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Overview

Last time, we talked about:

• The KRW conjecture

• Lower bounds for full-basis formulas

• Constant-depth circuits: start 2Ω(n1/(d−1)) size lower bound for depth-d circuits
for computing the parity function; intuition for and statement of the Switching
Lemma

Today, we will:

• Demonstrate how to use H̊astad’s Switching Lemma (HSL) to get a 2Ω(n1/(d−1))

size lower bound for depth-d circuits for parity (PAR)

• Prove a weak version of the Switching Lemma

• Prove the full version of H̊astad’s Switching Lemma

1 HSL =⇒ Lower Bound for Constant Depth Cir-

cuits

Recall that Rp is the distribution over restrictions ρ : [n] → {0, 1, ∗} such that each
element ρ(i) of a restriction ρ ∼ Rp is an i.i.d. random variable where Pr[ρ(i) = ∗] = p
and Pr[ρ(i) = 0] = Pr[ρ(i) = 1] = 1−p

2
.

Theorem 1. (H̊astad’s Switching Lemma)
Let f(x1, . . . , xn) be computed by a width-w DNF (or CNF). Let DT-depth(f) be the
decision tree depth of f . Let f ↾ρ be the restriction of f by ρ. Then for t ≥ 1, 0 < p < 1,

Pr
ρ∼Rp

[DT-depth(f ↾ρ) ≥ t] ≤ (7 · p · w)t.

1
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Assume for now that H̊astad’s Switching Lemma is true. Let C be a depth-d, size-M
circuit that computes PARn. We’ll argue using HSL that M ≥ 2Ω(n1/(d−1)), uncondi-
tionally. Let’s say C is a circuit that has alternating layers of the form AND-OR-. . . -
AND-OR.1 We will now collapse this circuit by hitting it with random restrictions in
successive stages.

Stage 0: Perform an initial “trim” to reduce the bottom fan-in. Hit C with ρ ∼ R 1
100

:

∗-prob. = 1
100

, 1-prob. = 49.5
100

, 0-prob. = 49.5
100

.

Observation: If some bottom-level OR gate has fan-in > 10 logM , then it will simplify
to a constant 1 as long as there is at least one literal assigned to 1 beneath it (each
variable is assigned to 1 w.p. 0.495). So for p = 1

100

Pr
ρ∼Rp

[output of the OR gate is fixed to 1 and vanishes] ≥ 1− (.505)10 logM ≫ 1− 1

M5
.

By upper bounding over all (≤M) bottom level gates, we get that:

1. w.p. > 1
2
(actually much higher), ρ ∼ R 1

100
kills all gates of fan-in > 10 logM .

2. Also w.p. > 1
2
, at least n

200
variables survive ρ ∼ R 1

100
.

Since both events occur w.p. > 1
2
, there exists some ρ where both occur simultane-

ously. Fix that ρ and call C0 the circuit C ↾ρ.

Any restriction of a circuit computing the parity function will compute either a parity
function or its negation on the subset of variables that are left unfixed by the restric-
tion. Therefore C0 computes PARk or its negation on the remaining k ≥ n

200
variables

and has bottom fan-in ≤ 10 logM .

Stage 1: Hit C0 with ρ ∼ R 1
100 logM

.

Each depth-2 circuit at the bottom of C0 is an at most (10 logM)-width CNF, so
we can fruitfully apply HSL to it! Take t = 10 logM . HSL =⇒ this depth-2 cir-
cuit collapses to a ≤ (10 logM)-depth decision tree except with failure probability
(7 · p · w)t=10 logM = (7 · ( 1

100 logM
) · (10 logM))10 logM = (0.7)10 logM ≈ 1

M5 .

Upper-bounding over all (≤M) depth-2 circuits at the bottom level of C0, we get that:

1We can safely assume this because two consecutive ANDs or two consecutive ORs could be
collapsed down to a single layer.
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1. w.p. > 1
2
(again, actually much higher), each subcircuit becomes a decision

tree of depth at most 10 logM , which can be rewritten as a DNF of width at
most 10 logM . Observe that since the original bottom-level depth-2 subcircuits
were CNFs, the last three layers of the original circuit were of the form . . . -OR-
AND-OR. Upon conversion of the bottom-level depth-2 subcircuits from width-
(10 logM) CNFs to width-(10 logM) DNFs, the last three layers become of the
form . . . -OR-OR-AND, which after combining the adjacent OR layers can be
collapsed into . . . -OR-AND, reducing the overall depth of the circuit by 1. See
the figure below for a visual depiction of depth reduction.

∨

∧

∨

∧

=⇒ (HSL) ≡

∨

∨

∧

∨

∧

∨

∧ ...

10 logM 10 logM 10 logM

10 logM

Depth reduction at bottom level of circuit

2. w.p. > 1
2
, the number of surviving variables ≥ n

200
· 1
200 logM

Again, there exists a ρ satisfying both these properties which we fix, and then we
define C1 = C0 ↾ρ. C1 computes PAR or its negation on ≥ n

200
· 1
200 logM

variables and

is a depth-(d− 1) circuit with ≤M gates at distance 2 from the bottom.

Stages 2,3, . . . ,d− 3,d− 2: In each successive stage, we hit Ci−1 with ρ ∼ R 1
100 logM

to obtain Ci = Ci−1 ↾ρ, as we did in Stage 1. We can tabulate the properties of the
circuits obtained.
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Current circuit Depth max bottom fan-in # variables in play
C d n n
C0 d 10 logM n

200

C1 d− 1 10 logM n
200·(200 logM)

C2 d− 2 10 logM n
200·(200 logM)2

...
...

...
...

Cd−2 2 10 logM n
200·(200 logM)d−2

Cd−2 computes PAR or its negation on at least n
200·(200 logM)d−2 variables and it is a

width-(10 logM) CNF. By the lower bound on the width of a CNF computing PAR,
Cd−2 must satisfy

n

200d−1 · (logM)d−2
≤ 10 logM

i.e. that the width of the circuit exceeds the number of unfixed variables, which is met
only when M ≥ 2Ω(n1/(d−1)). □
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2 Proof of Weak Switching Lemma

We’ll now prove a weaker version of H̊astad’s Switching Lemma.

Theorem 2. (Weak Switching Lemma) Let f(x1, . . . , xn) be computed by a width-w
DNF (or CNF). Let DT-depth(f) be the decision tree depth of f . Let f ↾ρ be the
restriction of f by ρ. Then for t ≥ 1, 0 < p < 1,

Pr
ρ∼Rp

[DT-depth(f ↾ρ) ≥ t] ≤ (40 · p · w · 2w)t.

There is a major difference in the structure of the proofs:

• In the H̊astad’s Switching Lemma proof, we first restrict f by ρ, then analyze
the decision tree for f ↾ρ.

• In the Weak Switching Lemma proof, we first construct a decision tree T for f ,
then analyze T ↾ρ.

The Weak Switching Lemma proof is easier because a decision tree T hit by ρ is easy
to understand! If

T =

xi

T0 T1

is hit by ρ, then

T ↾ρ=

xi

T0 ↾ρ T1 ↾ρ

if xi ← ∗

T0 ↾ρ if xi ← 0

T1 ↾ρ if xi ← 1



2 PROOF OF WEAK SWITCHING LEMMA 6

Definition 3. A decision tree T is w-clipped if every node in T has ≥ one leaf at a
distance of ≤ w below it.

Lemma 4. Any width-w DNF (or CNF) is equivalent to a w-clipped decision tree.

Proof. We can build decision tree T by querying variables in each successive term.
Read/query variables in the current term one by one, adding a 1-leaf under the path
that satisfies the current term, and moving on to the next term on paths where the
current term is falsified. When we have satisfied all terms, put down 0-leaves on all
remaining variables to finish the tree. This decision tree will be w-clipped because at
any internal node, the branch satisfying the current term ends in a 1-leaf at a distance
≤ w. ■

Example: Suppose we want to construct the 2-clipped decision tree for the width-2
DNF (x1x2) ∨ (x1x3) ∨ (x3x4). By following the path that satisfies the term currently
being queried, there will always be at least one 1-leaf no more than 2 levels away from
any node. For this DNF the decision tree will look as follows:

x1

x3

0 1

x2

x3

0 x4

0 1

1

The Weak Switching Lemma follows from the following lemma:

Theorem 5. (w-clipped Switching Lemma)
Let f(x1, . . . , xn) be computed by a w-clipped decision tree. Then for t ≥ 1, 0 < p < 1,

Pr
ρ∼Rp

[DT-depth(f ↾ρ) ≥ t] ≤ (40 · p · w · 2w)t.
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Define Branches(T ) to be the set of all root-to-leaf paths in T . Consider a random
walk down T . Let W (T ) be the distribution over branches corresponding to a uniform
random walk down from the root. A path π ∈ Branches(T ) will have probability mass
2−|π| under W (T ) where |π| = length of π.

Lemma 6. Let T be a proper decision tree (no variable occurs twice on any branch).
The following distributions are equivalent:

• D1(T ): draw ρ ∼ Rp, consider T ↾ρ, output σ ∼ W (T ↾ρ).

• D2(T ): draw π = (π1,π2, . . . ) ∼ W (T ), and output sublist σ obtained by going
through π1,π2, . . . and including each one with probability p. (|σ| ∼ Bin(|π|, p))

Proof: Official Homework Problem

Now we present the proof of the w-clipped Switching Lemma.

Proof. (w-clipped Switching Lemma) Observe that for any ρ ∼ Rp, we have that

depth(T ↾ρ) ≥ t =⇒ Pr
σ∼W (T ↾ρ)

[|σ| ≥ t] ≥ 2−t.

By some basic rearrangement, Markov’s inequality states that if Z ≥ 0 is any random
variable, we have that Pr[Z ≥ 2−t] ≤ 2t · E[Z]. So we have

Pr
ρ∼Rp

[depth(T ↾ρ≥ t] ≤ Pr
ρ∼Rp

[
Pr

σ∼W (T ↾ρ)
[|σ| ≥ t] ≥ 2−t

]

≤ 2t · Eρ∼Rp

[
Pr

σ∼W (T ↾ρ)
[|σ| ≥ t]

]
(Markov)

= 2t · Eπ∼W (T )

[
Pr

y∈Bin(|π|,p)
[y ≥ t]

]
(Equivalence lemma)

≤ 2t · Eπ∼W (T )

[
pt
(
|π|
t

)]
= (2p)t · Eπ∼W (T )

[(
|π|
t

)]
≤ (40 · p · w · 2w)t (from the following claim)

■



3 PROOF OF HÅSTAD’S SWITCHING LEMMA 8

Claim 7. If T is w-clipped, then Eπ∼W (T )[
(|π|

t

)
] ≤ (20 · w · 2w)t

Proof. Let X = the number of tosses that have occured when it is the first time that
a fair coin lands on w consecutive heads. (X ∈ {w,w + 1, w + 2, . . . }). This r.v.
stochastically dominates |π| for π ∼ W (T ):

∀α : Pr[X ≥ α] ≥ Pr[|π| ≥ α].

For any monotonically increasing function g, we have that E[g(X)] ≥ E[g(|π|)], so it
is sufficient to show that E[

(
X
t

)
] ≤ (20 · w · 2w)t.

We can show that E[X t] ≤ (7 · w · t · 2w)t (Official Homework Problem).

So E[
(
X
t

)
] ≤ E[( eX

t
)t] ≤ ( e

t
)t · (7 · w · t · 2w)t < (20 · w · 2w)t. ■

3 Proof of H̊astad’s Switching Lemma

First, we will change the coefficient in HSL from 7 to a 10 for this version of the proof.

Theorem 8. (H̊astad’s Switching Lemma, slightly modified)
Let f(x1, . . . , xn) be computed by a width-w DNF (or CNF). Let DT-depth(f) be the
decision tree depth of f . Let f ↾ρ be the restriction of f by ρ. Then for t ≥ 1, 0 < p < 1,

Pr
ρ∼Rp

[DT-depth(f ↾ρ) ≥ t] ≤ (10 · p · w)t.

Note: If p ≥ 1
10w

then (10 · p · w) ≥ 1 and the lemma is trivially true, so the lemma is
only relevant when p is small (p < 1

10w
), meaning that ∗’s are unlikely.

Let F = T1 ∨ T2 ∨ . . . be a width-w DNF (fixing order of terms). What happens to
one term e.g. Ti = x1 ∧ x3 ∧ x4 under ρ ∼ Rp?

• Some literal could get set to 0; Ti ↾ρ≡ 0. i.e. Ti vanishes from F ↾ρ. If every Ti

has this happen, F ↾ρ≡ 0.

• Could have each of Ti’s w literals get set to 1. If this happens for any Ti, F ↾ρ≡ 1.

• Otherwise, maybe some literals in Ti get ∗, other literals in Ti get 1. This means
Ti (potentially) “shrinks”, but survives.
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So overall, F could simplify to 1, simplify to 0, or some Ti vanish to 0, while others
may shrink.

Goal: show that w.h.p. with respect to ρ ∼ Rp, some decision tree for F ↾ρ is shallow.
We’ll argue that w.h.p., a particular way of writing a decision tree for F ↾ρ is shallow.
Denote this CDT(F,ρ) the “Canonical Decision Tree for F after ρ”.

Definition 9. Let F = T1 ∨ T2 ∨ . . . . CDT(F,ρ) is defined as follows.

1. If F ↾ρ is killed or set to 0 or 1, that’s CDT(F,ρ). Otherwise, go to next step.

2. Find first Ti not killed by ρ. CDT(F,ρ) obliviously queries all surviving variables in that term.

3. Recurse at each leaf: for each leaf, do steps (1), (2) under the augmented restric-
tion corresponding to that leaf.

Note: When CDT(F,ρ) queries a block of variables, some unique assignment/path
satisfies all literals in that restricted term, and we get a 1-leaf in CDT(F,ρ) there.

Example: Suppose F = (x1 ∧ x2 ∧ x4) ∨ (x2 ∧ x5 ∧ x6) ∨ (x3 ∧ x5 ∧ x7).
Suppose ρ is chosen as x1 = ∗;x2 = 1;x3 = ∗;x4 = 1;x5 = ∗;x6 = 0;x7 = ∗. Then,

T1 ↾ρ= 0, T2 ↾ρ= x5, T3 ↾ρ= x3∧x5∧x7, so F ↾ρ= (x5) ∨ (x3 ∧ x5 ∧ x7) . The CDT(F,ρ)

would be

x5

x3

x7

0 0

x7

0 1

1

Blue labels correspond to the first block and red labels correspond to the second block.

Define BAD = set of restrictions ρ such that CDT(F,ρ) has depth ≥ t. We want to
show that

Pr
ρ∼Rp

[ρ ∈ BAD] ≤ (10 · p · w)t.
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Fix a ρ ∈ BAD. CDT(F,ρ) has depth ≥ t, so at least one path of depth ≥ t exists. Let
P be the variable assignments corresponding to following the leftmost path of depth
≥ t in CDT(F,ρ). For simplicity, assume that the depth of P is t. So ρ + P is a
new restriction that fixes t more variables than ρ did, which we denote as Devil(ρ).
Observe that Devil(ρ) has “segments” based on blocks of CDT(F,ρ) that are queried
along the path induced by P . Let V1 be the first block queried along P , V2 the second
block queried along P , and so on.

Let δ1 be the restriction fixing the variables of V1 as they are fixed in Devil(ρ). Simi-
larly, let δ2 be the restriction fixing the variables of V2 as they are fixed in Devil(ρ). So
Devil(ρ) is ρ◦δ1 ◦δ2 ◦δ3 ◦ . . . . Devil(ρ) is kind of a “worst case” path down CDT(F,ρ)
because it avoids reaching satisfying assignments until t variables have been queried.

Consider a different restriction called Angel(ρ), which is a set of disconnected path
segments that tells us the best path we can follow from the start of each block to reach
the 1-leaf of the current block, given that up to this point we have received only bad
query results taken from Devil(ρ). Like Devil(ρ), Angel(ρ) fixes t additional variables
beyond ρ. However, Angel(ρ) fixes variables in Vi to reach the 1-leaf of the block Vi,
so within each block Angel(ρ) and Devil(ρ) disagree.
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Q: Is Angel(ρ) or ρ more likely under Rp?
A: Angel(ρ) is much more likely: it has more fixed bits (0 or 1), and fixed bits are
much more likely to be drawn than ∗’s.

In more detail: if we fix any ρ ∈ {0, 1, ∗}n with k many ∗’s

Pr
Rp

[ρ] =

(
1− p

2

)n−k

· pk

So for any bad ρ ∼ Rp with k ∗’s

PrRp [ρ]

PrRp [Angel(ρ)]
=

(
1−p
2

)n−k · pk(
1−p
2

)n−(k−t) · pk−t
=

(
2p

1− p

)t

≤ (2.5p)t

Note that the last inequality holds because p is small (p < 0.2). For any bad ρ, we
have that

Pr
Rp

[ρ] ≤ (2.5p)t · Pr
Rp

[Angel(ρ)] (!)

Key Fact (to be proven next time): Any restriction σ is Angel(ρ) for ≤ (4w)t many
bad ρ’s.

Finally we can apply all of the inequalities we’ve collected:

Pr
ρ∼Rp

[BAD] =
∑

ρ∈BAD

Pr
Rp

[ρ]

≤
∑

ρ∈BAD

(2.5p)t · Pr
Rp

[Angel(ρ)] (!)

≤ (2.5p)t · (4w)t ·
∑
σ

Pr
ρ∼Rp

[σ]︸ ︷︷ ︸
=1

(Key Fact)

= (10 · p · w)t. □

Next Time

• Prove “Key Fact” to the proof of HSL

• average case AC0 lower bounds
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• average case lower bound for DNF/CNFs via “random projections”

• F2 polynomials
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