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Lecturer: Rocco Servedio Scribe: Mark Chen

Last Time:

• Used H̊astad’s Switching Lemma (HSL) to get 2
Ω

(
n

1
d−1

)
size lower bound (l.b.)

for depth-d circuits for PAR.

• Proof of “weak switching lemma.”

• Proof of HSL (with a “key fact” left to prove today).

Today:

• Finish proof of HSL by proving “key fact.”

• Average-case l.b. for AC0 circuits for PAR (small extension of worst-case l.b. we
did).

• Depth-2 average-case l.b. (O’Donnell and Wimmer): Any CNF that agrees with

(some explicit function) on 90% of all inputs must have 2Ω(
n

log(n)) clauses.

• Start F2-polynomials: Definitions and basic properties that lead up to showing
an average-case l.b. for them (next time).

1 H̊astad’s Switching Lemma (Continued)

Many of these results can be found in chapter 12 of [Juk12].

Proof. [Of HSL] Last time, we had a key fact left unproven for HSL, which was stated
as such:

Lemma 1. Any restriction σ is Angel(ρ) for ≤ (4w)t many bad ρ’s.
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1 HÅSTAD’S SWITCHING LEMMA (CONTINUED) 2

[Intuition: Recall from last time that Angel(ρ) is similar to Devil(ρ) in that it fixes t
additional variables beyond ρ, but it is different from Devil(ρ) in that they necessarily
disagree in each block, such that Angel(ρ) path is able to reach the 1-leaf of the block
Vn with one query instead. This poses us a natural question that we are showing with
this lemma here, because the hope is that Angel(ρ) is much more likely under Rp than
ρ, because it has more fixed bits, and fixed bits are more likely than ∗’s.]

Proof of Lemma 1. Suppose we know F to begin with, though it is not explicit.

Let σ = Angel(ρ) for some bad ρ. The idea is to decode ρ from “σ” and “little extra
information” (where the bound on the possibilities for the “little extra information”
gives a bound on the number of of possible ρ’s such that σ = Angel(ρ)).

Now, we use the following auxiliary information: 2 rows of t numbers in each row and
a little extra information (see Example 2):

• First row: An element of [w]t =⇒ gives wt possibilities.

• Second row: An element of {0, 1}t =⇒ gives 2t possibilities.

• Extra info: In each of the t− 1 possibilities between 2 elements of the first row,
we can put “;” or not =⇒ note that this can be represented by “0” and “1”
for on and off in between each bit of the first row, and so there are t − 1 such
positions between t bits. That gives us 2t−1 possibilities.

This means a total of ≤ (4w)t possible combinations. Since this is the upper bound
for the total possible number of auxiliary information. Once we show we can decode ρ
from σ and auxiliary information, we have the key lemma. ■

Example 2.
2 3 ; 5 4 5 ; · · · 3

0 0 1 0 1 · · · 0

1.1 How to decode ρ from [“σ” + “auxiliary info”?

Intuition: The problem is we don’t know which t fixed bits of σ are from Angel(ρ) (in
contrast, these bits are already fixed in ρ). If we knew, we could replace them by ∗ in
σ and get ρ.]
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We’ll identify those variables by first finding V1, then, V2, . . .. Here’s how: Recall
CDT(F, ρ) has V1 = surviving variables in first of F that’s not killed to 0 by ρ.

Imagine restricting F by just σ. The original σ adds to the existence of ρ, so any term
killed to 0 by ρ is killed to 0 by σ. But, the first term in F that is not killed by ρ is
satisfied by σ = Angel(ρ)! So, the first term in F that’s satisfiable by ρ is where V1

came from.

Example 3. Suppose we start with something like:

F = (x1 ∧ x2) ∨ (x1 ∧ x2 ∧ x8) ∨ (x2 ∨ x4 ∨ x5 ∨ x6) ∨ . . . .

Also, let’s say that σ is fixed to be

x1 x2 x3 x4 x5 x6 x7 x8

σ = 0 0 1 1 1 0 1 1,

then
F = ( ����x1 ∧ x2︸ ︷︷ ︸

x1=0, killed

) ∨ (x1 ∧ x2 ∧ x8) ∨ (x2 ∨ x4 ∨ x5 ∨ x6) ∨ . . . .

Notice that (x1∧x2∧x8) is the first term that evaluates to true with the σ assignment,
so it is where V1 came from.

We use the following steps to inductively find variables in Vi:

Step 1: To decide which variables in the term we found above are V1 ones: We read the
elements of the first row to get info about which of the w variables in that term
are “∗” in ρ. Use “;” to mark the last position of this term. We have, thus, found
V1!

Step 2: To find V2: Use the second row of the auxiliary info to

• learn how to traverse V1-block of CDT to follow Devil(ρ) path (this is because
the second row tells us how Devil(ρ) fixes the V1 variables).

• Map σ ; σ′ by replacing V1 variables with those bits and continue.

• Now, the first term in F that is satisfiable by σ′ must be where V2 came
from.

Then, we find variables that are V2 ones analogous to how Step 1 does for V1.
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Step 3: We can find Vi inductively following the process described for V2 based on the
previously found variables and auxiliary information. So, like this, we can con-
tinue and end up recovering ρ, obtained by replacing all V1, V2, . . . variables in σ
with ∗’s.

This marks the end of the HSL proof (see example 4 for how this decoding works). ■

Example 4. Recall the example from last time about Angel and Devil, for which the
set-up is:

• Consider a “canonical decision tree” for F ↾ ρ, denoted CDT(F, ρ). Furthermore,
CDT(F, ρ) is to obliviously query all surviving variables (meaning to fix them to
0 or 1) in each block unkilled by ρ, and recurse through all such unkilled blocks.
In the example illustrated below, we have {x2} in V1 block unkilled, {x4, x5} in V2

block unkilled, . . .. Then, Devil(ρ) and Angel(ρ) are specific ways to fix surviving
variables in unkilled blocks.

• The green path segments denote the Devil(ρ); the red path segments denote the
Angel(ρ). In particular, we may have the following assignments (for x1 to x5

only, but it is easy to infer what x7 and x9 could be):

x1 x2 x3 x4 x5

ρ : 1 ∗ 0 ∗ ∗
Devil(ρ) : 1 0 0 0 0

Angel(ρ) : 1 1 0 0 1

[Notice how Devil(ρ) and Angel(ρ) fix additional bits to those that were initially
assigned “∗” by ρ (Devil(ρ) and Angel(ρ) always assign different values if it is the
bit right before the end of a block).]
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1.2 Project Topic

Variants / extensions of HSL:

• Proof complexity.

• Derandomization versions.

• . . .

2 Average-Case L.B. for AC0

Many of these results can be found in chapter 12 of [Juk12].

2.1 Recall Worst-Case Lower Bound

Reusing previous argument, we can see that all our “w.p. ≥ 1
2
” are very strong. Let’s

set M , the size of the circuits against which we’ll give an average-case l.b., to be

M := 2cn
1/d

,

where c = cα = 1
100d

. Then, overall, for M , we can verify each failure probabil-

ity is at most 1
M5 . So, O(d) many: overall, w.p. 1 − O(d)

M
, the circuit Cd−2 [the

thing after random restrictions] is depth-2 circuit with bottom fanin ≤ 10 logM , over
nd−2 ≥ M

200(200 logM)d−2 variables.

Now, do one more round of random restriction. With p = 1
100 logM

,

Pr [Cd−2 doesn’t collapse to depth-(10 logM) DT] ≤ 1

M5
,

so, by Chernoff Bound, just like before,

Pr

[
fewer than

nd−2

200 logM
variables survive

]
≤ exp

(
− n

c · (logM)d−2

)
≤ 1

M5
.

So, overall, w.p. at least 1− O(d)
M5 , we get (10 logM)-depth DT, and at least n

c·(logM)d−1

variables survive.
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2.2 Moving on to Average-Case Lower Bound

Fact 5. Any DT of depth-d has correlation 0, under U , with any PAR on more than
d variables. See example 6

Example 6. Consider PAR(x1, x3, x5, x7, x8). Below is an example where half of all
the assignments that reach this leaf satisfy the PAR and half don’t. For this particular
example, we see all variables other than x8 are on the path. Given this path, we can
see that if x8 = 0, then PAR isn’t satisfied; if x8 = 1, then PAR is satisfied.

Reinterpreting the key fact gives the following theorem:

Theorem 7. Let C be a circuit of size M = 2cn
1/d

, depth d. Then, PARn is ϵ-hard for

C, where ϵ ≤ 2−cn1/d
(which implies the average-case l.b. for PAR).

2.2.1 Project Topic:

Refinements of the average-case l.b.’s for AC0, by either making the circuit size bigger
or making the ϵ bound smaller.

Goal 8. In fact, it would be awesome to show that, for some explicit f , we can make
M bigger while making ϵ smaller. But we don’t know how to achieve both at the same
time.

Remark 9. Theorem 7 is a compromise to that hope as described in goal 8, as in they
made M bigger but also made ϵ bigger. Furthermore, what they did was restricted to

depth-2 circuits, not PARn. Particularly, they achieved: M = 2n
1/d

= 2
√
n and ϵ = 1

2
√
n

when d = 2.
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2.3 O’Donnell & Wimmer Statement and Proof [RO07]

Definition 10. Let F ∗ := DNFTRIBES fn on n = w2w variables be defined as

F ∗(x1, . . . , xn) = (x1 ∧ . . . ∧ xw) ∨ (xw+1 ∧ . . . ∧ x2w) ∨ . . .︸ ︷︷ ︸
n

logn
= n

w
=2w terms, w variables per term

,

where we let w ≈ log n− log log n, n = w2w.

Theorem 11. [O′D&W ] Any CNF g that agrees with F ∗ on 90% of all 2n inputs must

have 2Ω(
n

logn) clauses. Then, we can extend to get average-case l.b. for all depth-2
circuits.

Proof. [O′D&W ] The first step is to show a fact:

Fact 12. If g is s-clause CNF, there’s a CNF g′ which is ϵ-close to g, i.e.

Pr
x∈U

[g(x) = g′(x)] ≥ 1− ϵ

s.t. g′ has width of every clause being at most log( s
ϵ
).

Proof. [Of fact 12] Any clause of length t falsifies w.p. 1
2t
, so, removing a clause of

width greater than log
(
s
ϵ

)
changes g on ≤ 1

2log(
s
ϵ )

= ϵ
s
fraction of inputs. By union

bound over all such clauses removed (at most s), we have the desired upper bound.
■

So, in order to show O′D&W , it is sufficient to argue that:

Claim 13. Any CNF g′ that 0.2-approximates F ∗ must have width ≥ 1
4
·2w = Ω

(
n

logn

)
.

Proof. [Claim 13 =⇒ O′D&W ] Suppose g 0.1-approximates F ∗ and has s clauses.
Then, fact 12 =⇒ ∃ a width-log(10s) CNF g′ s.t. it 0.1-approximates g. So, g′

0.2-approximates F ∗, so claim 13 say log(10s) ≥ Ω
(

n
logn

)
. ■

Thus, the goal of the proof for O′D&W (theorem 11) is to show claim 13. To prove
that, first observe:

Observation 14. Random restrictions / switching lemma won’t help
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Observation 14 is because F ∗, like g′, is a depth-2 circuit, so random restrictions will
simplify F ∗ like g′. However, F ∗ is a width-w DNF and g′ is a width-

(
1
4
2w

)
CNF, so

simplifications won’t work because F ∗ will simplify at least as much as g′ (and F ∗ is
much smaller than g′). Instead, we need a way to “keep F ∗ complex” while “making

g′ simple.” This is why we introduce the method of random projections .

Definition 15 (Random Projections). A projection ρ is a mapping {x1, . . . , xn} →
{0, 1,y1, . . . ,yt}.

The purpose of a random projection, ρ, is to both fix variables and identify groups of
variables.

Example 16. One example for f ↾ ρ is:

ρ(x1) = 1

ρ(x2) = 0

ρ(x3) = ρ(x4) = y1

ρ(x5) = ρ(x6) = y2

...

The point of random projections is that they let us “carefully preserve structures” in
target function F ∗ so it “survives.”

Now, the key to prove claim 13, is to draw uniform n-bit string, using random projec-
tions:

Lemma 17. Let ρ ∼
{
y1

2
, 1 1

2

}w

\{1w} and y ∼
{
01− 1

2w
, 1 1

2w

}
(the subscript denotes

the probability that a specific position of a string is assigned a character). Doing ρ
then y gives uniform string in {0, 1}w.

Proof. [Of lemma 17] If z = 1w, then we will need ρ to be all 1 or y to be 1. The former
has a probability of 1

2w
and the latter has a probability of 1

2w
, so the total probability

is just 1
2w
.

Otherwise, z ̸= 1w, then,

Pr[get z] =
1

2w − 1︸ ︷︷ ︸
get ρ compatible w/ z

· (1− 1

2w︸ ︷︷ ︸
get y=0

) =
1

2w
.

■
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Finally, we prove the one missing piece, which is claim 13. We can do a global version
of the trick described in lemma 17. Firstly, we have independent copies of ρ︸ ︷︷ ︸

(!)

for each

of the 2w terms of F ∗. Recall F ∗ from definition 10. In draw of ρ1,ρ2, . . . ,ρ2w , for
each i ∈ [2w], all surviving variables under ρi ; yi.

• F ∗ “stays complex and balanced under ρ”: w.p. 1 over ρ = (ρ1,ρ2, . . . ,ρ2w),

F ∗ ↾ ρ = y1 ∨ y2 ∨ · · · ∨ y2w ,

where yi ∼
{
01− 1

2w
, 1 1

2w

}
, so

E
y1,...,y2w

[F ∗ ↾ ρ(y)] = 1−
(
1− 1

2w

)2w

≈ 1− 1

e
≈ 0.63.

• Any non-super-wide CNF is very biased (either towards 0 or towards 1) after ρ:
Fix any CNF g′ of width ≤ 1

4
2w, consider any fixed outcome g′ ↾ ρ, a CNF over

y1, . . . ,y2w : there are two possibilities:

1) Every clause of g′ ↾ ρ has at least 1 negated variable, so

g′ ↾ ρ = (y1 ∨ . . .) ∧ (y7 ∨ . . .) ∧ . . . ,

which means that
g′ ↾ ρ

(
02

w)
= 1.

Each yi is 0 w.p. 1− 1
2w
, but F ∗ ↾ ρ

(
02

w)
= 0. So,

Pr[y = 02
w

] =

(
1− 1

2w

)2w

≈ 0.37.

So, in this case,

g′ ↾ ρ and F ∗ ↾ ρ disagree on 37% of y-outcomes. (1)

2) Not every clause of g′ ↾ ρ has at least 1 negated variable, i.e. g′ ↾ ρ contains
a clause

C = y1 ∨ y2 ∨ · · · ∨ yk where k ≤ 1

4
2w variables.
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Then,

Pr
y
[g′ ↾ ρ(y) = 1] ≤ Pr

y
[C(y) = 1]

Union Bound

≤ 1

4
· 2w · 1

2w
=

1

4
.

But, we already concluded above that

Pr
y
[F ∗ ↾ ρ(y) = 1] = Pr

y
[y1 ∨ · · · ∨ y2w = 1] ≈ 0.63.

So, in this case

g′ ↾ ρ and F ∗ ↾ ρ disagree on ≈
(
0.63− 1

4

)
= 0.38 of y-outcomes. (2)

In either case, we have

Pr
x∼U({0,1}n)

[F ∗(x) ̸= g′(x)] = E
ρ∼(!)

[Pr
y
[F ∗ ↾ ρ(y) ̸= g′ ↾ ρ(y)]]1

≥ 0.2, based on (1) and (2) we have shown for two cases of ρ

.

And, thus, we have shown claim 13. Then, finally, as we have pointed out as soon
as we stated claim 13, showing claim 13 shows O′D&W , as desired. Thus, we have
proved O′D&W (theorem 11). ■

2.3.1 Beyond O′D&W :

To defeat all depth-2 circuits by considering DNF as well, instead of just CNF as theorem
11 did, we simply follow the same proof by switch between the following pairs: 1. 0/1
and 2. ∧/∨.

Corollary 18. Any DNF g′ that 0.1-approximates n-variable CNFTRIBES must have
a size of at least 2Ω(n/ logn).

Proof. Also analogous to what we have already shown for the CNF and DNFTRIBES
equivalent above. ■

1This equality is a trick specified in the paper by O’Donnell and Wimmer in 2007, titled “Ap-
proximation by DNF: Examples and Counterexamples”, link; similar approaches in chapter 12 of
[Juk12]

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=62fe922bac6ffc52f8cebd7a7ab287dcc825847e
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2.3.2 Official Homework Problem:

Consider
f : {0, 1}2n=2w2w → {0, 1}
f(a, b) = DNFTRIBES(a) ∨ CNFTRIBES(b)

It is official homework problem to show that any depth-2 circuit that 0.01-approximates
f(a, b) must at least have a size of 2Ω(n/ logn).

2.3.3 Project Topic:

Other applications of random projections.

3 New Unit: Lower Bounds for F2-polynomials.

The following are the set-ups towards the sections (section 1.2 and section 1, respec-
tively) on correlation bounds for polynomials over F2 in [Vio09, Vio22].

Definition 19 (F2). Recall from abstract algebra that, for Fp, when p is prime, Fp
∼=

Zp. So, F2
∼= Z2 = {[0], [1]}, and it is a field. For example, [0] ≡ 4 (mod 2); [1] ≡

123 (mod 2).

Definition 20 (Monomial over F2). First of all, monomials are polynomials that only
have a single term (e.g ., x1x

2
3x4 is a monomial but x1 + x2 is not). A monomial over

F2 is a monomial such that the coefficient of the monomial is an element in F2
∼= Z2

(e.g ., x1x
2
3x4

∼= x1x3x4 ∈ F2 [we see here that powers greater than 1 can be erased
for F2 polynomials, for a reason specified in the second bullet point]). There are a
few simplifications / definitions we can make about F2 nomomials to see why they are
special:

• xi1xi2 . . . xik is a deg-k monomial with distinct i1, . . .. Note that and (xi1 , xi2 , . . . , xik)
has no negations.

• Never need to consider higher powers of xi, because xi ∈ {0, 1} and 02 = 0, 11.
By induction, this generalizes to a higher order finite n.

• All monomials over F2 are multilinear.

Definition 21 (F2-Polynomial: Sum of Monomials over F2). Sum can be defined as:

a+ b ≡ a⊕ b ≡ PAR(a, b).

Degree of a polynomial is the highest degree of any monomial in the sum.
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Notation 22. Note that there are 2n n-variable multi-linear monomials because each of
the n variables can take either an exponent of 0 or 1. Then, there are 22

n
multi-linear

polynomials, because the following map exists between polynomials and monomials:

f : {0, 1}n → {0, 1}

(see fact 23 for details why).

Fact 23. Every f :
Fn
2

{0, 1}n →
F2

{0, 1} has a unique expression as an F2-poly.

Proof. This is an easy fact that can be proved by induction on n. ■

Remark 24. Our goal, next, is to find the degree l.b.’s. However, and(x1, . . . , xn) =
x1 · · ·xn which already has degree n, so worst case l.b.’s for these polynomials are easy.
Next time, we will show an average-case l.b.

Notation 25. DEGd = {all functions f : {0, 1}n → {0, 1} that have deg-d F2-polys}.

3.1 Correlation Bound

In general, correlation bounds are hard!

3.1.1 Open question:

Prove some f : {0, 1}n → {0, 1}, f ∈ NP, is 1
n
-hard for DEGlogn for some distribution

D over {0, 1}n.

3.1.2 Next:

We will do 2 correlation bounds:

1) Degree θ(
√
n), but correlation = θ(1).

2) Degree << log n, but tiny correlation.
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