
COMS 6998:
Unconditional Lower Bounds & Derandomization

Spring 2024

Lecture 2: January 23, 2024
Lecturer: Rocco Servedio Scribes: Yiming Fang

1 Introduction

1.1 Last time

• Overview of some restricted computational models that we will consider

• Defined worst-case lower bounds, average-case lower bounds, and PRGs

• Proved that PRGs imply worst-case lower bounds

1.2 Today

• Finish overview: prove that PRGs imply average-case lower bounds

• Deterministic Approximate Counting

• Start unit on Boolean formulas; prove various worst-case lower bounds

1.3 Notation Conventions

• a ≈ε b means |a− b| ≤ ε

• Us means uniform distribution over {0, 1}s or {−1, 1}s

• E[f] means EU∼Un [f(U)]

• Use bold to denote random variables, e.g., E[f(U)]

1

2 OVERVIEW (CONTINUED) 2

2 Overview (continued)

Lemma 1. (PRG ⇒ average-case lower bounds)
Let C be a class of functions f : {0, 1}n 7→ {0, 1} that is closed under restrictions. Note
that all classes that we will consider satisfy this natural condition.
Let G : {0, 1}s 7→ {0, 1}n be an ε-PRG for C, where s < n, ε < 1/2.
Let r = s+ log 1

ε
, and assume r ≤ n.

Define function h : {0, 1}r 7→ {0, 1} that outputs 1 on x if and only if some string in
the range of G starts with x:

h(x) = 1 ⇐⇒ ∃y ∈ {0, 1}s, z ∈ {0, 1}n−r such that G(y) = (x, z).

Let C ′ be all restrictions of functions in C, by fixing the last n− r bits, leaving the first
r bits alive.
Let D = 1

2
Ur + 1

2
G(Us)1...r, which is a distribution constructed by a balanced convex

combination of the distributions Ur and G(Us)1...r.
Then, h is ε-hard for C ′ with regard to D.

Proof. Let U ∼ Ur, U′ ∼ Us. Fix any f ∈ C ′, and by definition of C ′, we know that
f(x) = f0(x, a) for some f0 ∈ C, a ∈ {0, 1}n−r. Then,

Pr
X∼D

[f(X) = h(X)] =
1

2
Pr[f(U) = h(U)] +

1

2
Pr[f(G(U′)1...r) = h(G(U′)1...r)]

=
1

2
Pr[f(U) = h(U)] +

1

2
Pr[f(G(U′)1...r) = 1]

≤ 1

2
Pr[f(U) = 0] +

1

2
Pr[h(U) = 1] +

1

2
Pr[f(G(U′)1...r) = 1]

≤ 1

2
Pr[f(U) = 0] +

1

2
Pr[h(U) = 1] +

1

2
(Pr[f(U) = 1] + ε)

=
1

2
+
ε+ E[h]

2

≤ 1

2
+ ε.

The first inequality follows by upper bounding Pr[f(U) = h(U) = 0] and Pr[f(U) =
h(U) = 1]. The second inequality uses the fact G ε-fools f because f ∈ C ′ ⊆ C and G

ε-fools C. The last inequality follows because h outputs 1 on 2s out of 2r = 2s+log 1
ε = 2s

ε

inputs, so E[h] ≤ ε.
PrX∼D[f(X) = h(X)] ≥ 1

2
− ε can be proven similarly. ■

With Lemma 1 and previous results, we haven shown a hierarchy of lower bounds:

PRG =⇒ Average-Case Lower Bounds =⇒ Worst-Case Lower Bounds

3 DETERMINISTIC APPROXIMATE COUNTING 3

3 Deterministic Approximate Counting

So far, we have considered PRGs, which are useful because they let us derandomize
obliviously. PRGs are oblivious in the sense that the 2s many n-bit outputs fool every
f ∈ C without knowing f explicitly. However, for most natural scenarios that we are
interested in, we do know f explicitly. Then, we could conceivably use this knowledge
to aid the derandomization process, which leads us to the concept of Deterministic
Approximate Counters (DAC).

Definition 2. (DAC)
Let C be a class of representations of functions {0, 1}n 7→ {0, 1}.
An algorithm is an ε-DAC for C if on any input F ∈ C, it deterministically outputs a
value in

[E[f(U)− ε,E[f(U) + ε].

Fact 3. DAC is weaker than PRG, but it still suffices for derandomization. So, if there
is a poly(n)-time (ε = 0.1)-DAC for C = {all poly(n)-size circuits}, then P = BPP.

Fact 4. For various classes of functions, the best known ε-DAC is faster than 2spoly(n),
where s is the seed length of the best known ε-PRG.

One concrete example classes of functions are CNFs/DNFs: the best known PRG
runs in O(nlogn) time, whereas the best known DAC runs in O(nlog logn) time.

4 Boolean Formulas

4.1 Basics

Definition 5. (Boolean formula)
A De Morgan Boolean formula F is a rooted binary tree with

• leaf nodes (labeled with xi or xi)

• internal nodes (labeled with ∨ or ∧)

Definition 6. (Size and depth of Boolean formulas)
Given a Boolean formula F ,

size(F) = number of leaves

= number of internal nodes+ 1

depth(F) = length of the longest root-to-leaf path

4 BOOLEAN FORMULAS 4

Remark 1. Without loss of generality, we assume that all negations are at the leaves,
since we can always use De Morgan’s Law to push negations down to the bottom level.

∧

x4 ∨

x3 ∧

∨

x2 x3

x1

Figure 1: The example Boolean formula computes the function f in an obvious way:
f(x1, x2, x3, x4) = x4 ∧ (x3 ∨ ((x2 ∨ x3) ∧ x1)

Definition 7. (Formula size and formula depth of functions)
Given a function f : {0, 1}n 7→ {0, 1},

• Formula size: size(f) = the size of the smallest formula F computing f .

• Formula depth: depth(f) = the depth of the shallowest formula F computing f .

Remark 2. Sometimes, gates with unbounded fan-in are allowed. This relaxation does
not affect the size of the formula, but may affect its depth, as shown in Figure 2.

∨

∨

x1 x2

∨

x3 x4

∨

x1 x2 x3 x4

Figure 2: Allowing gates with unbounded fan-in changes the depth but not the size.

Example 8. (Decision List)
Consider the following decision list function with n variables:

if x1 −→ 1

else if x2 −→ 0

else if x3 −→ 1

else if x4 −→ 0

. . .

4 BOOLEAN FORMULAS 5

This function is computed by the following Boolean formula F :

∨

x1 ∧

x2 ∨

x3 ∧

x4 · · ·

It is clear that size(F) = n and depth(F) = n.
For any n-variable decision list function, the size of O(n) is the minimum possible.

However, the O(n) depth is not minimal, and there exists a Boolean formula with
O(log n) depth: the given decision list function can be computed by a depth-2 DNF
(which has unbounded fan-in), and we can convert such a DNF into a Boolean formula
with depth of 2 log n and size of Θ(n2).

Example 9. (Parity)
The parity function on n variables is defined as

PARn(x1, . . . , xn) =
n∑
i=1

xi mod 2.

We can recursively construct a Boolean formula that computes PARn:

PARn(y, z) =

∨

∧

PARn
2
(y) PARn

2
(z)

∧

PARn
2
(y) PARn

2
(z)

where y = (x1, . . . , xn
2
), z = (xn

2
+1, . . . , xn).

We can compute the size of the resulting formula inductively. Let s(i) denote the
size of a Boolean formula computing PARi, then s(1) = 1, s(2i) = 4s(i). Hence
s(n) = n2, which is in fact optimal, i.e., size(PARn) = Ω(n2).

The proof of the Ω(n2) lower bound is highly non-trivial. In the following sections,

we will instead prove a weaker lower bound of Ω(n
3
2) using techniques that are more

relevant for PRGs.

Fact 10. There exist O(n)-size Boolean circuits computing PARn.

4 BOOLEAN FORMULAS 6

4.2 Shannon’s Lower Bound via Counting Arguments

Idea: The following result uses counting arguments to establish lower bounds for
nonexplicit problems. The strategy is to demonstrate that there are many n-variable
Boolean functions, while there are not too many Boolean formulas with small size.
Therefore, some fraction of Boolean functions necessarily have large formula size.

Fact 11. There are 22
n
many functions f : {0, 1}n 7→ {0, 1} (since each function has

2n possible inputs, and has 2 possible output values for each input).

Theorem 12. [Sha49] At least a 1−1/2n fraction of all functions f : {0, 1}n 7→ {0, 1}
have formula size

size(f) ≥ 2n

2 log n
.

Proof. Let s = 2n

2 logn
. We will show that the number of Boolean formulas with size s

over n variables is much fewer than 22
n
/2n.

To upper bound the number of possible Boolean formulas with size s, it suffices
to consider the number of possible specifications of such formulas. Any size-s Boolean
formula F can be specified by:

(i) The structure of the binary tree

Since size(F) = s, F has s leaves and s− 1 internal nodes. We can describe any
such tree as an element of

{II, IL, LI, LL}s−1,

where L and I represent internal and leaf node respectively, and each tuple
represents the node type of the left and right children. Any tree structure can be
unambiguously parsed into a sequence of s−1 tuples, by traversing every internal
node in an orderly fashion and recording the node types of the current node’s
children. Therefore, the number of possible tree structures is at most 4s−1.

(ii) Labels of all nodes

Each internal node can be labeled as ∨ or ∧, so there are 2s−1 possible labelings
for the s− 1 internal nodes.

Each leaf node can be labeled as xi or xi, for any i ∈ [n], so there are (2n)s

possible labelings for the s leaf nodes.

4 BOOLEAN FORMULAS 7

Thus, the number of size-s formulas over n variables can be upper bounded by

4s−1 · 2s−1 · (2n)s ≤ (16n)s.

For s = 2n

2 logn
and sufficiently large n,

(16n)s = 2log(16n)·2
n/2 log(n) = 2

4+log(n)
2 log(n)

·2n < 20.51·2
n ≪ 1

2n
· 22n .

Therefore, at most a 1−1/2n fraction of functions have formula size larger than s. ■

Fact 13. For any function f : {0, 1}n 7→ {0, 1}, there is a DNF/CNF computing
f which has at most 2n−1 terms/clauses. Since there are at most n literals in each
term/clause, we can upper bound its size with by n2n−1.

Homework Problem 1. Extend Theorem 12 to average-case lower bound under Un.

Remark 3. Theorem 12 provides an exponential lower bound for the formula size of
almost all functions. However, the lower bound is unsatisfying because it is not explicit:
from it, we cannot derive lower bounds for the formula size of explicit functions, such
as functions in NP or P.

4.3 Subbotovskaya’s Lower Bound via Random Restrictions

[Sub61] analyzed the effect of random restrictions on Boolean formulas.

Idea: Given a Boolean formula F computing function f : {0, 1}n 7→ {0, 1}, we can
shrink the size of F by restriction, i.e., randomly and independently set some of the
input variables xi to be 0/1, leaving the rest free. Then, we argue that this restriction
operation shrinks size(F) by a significant amount. Thus, if the size of the restricted
formula is at least 1, then size(F) must have been large.

Definition 14. (Restriction)
A restriction (or a partial assignment) is a mapping ρ : [n] 7→ {0, 1, ∗}, where we
understand ρ(i) = ∗ to mean that xi is left unassigned.

We abuse the notation and also use ρ ∈ {0, 1, ∗}n to denote a specific partial as-
signment yielded by the mapping ρ.

Definition 15. (Restriction of function)
A restriction of function f by ρ is defined as

f ↾ ρ = f(ρ(1), . . . , ρ(n)).

Note that f ↾ ρ is a subfunction of f , on variables xi for which ρ(i) = ∗.

4 BOOLEAN FORMULAS 8

Example 16. Let ρ = (1, 0, 1, ∗, ∗, 1), and let f be a 6-variable function.
Then, f ↾ ρ = f(1, 0, 1, x4, x5, 1), which is a 2-variable function.
The restriction can be interpreted as “zooming in” on a subcube of f .

Definition 17. Let Rk denote the following distribution over restrictions:

• Choose k variables uniform randomly and leave them unassigned (as ∗)
• Assign 0/1 values randomly to the remaining n− k variables

Theorem 18. [Sub61]
Let f : {0, 1}n 7→ {0, 1}. Let ρ ∼ Rk. Let Γ = 3

2
. Then,

Pr
ρ∼Rk

[
size(f ↾ ρ) ≤ 4 ·

(
k

n

)Γ

· size(f)

]
≥ 3

4
. (1)

Application: Before delving into the proof, we consider the following application to
see how Theorem 18 is useful in proving lower bounds on formula size.

Let k = 1, f = PARn. f ↾ ρ is xi or xi for some i ∈ [n], so size(f ↾ ρ) = 1. Thus,

1 ≤ 4 ·
(
1

n

) 3
2

· size(f)

size(f) ≥ 1

4
· n

3
2 .

Proof. (Theorem 18)
Let F be the optimal (i.e., smallest) formula computing f . Let s = size(F).

We can view ρ being constructed in n− k stages. At each stage, choose a variable
randomly from the remaining unassigned variables, and randomly assign 0/1 to it. We
will analyze the effect of this restriction stage-by-stage.

First stage: Choose xi and randomly assign b ∈r {0, 1} to it. Fixing xi = b makes all
instances of xi and xi vanish from F . By an averaging argument,

E[#occurrence of xi or xi] = s/n.

So E[size(f)] shrinks by at least s/n.
In fact, E[size(f)] shrinks more due to the following “secondary effect”:

• Consider any occurrences of xi or xi in F , i.e., xi ∧ G (A similar argument can
be made for xi ∨G), where G is a subformula of F and size(G) ≥ 1.

4 BOOLEAN FORMULAS 9

• The key insight is that G cannot contain any xi or xi:

Suppose for sake of contradiction that G contains at least one xi or xi. Then,
since G only matters if xi = 1, we can replace every occurrence of xi or xi with
1 or 0, respectively. This operation reduces size(G) and hence size(F), but
does not change the function computed by F . However, this reduction in size
contradicts the optimality of F .

• So, with probability 1/2, setting xi to a constant makes G vanish, reducing
size(F) by size(G) ≥ 1.

Therefore, the expected number of literals that vanish from F due to this “secondary
effect” is at least s

2n
. In total,

E[size(f ↾ ρ) after 1 stage] ≤ s− 3

2
· s
n
= s

(
1− 3

2n

)
≤ s ·

(
1− 1

n

) 3
2

.

Second stage: Proceed after making F optimal, which can only decrease the formula
size. Since f ↾ ρ in this stage is a function on n− 1 variables,

E[size(f ↾ ρ) after 2 stages] ≤ s ·
(
1− 1

n

) 3
2

·
(
1− 1

n− 1

) 3
2

= s ·
(
n− 1

n

) 3
2

·
(
n− 2

n− 1

) 3
2

.

After n− k stages: (on optimal formula at each stage)

E[size(f ↾ ρ)] ≤ s ·
(
n− 1

n

) 3
2

·
(
n− 2

n− 1

) 3
2

· · ·
(

k

k + 1

) 3
2

= s ·
(
k

n

) 3
2

.

Finally, by Markov’s inequality,

Pr
ρ∼Rk

[
size(f ↾ ρ) ≤ 4 · s ·

(
k

n

) 3
2

]
≥ 3

4
.

■

History: Let Γ denote the best shrinkage exponent such that (1) holds.

• size(PARn) = Ω(n2) implies Γ ≤ 2

• [IN93]: Γ ≥ 1.55

• [PZ93]: Γ ≥ 1.63

• [H̊as98]: Γ ≥ 2− o(1)

• [Tal14]: better o(1)

Project Topic 1. Study [H̊as98] and [Tal14].

4 BOOLEAN FORMULAS 10

4.4 Andre’ev’s Lower Bound

[And87] proposed a clever way to obtain Ω̃
(
nΓ+1

)
lower bound for the formula size of

an explicit function. Note that the notation Ω̃(·) hides polylogarithmic factors.

4.4.1 Warmup to Andre’ev’s function

From Theorem 12, we know that there exists an n-variable function with formula
size at least 2n

2 logn
. By replacing n with log n, we know that there exists a (log n)-

variable function that requires formula size at least n
2 log logn

. Since this lower bound is
nonexplicit, we only know the existence of such a function:

∃ψ : {0, 1}logn 7→ {0, 1} such that size(ψ) ≥ n

2 log log n
.

Let b = log n. Let m = n/b. We can view x1, . . . , xn as b blocks of variables, with m
variables in each block. Let fψ : {0, 1}n 7→ {0, 1} be defined as

fψ(x1, . . . , xn) = ψ (x1 ⊕ · · · ⊕ xm, xm+1 ⊕ · · · ⊕ x2m, . . . , xn−m+1 ⊕ · · · ⊕ xn) . (2)

Let k = b ln(4b), so that ρ ∼ Rk leaves b ln(4b) variables unassigned.

Lemma 19. With probability at least 3/4 over ρ ∼ Rk

size(fψ ↾ ρ) ≤ 4 ·
(
k

n

)Γ

· size(fψ). (3)

Proof. It suffices to apply Theorem 18 to fψ. ■

Lemma 20. With probability at least 3/4 over ρ ∼ Rk

∀i ∈ [b], block i gets at least one ∗ . (4)

Proof. By direct calculation.
There are

(
n
k

)
ways to assign k ∗’s to n variables. Fix a block i ∈ [b]. The event

that no variables in block i gets a ∗ happen if and only if all k ∗’s are assigned to the
other n−m variables, and there are

(
n−m
k

)
such assignments. Thus,

Pr
ρ∼Rk

[block i gets no ∗] =
(
n−m
k

)(
n
k

) ≤
(
n−m

n

)k

=

(
1− 1

b

)b ln(4b)

≤ 1

4b
.

4 BOOLEAN FORMULAS 11

By union bound over all b blocks,

Pr
ρ∼Rk

[∃i, block i gets no ∗] ≤ b · 1

4b
=

1

4
.

■

By Lemmas 19 and 20, with probability at least 1/2, ρ ∼ Rk satisfies 3 and 4. For
any such ρ, fψ ↾ ρ contains ψ as a subfunction. So

n

2 log log n
≤ size(ψ) ≤ size(fψ ↾ ρ)

≤ 4 ·
(
k

n

)Γ

· size(fψ)

= 4

(
(log n) · ln(4 log n)

n

)Γ

· size(fψ)

size(fψ) = Ω̃
(
nΓ+1

)
.

4.4.2 Andre’ev’s actual function

Idea: There is an issue with fψ as defined in (2): it is not explicit. The function fψ
depends on a nonexplicit function ψ, whose existence is known from Theorem 12. We
can fix this issue viewing ψ(x1, . . . , xb) as an (2b = n)-bit string, and feed it as input
into Andre’ev’s function.

Theorem 21. [And87]
Let A(x, y) : {0, 1}2n 7→ {0, 1} be Andre’ev’s function. A is explicit and satisfies

size(A(x, y)) ≤ Ω̃
(
nΓ+1

)
.

Proof. For any string y ∈ {0, 1}n, y can be viewed as a b-bit function. Let fy :
{0, 1}n 7→ {0, 1} be defined as

fy(x1, . . . , xn) = y (x1 ⊕ · · · ⊕ xm, xm+1 ⊕ · · · ⊕ x2m, . . . , xn−m+1 ⊕ · · · ⊕ xn) .

Let Andre’ev’s actual function A(x, y) : {0, 1}2n 7→ {0, 1} be defined as

A(x, y) = fy(x1, . . . , xn).

There exists some string y ∈ {0, 1}n that is equivalent to the string representing ψ, so

size(A(x, y)) ≥ size(fψ) ≥ Ω̃
(
nΓ+1

)
.

■

REFERENCES 12

Homework Problem 2. Show that A(x, y) is computable by O(n)-size circuit.

Fact 22. A ∈ P.

Fact 23. A exhibits the largest known gap between circuit size and formula size:

• Circuit size O(n)

• Formula size Ω̃(n3)

Project Topic 2. KRW conjecture [KRW95].

References

[And87] Alexander E Andreev. On a method for obtaining more than quadratic
effective lower bounds for the complexity of π-schemes. Moscow Univ. Math.
Bull., 42(1):63–66, 1987. 4.4, 21

[H̊as98] Johan H̊astad. The shrinkage exponent of de morgan formulas is 2. SIAM
Journal on Computing, 27(1):48–64, 1998. 4.3, 1

[IN93] Russell Impagliazzo and Noam Nisan. The effect of random restrictions on
formula size. Random Structures & Algorithms, 4(2):121–133, 1993. 4.3

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth
lower bounds via the direct sum in communication complexity. Computa-
tional Complexity, 5:191–204, 1995. 2

[PZ93] Michael S Paterson and Uri Zwick. Shrinkage of de morgan formulae under
restriction. Random Structures & Algorithms, 4(2):135–150, 1993. 4.3

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. The
Bell System Technical Journal, 28:59–98, 1949. 12

[Sub61] B. A. Subbotovskaya. Realizations of linear functions by formulas using
+, ∗,−. Soviet Mathematics Doklady, 2:110–112, 1961. 4.3, 18

[Tal14] Avishay Tal. Shrinkage of de morgan formulae by spectral techniques. In
2014 IEEE 55th Annual Symposium on Foundations of Computer Science,
pages 551–560. IEEE, 2014. 4.3, 1

	Introduction
	Last time
	Today
	Notation Conventions

	Overview (continued)
	Deterministic Approximate Counting
	Boolean Formulas
	Basics
	Shannon's Lower Bound via Counting Arguments
	Subbotovskaya’s Lower Bound via Random Restrictions
	Andre'ev's Lower Bound
	Warmup to Andre'ev's function
	Andre'ev's actual function

