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1 Lecture Overview

In this lecture, we cover the following ideas. Broadly speaking, we concern ourselves
with k-wise independent random variables and ϵ-bias distributions. Here are the con-
tents in detail.

• k-wise independent/uniform random variables.

– Pairwise independence

– Derandomization application: MaxCut

– Constructing k-wise uniformly random variables

– Derandomization application: Max-3SAT

– PRGs for k-juntas and depth-k decision trees

• ϵ-bias distributions

– PARS

– ϵ-bias random variables

– ϵ-generator for ϵ-biased random variable

– Combine k-wise, ϵ-biased random variable

2 k-wise Independent/Uniform Random variables

In this section, we introduce the concept of k-wise independent random variables and
k-wise uniform random variables.

Definition 1. Let X1,X2, . . . ,Xn be a set of random variables with support over A.
The sequence, (X1, . . . ,Xn), is k-wise independent if for all subsequences ai1 , . . . , aik
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where 1 ≤ i1 < i2 · · · < ik ≤ n, we have that

Pr

∧
j∈[k]

(
Xij = aij

) =
∏
j∈[k]

Pr[Xij = aij ]

Informally, a set of random variables is k-wise independent if any subset of size at
most k is mutually independent. We often think about a set of k-wise independent
random variables whose joint distribution is uniform over its joint support. Such a set
of random variables are referred to as k-wise uniform.

When we are dealing with k = 2−wise independent random variables, we will often
refer to them as two-wise or pairwise-independent random variables. Pairwise inde-
pendence appears often in the context of hash function families, where the concept is
used to analyze the probability of collisions in buckets.

Example 2 (1-wise independence). Let’s consider the set of random variables, {Xi}i∈[n] ∈
{0, 1}. Here, X1 = 1 with probability 1/2. Furthermore, Xj = X1 for all j ∈ [n] \ {1}.
This set of random variables is 1-wise independent.

Example 3 (2-wise independent). Let’s consider the set of random variables, {X1,X2,X3}.
Here, X1 = 1 with probability 1/2. X2 has the same distribution as X1. Furthermore,
X3 = X1 ⊕X2. This set is pairwise independent.

2.1 Generating n-pairwise uniform bits with small seed length

In this section, we constructively prove that it is possible to generate n-pairwise uniform
bits with seed length k = ⌈log(n+ 1)⌉ bits. Here is the construction.

For each non-empty S ⊆ [k], let b1, . . . ,bk be independent, uniform random bits over
support {0, 1}. Furthermore, let

XS =
⊕
i∈S

bi

Note that there are n = 2k − 1 of such subsets of this type. Now, consider any two,
non-empty subsets S1, S2 ⊆ [k], S1 ̸= S2. Next, consider any element (α, β) ∈ {0, 1}2.
Without loss of generality, assume that S1 \ S2 ̸= ∅. With this set up, we can state
that

Pr
b1,...,bk

[XS1 = α,XS2 = β] = Pr[XS2 = β] · Pr[XS1 = α | XS2 = β]
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We can fix the outcomes of each coin flip except for that of the last outcome of S2.
Let the outcome of the last coin flip be denoted as bj. We can now say that the
single outcome of bj causes XS2 to be either 0 or 1 with equal probability. Thus,
Pr[XS2 = β] = 1/2.

Now, to show that Pr[XS1 = α|XS2 = β] = 1/2, we can note the following. Let
j′ ∈ S1 \ S2. We can fix all bi, i ∈ S2 such that XS2 = β. We can also fix all bi other
than i = j′ such that bi, i ∈ S2. In the first setting of j′, we have that XS1 = α, and
in the other setting, we have that XS1 ̸= α. By this construction, we have shown that
both outcomes are equally likely, and that Pr[Xs1 = α | Xs2 = β] = 1/2. To that end,
we can say that

Pr
b1,...,bk

[XS1 = α,XS2 = β] = Pr[XS2 = β] · Pr[XS1 = α | XS2 = β] = 1/4

2.2 Derandomization application: MaxCut

The optimization variant of the MaxCut problem is known to be NP-hard. It is
described as follows. Given a graph, G = (V,E), as input, find a partition of the
vertex set V = X ∪ Y such that X ∩ Y = ∅ and the number of edges crossing X to Y
is maximized.

There is a well-known randomized algorithm that 1/2-approximates the optimal solu-
tion. It is given as follows.

Algorithm 1 MaxCut(G = (V,E))

X = ∅
for v ∈ V do

Toss an unbiased coin, and set its value to b
if b = 1 then

X = X ∪ {v}
Y := V −X
return (X, Y )

For ease of analysis, let E = (X, Y ) be the set of edges that crosses from a vertex
u ∈ X to leads to a vertex u ∈ Y . Furthermore, let OPT be the size of the optimal
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cut. Note that we can compute the following expectation.

E[|E(X, Y )|] =
∑

{u,v}∈E

Pr[{u, v} crosses cut]

Since each edge has a probability of 1/2 of crossing the cut, due to linearity of expec-
tation, we can say that

=
∑
e∈E

1

2
=

1

2
· |E| ≥ 1

2
·OPT

2.3 Constructing General k-wise Uniformly Random Variables

Our goal is to construct some general k-wise uniform random variablesX = (X1, . . . ,Xn)
over the finite field F that contains n elements. Pick k variables c0, . . . , ck−1 indepen-
dently and uniformly from F, requiring k log n bits of randomness. We want to view
these ci as coefficients of a univariate polynomial over F. That is, for α ∈ F, let

Xα :=
k−1∑
i=0

ciα
i = pc(α).

Claim 4. Xα is a k-wise uniform random variable over F.

Proof. We get k-wise independence by using the Lagrange interpolation, which states
that for any desired {ai}i∈[k] ∈ F and for any distinct {αi}i∈[k] ∈ F there exists a unique
set of coefficients (c0, . . . , ck−1) such that

Xα = pc(α) =
k∑

i=1

ai ·
∏

j ̸=i(α− αj)∏
j ̸=i(αi − αj)

,

with
Xαi

= p(αi) = ai

for all i = 1, . . . , k. We then have that our uniform distribution over (c0, . . . , ck−1)
induces uniformity over (a1, . . . , ak), meaning

Pr

∧
i∈[k]

(Xαi
= ai)

 =
k∏

i=1

Pr[Xαi
= ai] =

1

|F|k
.

Hence, Xα is a k-wise uniform random variable over F of size n. ■
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2.4 Official Homework Problem

Let F be a field with |F| = n = 2j and let i ≤ j. Show how to generate n elements
X1, . . . ,Xn of {0, 1, . . . , 2i−1} which are k-wise uniform using kj independent uniform
random bits. Use the construction presented in the previous section to help you do so.

2.5 Derandomization Application: Max3SAT

Max3SAT is another well known NP-Hard optimization problem. Given a 3CNF
instance ϕ =

∧m
i=1Ci, where each Ci = (li1 ∨ li2 ∨ li3), find an assignment that satisfies

a maximal number of clauses. Here, there are m clauses and n variables.

Here’s a simple randomized algorithm that 7/8-approximates the optimal solution.

Algorithm 2 Max3SAT(ϕ)

Let b =⊥n be a string, where ⊥ is a special character.
for i ∈ [n] do

bi = 1 with probability 1/2, and bi = 0 otherwise.
return b

Let S be a non-negative random variable that counts the number of satisfied clauses.
Furthermore, let Ci(b) be a boolean value denoting whether or not Ci is satisfied by
assignment b ∼ {0, 1}n uniformly. Finally, let OPT denote the maximal number of
satisfiable clauses. Given this algorithm, we can say that

E[S] =
m∑
i=1

Pr[Ci(b) = 1] =
7

8
·m ≥ 7

8
·OPT

Say b was only 3-wise independent. If we can enumerate over all

23·logn = poly(n)

strings (as the seed length of our PRG is k log n), we now have a derandomization
assumption if we can choose the b that satisfies the most clauses, that is,

m∑
i=1

Pr[Ci(b) = 1] ≥ 7

8
·m
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2.6 PRG-type Applications: Fooling Juntas and Decision Trees

Definition 5 (k-junta). A k-junta over {0, 1}n is a function f such that

f(x1, . . . , xn) = g(xi1 , . . . , xik)

for some other function g and indices i1 < · · · < ik.

Definition 6 (Jk).

Jk = {f | f : {0, 1}n→{0, 1}, f is k-junta}

Definition 7 (DT k).

DT k = {f | f : {0, 1}n→{0, 1}, f is computed by k-depth Decision Tree}

Observation 8. The class of all k-juntas is a strict subset of the class of all k-depth
decision trees. That is,

Jk ⊊ DT k.

Corollary 9. If X is constructed to be k-wise independent over {0, 1}n, then X per-
fectly fools Jk.

Proof. Note that the seed length of the PRG used to construct X has k log n. Since
a k-junta is essentially a function over k variables, we can capture the scope of all k-
juntas by iterating through all seeds. We then output the same values when computing
f(X) or f(U). Hence,

E[f(X)] = E[f(U)],

meaning X 0-fools, or perfectly fools, all f ∈ Jk. ■

Lemma 10. Since X perfectly fools Jk, then X perfectly fools DT k.

Proof. Let f ∈ DT k. Let L be the set of all 1-leaves of the decision tree that computes
f . Then, define f in terms of many fℓ:

f =
∑
ℓ∈L

fℓ.
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Each fℓ is also a k-junta as they are at most a conjunction of k variables. Recall the
definition of X fooling Jk, with fℓ ∈ Jk:

E[fℓ(X)] = E[fℓ(U)].

Then,

E[f(X)] = E

[∑
ℓ∈L

fℓ(X)

]
(linearity of expectation) =

∑
ℓ∈L

E[fℓ(X)]

(0-fooling of Jk) =
∑
ℓ∈L

E[fℓ(U)]

= E

[∑
ℓ∈L

fℓ(U)

]
= E[f(U)]

As f ∈ DT k, X then also 0-fools DT k. ■

We will generalize this result to achieve the triangle inequality.

Lemma 11 (Triangle Inequality). Let f1, . . . , ft : {0, 1}→R and λ0, . . . , λt ∈ R. Define

f := λ0 +
t∑

i=1

λifi(x).

If random variable X ϵi-fools each fi for all i ∈ [t], then X also ϵ-fools f for

ϵ =
t∑

i=1

|λi|ϵi.

Proof. This is a relatively straightforward proof. We first expand out the definition of
f , then apply triangle inequality under the usual metric. Note that if X ϵi-fools all fi,

|E[fi(X)]− E[fi(U)]| ≤ ϵi.
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So,

|E[f(X)]− E[f(U)]| =

∣∣∣∣∣
t∑

i=1

λiE[fi(X)]−
t∑

i=1

λiE[fi(U)]

∣∣∣∣∣
=

∣∣∣∣∣
t∑

i=1

λi(E[fi(X)]− E[fi(U)])

∣∣∣∣∣
(triagle inequality) ≤

t∑
i=1

|λi| · |E[fi(X)]− E[fi(U)]|

(ϵi fooling of fi) ≤
t∑

i=1

|λi|ϵi

Now define

ϵ =
t∑

i=1

|λi|ϵi,

implying that
|E[f(X)]− E[f(U)]| ≤ ϵ,

hence showing X does indeed ϵ-fool f if it also ϵi-fools all fi. ■

In summary, constructing k-wise independent variables lead to PRG-type applications
of perfectly fooling k-juntas and k-depth decision trees. Upon generalizing the real-
ization that a depth k decision tree is the sum of many k-juntas, we come up with a
general application of PRGs. This application states that if a certain group of func-
tions are ϵi-fooled by some k-wise independent random variable X, then we can also
ϵ-fool any linear combination of these functions for some ϵ.

3 ϵ-bias Distributions

Definition 12 (PAR). PAR = {pS}S⊆[n], where

ps =
∑
i∈S

xi mod 2

=
⊕
i∈S

xi.

In other words, PAR is the class of all parities over x1, . . . , xn ∈ {0, 1}n.
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Also, let χS(x) = (−1)pS(x) = e(pS(x)) be the character function, outputting in {±1}.

Definition 13 (ϵ-biased). We call Random Variable X = (X1, . . . ,Xn) ϵ-biased if it
ϵ/2-fools PAR, hence ϵ-fooling all characters χS.

|E[χS(X)]− E[χS(U)]| ≤ ϵ,

and

E[χS(U)] =

{
0 if S ̸= ∅
1 if S = ∅

We will use ϵ-biased Random Variables to fool DEGd, the class of F2 polynomials with
degree d.

3.1 Constructions of ϵ-biased Random Variables

We begin by generalizing the field extension mentioned in the previous lecture from F4

to F2ℓ .

Definition 14 (F2ℓ). Up to an isomorphism, F2ℓ is an unique field of size 2ℓ. Recall
that F2ℓ is constructed as the extension field of F2 modulo p(t), where is an irreducible
F2 polynomial of degree ℓ. That is,

F2ℓ =
F2[t]

p(t)
.

Fact 15. F2ℓ contains 2ℓ elements, and any polynomial of degree at least ℓ can be
reduced to one of these elements.

Our standard construction of (F2)
ℓ is an ℓ-length vector of F2 values. Let bij :

F2ℓ→(F2)
ℓ be a linear bijection, meaning

bij(x+ y) = bij(x) + bij(y).

For ℓ = log(n/ϵ), define a generator G : (F2ℓ)
2→{0, 1}n as

G(x, y) = (r0, . . . , rn−1), ri = ⟨bij(y), bij(xi)⟩ mod 2.

Here, xi refers to the ith power of x ∈ F2ℓ , so xi ∈ F2ℓ , bij(x
i), bij(y) ∈ (F2)

ℓ, and for
a, b ∈ (F2)

ℓ, the inner product is defined as

⟨a, b⟩ =
l∑

i=0

aibi mod 2.
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Lemma 16. G as defined above is an ϵ-biased generator. That is for ℓ = log(n/ϵ),
U ∼ {0, 1}2ℓ, G(U) is an ϵ-biased random variable.

Proof. We need to show thatG can fool all parities, meaning for all nonzero α ∈ {0, 1}n,∣∣∣∣∣ Pr
r∼G(U)

[
n−1∑
i=0

αiri ≡ 1 mod 2

]
− 1

2

∣∣∣∣∣ ≤ ϵ

2
.

From the definition of G,

Pr
r∼G(U)

[
n−1∑
i=0

αiri ≡ 1 mod 2

]
= Pr

x,y∼F
2l

[
n−1∑
i=0

αi⟨bij(y), bij(xi)⟩ ≡ 1 mod 2

]

= Pr
x,y

[〈
bij(y),

n−1∑
i=0

αibij(x
i)

〉
≡ 1 mod 2

]
= Pr

x,y
[⟨bij(y), bij(pα(x))⟩ ≡ 1 mod 2] ,

where pα(x) = deg-(n− 1) F2l polynomial
∑n−1

i=0 αix
i. Define event E to occur if

⟨bij(y), bij(pα(x))⟩ ≡ 1 mod 2.

Now perform casework on pα(x).

Pr
y
[E] =

{
0 if pα(x) = 0
1
2

if pα(x) ̸= 0

Condition using outcomes of pα(x).

Pr
r∼G(U)

[
n−1∑
i=0

αiri ≡ 1 mod 2

]
= Pr

y
[E]

= Pr
y
[E|pα(x) = 0] · Pr

x
[pα(x) = 0] + Pr

y
[E|pα(x) ̸= 0] · Pr

x
[pα(x) ̸= 0]

=
1

2
· Pr

x
[pα(x) ̸= 0]

as Pry[E|pα(x) = 0] = 0,Pry[E|pα(x) ̸= 0] = 1/2 using the above casework on pα(x).
For a lower bound on Prx[pα(x) ̸= 0], use that pα is a degree n − 1 polynomial over
F2l . As 2

l = n/ϵ,

Pr
x
[pα(x) ̸= 0] ≥ 1− n− 1

2l

≥ 1− ϵ.
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Hence,

Pr
r∼G(U)

[
n−1∑
i=0

αiri ≡ 1 mod 2

]
≤ 1

2
− ϵ

2
,

and ∣∣∣∣∣ Pr
r∼G(U)

[
n−1∑
i=0

αiri ≡ 1 mod 2

]
− 1

2

∣∣∣∣∣ ≤ ϵ

2
.

Hence, G is an ϵ-biased generator. ■

3.2 Application to Coding Theory

Distributions over (F2)
n that are k-wise independent and ϵ-biased are closely related

to linear codes over Fn
2 . There is motivation from coding theory to give ϵ-biased

distributions that have a smaller seed length than 2ℓ = 2 log(n/ϵ).

3.3 Project Topic

The information-theoretic best possible seed length for an ϵ-biased distribution is

log n+ 2 log

(
1

ϵ

)
− log log

(
1

ϵ

)
.

Can this be achieved with an explicit construction? Ta-Shma ’17 showed a bound of

log n+ 2 log

(
1

ϵ

)
+ Õ

(
log2/3

(
1

ϵ

))

4 k-wise ϵ-biased Random Variables

Definition 17. Random Variable X = (X1, . . . ,Xn) is k-wise ϵ-biased if it ϵ fools all
χS with |S| ≤ k.

Lemma 18. There exists explicit k-wise ϵ-biased X = (X1, . . . ,Xn) = G(U) with seed
length

log k + log

(
1

ϵ

)
+ log log n
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Proof. Let G : {0, 1}s→{0, 1}n be a k-wise uniform generator that is a linear trans-
formation viewed as Fs

2→Fn
2 . Let Y be an ϵ-biased distribution over {0, 1}s. Overall,

X = G(Y), with output in {0, 1}n. Hence, the seed length is

2 log
(s
ϵ

)
= O

(
log k + log

(
1

ϵ

)
+ log log n

)
We want to show G(Y) ϵ-fools parities of size at most k. Let S ⊂ [n], |S| ≤ k. This
parity is

pS(x) =
∑
i∈S

xi, x ∈ (F2)
s.

Let M ∈ Fn×s
2 be a matrix acting as a linear transformation for G. Denote Mj to be

the jth row of M . Then,

G(Y) = (⟨M1,Y⟩, . . . , ⟨Mn,Y⟩) ∈ Fn
2 .

For Y ∈ Fs
2, we have

pS(G(Y)) =
∑
i∈S

⟨Mi,Y⟩

=
∑
i∈S

s∑
j=1

MijYj

=
s∑

j=1

(∑
i∈S

Mij

)
Yj.

Notice how this is a PAR over Y = (Y1, . . . ,Ys). Since Y is ϵ-biased,

|E[pS(G(Y)]− E[pS(G(U)]| ≤ ϵ

2
.

Since ps is a k-junta and G is k-wise uniform, we have

E[pS(G(U))] = E[pS(G(Un))].

So,

|E[pS(G(Y))]− E[pS(G(Un)]| ≤
ϵ

2
,

meaning Y (ϵ/2)-fools pS. ■
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