirtly, = 27 /n).

By assumption, it is clear that at least two distinct coedfits must be non-zero. We claim that the
length of the vectox is maximized (over all possible “legal” choices of thgs) when exactly two of the
coefficients are non-zero, namely two coefficients cormedpm to consecutiva-th roots of unity.

This is quite obvious, but we give an intuitive argument. \&k assume that > 5; otherwise the claim
is straightforward. Consider the unit vecto(this vector corresponds to one of thg’s) whose coefficient
Ve IN v is maximum. We want to “distribute” the remaining “mads™ v, to the other coordinates:{th
roots) so as to maximize the length. First, observe that vectors whose angle witls at leastr/2 do not
help; so we can assume the corresponding coefficients ase Rew consider the set of vectors “above”
e (whose angle witte is less thanr/2). We can assume that their “mass” (i.e. sum of coefficier#ts) i
concentrated on the unit vectey adjacent te (whose angle witle is minimum); this maximizes their total
contribution to the length of the sum. By a symmetric arguintiie same holds for the set of vectors “below”
e (denote bye, the corresponding adjacent vector). Finally, it is easye® that in order to maximize the
total contribution ofe, ande; to the length of the sum, one of them must have zero weighelgiat their
total mass is “fixed”).

Now let us proceed with the proof of the upper bound. By symynétis no loss of generality to
assume thatg, v»; > 0 with vy > v1. The claim now follows from the following sequence of elertaen
calculations:

33

\V]2 = ’ug + ’U% + 2ugvi cosl,, = 1-— 21)01)1(1 — cos 9n)

1 —2v0(1 — o) (1 — cos(27/n))
1 —2¢(1 — €)(1 — cos(2m/n))

1 —€(1 — cos(27/n))

1—¢/n?

ININ A

The last inequality above follows by observing tkat(27/n) < 1 — 1/n2, n > 2. The elementary
inequalityy/1 — = < 1 — x/2 completes the argument. |

Our second lemma is an analytical tool giving a (relativélsirp) upper bound on the statistical distance
between two distributions. It should be noted that this lteisua variant of the “upper bound lemma”
[Dia88], which has been used in numerous other random wall@ms.

Lemma 42 (upper bound lemma, [Dia88]).In the context of Theorem 6, for ahy> 0, we have:

Py — P> <79 > @)

xe(ZE)*
Proof. We have:

IBe= Bl = 2/4) By — Poye ®
< (r%1/4) - Py = Prg |3 ©)
= (r3q/4) : Z |]P)t]Pt-i-r)‘2 (10)

rEZE
— (7.311/4) . Z ‘,rq(t—l) (]/}\D(‘"L'))t _ ,r,q(t-l-?”—l) (]’I\D(x))t+r‘2 (11)

xe(ZE)*

= (Tq/4) Z |Olt(l') - Oét+r (.1')‘2 (12)

z€(ZE)*
< rd Z lou(z)[* (13)

zE(Z})*

Step (8) follows directly from the definitions of the statiat distance and thg norm. Step (9) easily
follows from the Cauchy-Schwarz inequality and step (10pfithe Parseval identity. For Step (11) notice

that;(y) = r2=1 (B(y))" andP(0) = 1/r7. Step (12) is immediate by the definition @fand Step (13)
follows from the triangle inequality. |

Let X; € Z! be the position of the random walk at timandP; its distribution. By assumptioi = 0.
As previously mentioned?; = P*. Itis easy to show that the statistical distafi@ — P;...|| is monotone
non-increasing in; we are interested in the first tinte= ¢(r, ¢) for which P; andP,,. arej-close.

Notation. Forg € IN, defineb(q) < ¢2log2(q+1), d(r) & rilogr, S = >2913/0(), S o lim; o S

def Ie))
andt, < C2EU) g(r)p(q).
Throughout the proof, we assume for simplicity thais an integer. If® is a probability measure d#? and

P is its Fourier transform, we denote z) e rqﬁ(x). A word concerning absolute constants. The letter

34

will always denote an absolute constant, but as is custotharyalue ofC need not be the same in all its
occurrences. Also note thétis an absolute constant, 6bcan depend of.

Theorem 6 follows from the following claim:

Claim 43. There exists a universal constafit > 0 such that for any) < § < 1/2, anyt > ¢, and any
probability measuré® on Z? it holds||P; — Py.|| < % -8y < 0.

We will prove the claim by induction oaq.

Base casdq = 1). Given an arbitrary probability measufeon the discrete circl&,,, n € IN*, we will
show that, for alt > t; = C%812 .t 1og n, it holds |[B; — Py, || < 3.

Seteg 1= % and consider the following two cases below:

Case I (There exists & € Z,, such thatP’(k) > 1 — ¢.) In this case, we claim that for alle IN* it holds
IP: — Pryn|| < nep = /5. (In fact, this holds independently of the value of the titrjeThis should be
intuitively obvious, but we give an argument.

Recall that the statistical distand@®; — P, .|| is @ monotone non-increasing function fofor any
constant. Hence||P; — Py, || < ||P —P,,+1|| and it suffices to argue th@P — P,,,1|| < nep. The crucial
fact is that for alli € Z we have]P’nH(‘) (1 — neg) - P(4). This directly implies that|P — P,,41| =
> ez, P(0) = Prga ()T < meo - Yorip(iyor,)y D0 < néo - Y ieq, Pi) = neo.

To see that the aforementione fact is true observe thainpi € Z,,, conditioned on the walk being
at position: at timet = 1, with probability at leasf1 — €)™ each of the next steps ist, so with probability
atleast(1 — €)™ > 1 — nep the walk is at positiori again at timg = n + 1.

Case Il (Forallk € Z, itholdsP(k) < 1—¢.) Note that, fork € Z,, we can writex(k) = 37" P(1)-wk"
wherew,, = ¢2™/, SinceP is a probability measure, it follows that0) = 1. Now observe that fok € 7,
a(k) is a convex combination of-th roots of unity with coefficients at mos$t— ;. Hence, an application
of Lemma 41 gives the following corollary:

Corollary 44. For all k € Z#, it holds|«a (k)] <1 — ﬁ

We have now set ourselves up for an application of Lemma 4Raipt € IN with ¢ > t1, we thus get:

n Yy la(i)*

ez,

< 2(-55m) <(-g5m)

< n2(e 25”3)2t1 _ n2e—Cnlognlog(1/5)/S’

IN

1Pt — Pepn |

where we used the elementary inequality- « < e~ for x € [0,1]. For large enough”, we have
IP; — Py < (6/5)? and the base case is proved.

Induction Step: Assume that the claim holds fgr — 1, i.e. that for anyt > t¢,_; and any probability
measuré? on Z< ! it holds||P; — Py, || < % - S¢—1. We will prove that the claim also holds for

Forz € (Z{)* andi = 0,1,...,r — 1 defineV?* df

formally define the notion of degenerate directlon

{y € Z} : (y,x) = i}. At this point we are ready to

Definition 45. We say that: € (Z)* is adegenerate directioifithere exists an € {0,1,...,r — 1} such
x _ 24q
thatP(V;*) > 1 Toritia)

35

We distinguish the following two cases below:
Case I(For allz € (Z1)* it holds |a(z)] < 1 — \F 4b(
we haven(0) = 1. Now, fort > ¢, Lemma 42 yields:

.) Note that, sincé” is a probability distribution,

Py — P[> < 7% D Ja(x)*
z€(Z})*
5q 2t 5q 2tq
< (1o —) <P (1o —
- (\/@“‘*b(q)> - (\/57“417((1))
< r2q(6_\/6f+b(q))2tq _ 742(16—2qlog7”\/510g1/(5

Similarly, if C'is large enough, we hag?, — P[] < §/S < & - S,

Case Il (There exists somey € (Z1)* such thata(zg)| > 1 — ﬁfiffb(q).)
Sincer is a prime, we may assume without loss of generality that= ¢; = (10,—1). Then, fori =
0,1,...,7r—1,we haveV; = V" = {y = (y1,y2,...,Yq) € Z} : y; = i}; note that eacl; is isomorphic
toZ471,

Now observe that we can write(zo) = 3;2) P(V;)w! with . P(V;) = 1, P(V;) > 0. That s,
a(xo) is a convex combination of-th roots of unity whose absolute value is at leste’ /2r2, wheree’ :=

%. Thus, (the contrapositive of) lemma 41 implies that thetstexist some € {0,1,...,r — 1}

with P(V;) > 1 — \F%qu((i.e. zq is degenerate). Clearly, it is no loss of generality to agstimtj = 0,
: o 20q
ie.P(Vp) > 1 VOr2ha)

Fori=0,1,...,r — 1 andj = t,,t, + r, consider the conditional probability measu]Ri;-s: (P;|V3).

All the 2r distributions obtained in this manner can be viewed asibligtons onzi™ . By the law of total
probability, we can writeP; = S>7" 1 P;(V;) - P

SinceP(Vy) > 1— \in‘fb() it follows that [P, (V;) — Py, (V)| < 26q Lo forallie {01, r—1}.

(In fact, this holds independently of the value of the titheThis can be shown by an argument similar to
that in Case | of the induction basis.

We will show using the induction hypothesis that foe 0,1,...,r — 1 andt > ¢, it holds:

, . 5 q
T 7 <_
1P} = Bl)l < g (S + g5

We claim that this will conclude the proof. This follows fraime following chain of inequalities:

r—1 r—1
Py — Peyrl| < Z P (Vi) = Pear (Vi)| + || ZPt(Vi) (P —P,,)|| (14)
i=0 i=0
26q 1) q
< Vo 50) =
< s, (16)

36

Step (14) follows easily from the triangle inequality (rkdhat the statistical distance is a norm) and
by using the fact that thE;'.’s are distributions. For Step (15) observe that the secantrsand in (14) is a
convex combination and Step (16) assumes¢hit large enough.

To finish the proof we show thd?) — P?, || < % . (Sq_l + #(q)) The proofs for the: — 1 remaining
cases are very similar.

Fori =0,1,...,r — 1 denoteP* = (P|V;). LetN; = (le,...,Nj’.“‘l) be a random vector such that
the random variablésfjl. (l=1,2,...,r—1) counts the number of times the walk makes a st@)Zq with

T = l during the firstj steps. Consider a vecter= (s, so, ..., s,—1) such thafs| = dof El 1 si < jand
S —1 ks, =0 mod r. Then, we have:

(BN, =) = (1 [Tt 9)%)) « (26~

where by{x [[} we denote the convolution product. The above equality Holdthe following reason: The
distribution on the left hand side is the distribution dn= z4 " given that the walk makes stepsz with
xr1=1(0=1,2,...,r—1)(andj — |s| steps withz; = 0). The equality follows by commutativity.

Therefore, by the law of total probability, we can wrlﬁg as the following convex combination of
conditional distributions:

P) = > PrN; =]« ({ Tzl @) = (@) 6

(S k=0 mod 1) ands1<5)

Using this fact, we can boun{) — P}, || for ¢ = t, as follows:

[B) = BQ,, | < PrN; # Nip] + PrlINy| > dgr? log rv/Clog(1/6)]
" 2 PrlN; = s - || ({x TTH2 (B) =) [0y =D — (@0)Cr-lshy

s such that
(it ks, =0 mod r)
(|s| < 4gr?logrv/Clog(1/6))

The first summand is equal to the probability that a nondtigtep in the first coordinate (i.e step
with z; # 0) was made in one of the times+ 1,...,¢ + » and this is at mos2dq//Crb(q) (because
P(Vo) > 1 —20q/v/Cr?b(q)).

To upper bound the second summand, we observgthat= 22:11 N} is a binomial random variable
with parameters = ¢, andp < 25¢/v/Cr?b(q). Thus, by a standard Chernoff bound we get that the second
summand is also very small, so that the sum of the first two samdsis at mosg 2b(for large enough
C.

Now consider the third summand. Sine¢ < 4qgr?logrv/Clog(1/6), it follows thatt, — |s| > t,_1
and the induction hypothesis implies:

H ({* H Z";f (]P’Z)*SL> * [(]P’O)*(t—\S\) _ (]P)O)*(t+r—|s|]

‘ < H(]}DO)*(t—\S\)_(PO)*(tJrr—\s\)

IN

)
5 S

37

The first inequality follows from the fact thgt [}/— (P*)** is a distribution. Therefore, the expres-
sion% - S4—1is an upper bound for the third summand and the proof is cample

E.1.3 Proof of Theorem 36.Recall that thdength of a monomial is the number of distinct variables
that occur in it (so for example?x3 has length two). Recall that affine function is simply a degree-1
polynomial.

Let f : F — IF be any function. We say that thefluenceof variablex; on f is

def

Pr [f(l‘l, e s Lj—1yLjy Lj41y - ,ﬂj‘n) 75 f(l‘l, e s Li—15Ys it 1y - - ,ﬂj‘n)]
T1,ye.,Tn,YyEF

If fis a single monomial of length that contains the variable,, then the influence of; on f is
(1—)" (the probability that the other— 1 variables besides; all take nonzero values {8 — +)‘~!, and

then thereisd — % probability that the value af; changes when we re-randomize). Similarlyy i an
s-sparse polynomial in whick; occurs inr monomials of lengtty, ..., ¢, then the influence aof; is at

most , '
1\“ 1\"

1—— R (5 e

(1=5) = (-5)

The total influenceof f is the sum of the influences of all variables. Each monomidkongth/ in a
polynomialg contributes at mosgt(1 — %)5 to the total influence of (i.e. if a polynomial hag: monomials
of lengthsty,, ¢, then the total influence af is at most; (1 — 5)% + -+ + £4(1 — +)*.

Note that each variable in an affine function of the form (A imluencel — %, and the total influence

of such a function is preciselis + r)(1 —).
The following fact will be useful:

Fact 46. Let f, g : F — F be two functions such that for some variablenve haveInf;(f) — Inf;(g)| = 7.
Thenf is 7/2-far from g.

Proof. We may assume without loss of generality thet (¢) = Inf;(f)+ 7. Letx denote a uniform random
input from[F and letz’ denoter with thei-th coordinate re-randomized. We have

Prlg(e) #9(e)] < Prlg@) # f@)] + Prlf(x) # F@)] + Prlf(a) # o(a)]
Rearranging, we get
T = Prlo(e) # o)) - Prlf(a) # £@)
Prlo(a) # @) + PrIf) £ 0(a')] = 2 Pely(z) # 1)

IA

where the final inequality holds since battandz’ are uniformly distributed. This gives the fact. |

Finally, recall that in any polynomig}(x1, ..., z,) overF, we may assume without loss of generality
that no variable’s degree in any monomial is greater tRan 1. (The multiplicative group is of siz& — 1
and hencex” = « for everya € F.)

Proof of Theorem 36.

Let g be ans-sparse polynomial if[zy,...,z,] and letA(x) be a fixed affine function given by
equation (7). We will show that must be®(P)-far from A and thus prove the theorem.

First note that without loss of generality we may assun@s no term of degree 1. (Suppasbast
such terms. Ley’ be the polynomial obtained by subtracting off these terntenl/ is (s — t)-sparse and
is ®(P)-close to the affine function!’(x) obtained by subtracting off the same terms; this affine fonct

38

has at least + r — ¢ nonconstant terms. So we can run the following argument @rith s — ¢ playing the
role of “s” in the lemma.)
Now we observe thaj must satisfy

1
Inf(g) + -+ + Infs(g) > (1 — 4®(P))s(1 — F)' an
If this were not the case, then some variablein x4, ...,z; would necessarily have influence at most

(1—4®(P))(1 — §) ong. Since the influence af; on (7) is1 — +, by Fact 46 this would mean thats at
least2®(P)(1 — &) > &(P)-far from (7), and we would be done.

Notation. We will henceforth refer to monomials inof length less tha? asshort monomials, and we
write S to denote the set of all short monomialsgnFor P? < ¢ < P8, we refer to monomials i of
length ¢ asintermediatemonomials, and we writé to denote the set of all intermediate monomialgyin
Finally, for ¢ > P® we refer to monomials ig of length/ aslong monomials, and we writé to denote the
set of all long monomials.

Observe that

e Each monomial iry that is intermediate or long contributes at most to Inf;(g) + - - - + Infs(g).
This is because each monomial of lengtir P2 contributes at most(1 — +)°* to this sum, and for

integer/ the valuemax- p2 £(1 — %)5 is achieved af = P? where the value is at most/4 (the
upper bound holds for all integd? > 2).

e Each short monomial iy contributes at mosP/e to Inf,(g) + --- + Infs(g). This is because
maxg>1 /(1 — 5)* < P/e (the max is achieved arourfc~ P).

Since the RHS of17) is at leas{(1 — 12)s, we have the following inequalities:

1+, ISP

4 e =

1.2
(1_?>s and |I|+|L| <s

(the second inequality holds simply because there are atstmsy monomials). These inequalities straight-
forwardly yield S| > 5.

Letm, denote the number of monomialsgrhat have length exactl Note that we have ", ps my =
|L| < s.

Given two monomials\{y, M5 that occur ing, we say that\/; coversi; if all variables in)M; are also
in M, (note we do not care about the degrees of the variables ie thesomials). We refer to such a pair
(M, M) as acoverage more precisely, if\/; is of length? we refer to the paifM;, M,) as ar/-coverage
(One can view eachcoverage as an edge in a bipartite graph.)

Let S’ C S be the set of those monomiald in S which are “maximal” in the sense that no other
monomialM’ € S (with M’ # M) coversM.

Claim 47. We have$’| > s/(3PF%).

Proof. SinceS is finite it is clear thatS’ is nonempty; suppose the elementsSofare My, ..., M. Each
of the (at least/(3P) many) elements of is covered by som@/;. But each)M; is of length/ for some
¢ < P? — 1, and hence can cover at madt monomials (any monomial covered By; is specified by
giving ¢ exponents, each between 0 aid- 1, for the/ variables in);). |

Fix any ¢ > P?. Each fixed monomial of length participates in at mos(tP@)PP2 < (tP)* many

¢-coverages of monomials if/. (There are(lf2) ways to choose a subset Bf variables, and once chosen,
each variable may take any exponent between 0/and1.) Consequently, the lengthmonomials ing

39

collectively participate in at most,(¢P)" ’ many/-coverages of variables il in total. By Claim 47, it
follows that)) ,

me((P)"" 3m 7" PP

s/(3PP%) s '

Epres [# (-coverages is in] <
By Markov’s inequality, we have

| Pr_[# (-coverages\l is in > 3melF 2 P2 5] < 1/42.

E !

So for eaché > P2, we have that at most &/¢2 fraction of monomials inS’ are covered by at least
3melT 2 P2 /s many lengthé monomials. Since”,. p» 1/¢2 < 1/2, we have that at least half of the
monomials inS” have the following property:

e Foralll > P2, at mosBm¢**+2P2"* /s many lengthé monomials coven/. (1)

Fix M to be some particular monomial with propefty. SinceM belongs taS’, we know that no short
monomial ing coversM'; we now show that for a constant fraction of all restrictigpnsf variables outside
of M, no intermediate or long monomial i), coversM. (Once this is accomplished, we will be almost
done.)

First observe that for any valuewith P? < ¢ < P?®, using the fact thatn, /s is at mostl, we have that

at most
3€P2+2P2P2 < 3P10P2+16 < P10P2+18

many length¢ monomials cover\/. So in total there are at mogP® — P2 4 1)Pl0P*+18 < ploP*+26
many intermediate monomials that covef; let 7' denote the set of these intermediate monomials. Each
intermediate monomial i’ has length strictly greater than the length\éf so each such monomial contains
at least one variable that is notid. LetV be a set of at mogP07*+26 variables such that each monomial
in T' contains at least one variable from, and letp; be the restriction that sets all variableslinto O

and leaves all other variables unfixed. Note that for each foonomial ing, applying p; either kills the
monomial (because some variable is set to 0) or leaves itamyged (no variable in the monomial is set) in
g, - Thus the result of applying; is that no intermediate monomial i, covers).

Now let po denote a random restriction over the remaining variablesiwleaves free precisely those
variables that occur id/ and fixes all other variables independently to uniformly s#melements df.
Supposel’ is a long monomial (of length > P?) from g that survived intay,, . It must be the case that
M’ contains at least — P? variables that are neither i nor in V, and consequently the probability that
M’ is not killed byp- (i.e. the probability that all variables i’ that are not inV/ are set to nonzero values

underpy) is at most(1 — %)Z‘Iﬂ. Consequently the expected number of lengtiionomials ing,, that

cover M and are not killed by, is at mosBm,¢F” P2P* (1 — %)~ /s. Summing over alt > P%, we

have

[E,, [# long monomials that covev/ and survivep; ps] (18)
3melT? P27 (1 — L)=r?
< 2 -
> P8 5
e P? p2pP? Le—p2
< — |- 3T PTT(1— = . 19
< 2;8 5 | -max (1-3) (19)

We have) ,. ps 2 < 1. Aroutine exercise shows that for @l > 2, the max in (19) is achieved at
¢ = P® where the value is at mosy2 (in fact it is far smaller). So (18) is certainly at madst2, and we

40

have
[E,, [# long monomials that cove¥/ and survivep; ps] < 1/2.

So the probability that any long monomial that cov@dssurvivesp; p, is at mostl /2. Since we already
showed that no short or intermediate monomia4n,, covers), it follows that with probability at least
1/2 over the random choice @b, no monomial ing,, ,, coversM except for)M itself.

Now let p denote a truly random restriction that assigns all varehbla in M uniformly at random and
keeps all variables id/ free. Since the variables i will be assigned according t@, with probability

1/PP""**° e have that with probability at leasf(2P""*" ") > 1/(PP*""***+1) over the random
choice ofp, no monomial iry, coversM. Suppose is such a restriction. Sinc¥ itself clearly survives the
restrictionp, we have that the functiog, (a function on lengtth/) < P? — 1 many variables) is different
from the functionA, — this is simply because the polynomigl contains the monomial/, which is not of

degree 1, whereas all monomialsAnp have degree 1. Hence the functiapsand A, differ on at least one

of the (at most)PPL1 possible inputs.

2
So, we have shown that for at least 4 P” o +26“) fraction of all restrictions of the variables not
occurring inM, the error ofg under the restriction in computing is at Ieastl/PPQ—l. This implies that
the overall error ofy in computingA is at least

10P2426 | p2
1/(P") =o(p)
and we are done with the proof of Theorem 36. |

E.2 Lower Bounds for Boolean Function Classedn this section we prove lower bounds on the query
complexity of testing size-decision trees, size-branching programss-term DNF, and size- Boolean
formulas (in Proposition 48), and Boolean functions witlufier degree at most (in Proposition 51).

Proposition 48. Lete = 1/1000. Anye-testing algorithm for any of the following classes of fuoies over
{0, 1} must maké2(log s/ log log s) queries: (i) sizes decision trees; (ii) size-branching programs; (iii)
s-term DNF; (iv) sizes Boolean formulas.

Proof. The proof combines a counting argument with the result ofdkRles and Gutfreund [CG04] showing
that Q2(J/k) queries are required to distinguish betwekjuntas and(.J + k)-juntas over{0,1}". More
precisely, consider the following distributions:

1. Dyo is the uniform distribution over all functions (onvariables) that depend on (at most) the first
(J + k) variables.

2. Dygs is the distribution obtained in the following way. Choosk-alement subsef;, uniformly and
randomly from the sefl,...,J + k}. Then choose a uniformly random function from the set of all
functions onn variables that depend on (at most) the variables indexebtébget.J + k| \ Zj.

Chockler and Gutfreund show that with very high probab#itsandom draw fronDy o is far from every
J-junta, whereas clearly every draw frobw g is aJ-junta. Given any putative testing algorithm, the dis-
tributions Dygs, Dno over functions induce two distributionSy zs, Cno over “query-answer histories”.
Chockler and Gutfreund show that for any (even adaptiveralgn that makes fewer than(.J/k) queries,
the statistical difference betweery ps and Cyo will be at most1/6. This implies that any successful
testing algorithm must make(J/k) queries.

We adapt this argument to prove Proposition 48 as follows$ Cl.&e a class of functions for which we
would like to prove a lower bound (e.g, could be the class of all Boolean functions owerariables that
are computed by decision trees of size at sdstVe choose/ (as a function o&) such that any/-junta is a
function inCy; with this choice the distributio®y g described above is indeed a distribution over functions

41

in the class. We chooge(as a function of/) so that with very high probability, a random function drawn
from Dyo (i.e. arandom function over the firgtt k variables) is-far from every function irC,. This gives
an(J/k) lower bound for testing whether a black-box function i€inor is e-far from every function in
Cs.

For all of the classes addressed in Proposition 48 we canjitakdog, s andk = ©(log .J). We work
through the analysis for sizedecision trees, sketch the analysis for siz@-anching programs, and leave
the (very similar) analysis fot-term DNF and size-Boolean formulas to the interested reader.

Decision Trees (of sizes): We setJ = log, s andk = log, J. It is clear that any/-junta can be expressed
as a sizes decision tree.

Lemma 49. Fix e = 1/1000. With very high probability, a randorf/ +log J)-junta over the firstJ+log .J)
variables ise-far from any sizes decision tree over the firg§t/ + log J) variables.

Proof. For any sizes decision tree over the fir§t/ + log J) variables, the number @f/ + log J)-juntas
(over these variables)close toit equaly "¢ (27", Fore = 1/1000, this is at mose®-12" " —

7
a—1

2(//10)2” (recall that the sum of the binomial coefficied&”< () is O(C(a)"), whereC/(a) = al/*(25))
Now we upper bound the number of sizelecision trees over the first+ log J variables. There are
at most4® = 22‘2‘]) distinct decision tree topologies for trees witkeaves. For each topology there are at
most(J + log J)* < 22sloglogs — 9(2log /)2’ jifferent labellings of the nodes.
Thus, the number ofJ + log J)-juntas that are-close toany decision tree of size (over the first
J + log J variables) is at mos2(//10+21og /)2 Thjs is a vanishingly small fraction of the total number of
(J + log J)-juntas over the first.J + log J) variables, which ig2" """ = 22", n

We are not quite done, since we need that with very high piibtyaé random function fromDyo is
e-far from everysizes decision tree, not just from sizedecision trees over the fir6f + log J) variables.
This follows easily from the previous lemma:

Corollary 50. For e = 1/1000, with very high probability a randomy.J + log J)-junta over the firs{.J +
log J) variables ise-far from any sizes decision tree (overn variables).

Proof. Let f be any(J + log J)-junta over the sefx1, ...,z 1057} SUppose thag is a sizes decision
tree over{x1,...,x,} that ise-close tof. It is not hard to show that then there exists a sizkecision tree
g’ over the relevant variablefsey, . .., z 71104 7} that ise-close tof as well ' can be obtained from by
fixing all the irrelevant variables to the values that maxieyj's agreement witly). |

We have thus established part (i) of Proposition 48.

Branching Programs: We only sketch the required analysis. We det= log, s andk = 10log, J.
Any J-junta can be expressed as a sizbranching program. Simple counting arguments show that for

e = 1/1000, a random(J + k)-junta over{x1, ...,z } is with high probabilitye-far from every sizes
Branching Program ovezy, . ..,z 1 }. An analogue of Corollary 50 completes the argument.
This completes the proof of Proposition 48. |

Remark 1. We note that these simple arguments do not seem to give artyiviahtesting lower bound for
the class of Boolean circuits of sizelt would be interesting to obtain lower bounds for this clas

Proposition 51. Let0 < e < 1/2. Any non-adaptive-testing algorithm for the class of Boolean functions
over {0, 1}" with Fourier degreal must make(+/d) queries.

Proof. Consider the following two distributions over Boolean ftioos on{—1, 1}":

1. Dyo is the uniform distribution over aﬂ d_’h) parities of exactlyl + 2 variables fromey, ..., z,;

42

2. Dvygg is the uniform distribution over aﬂ’;) parities of exactlyl variables fromzy, ..., z,.

Every function in theDygg distribution clearly has Fourier degree, whereas evergtion in the Do
distribution has distance precisely2 from every function with Fourier degreg(this follows immediately
from Parseval’s identity). Fischeat al. showed that any non-adaptive algorithm for distinguishiingws
from Dygg versusDyo must makeﬂ(\/ﬁ) draws; this immediately gives Proposition 51. [|

43

