COMS 6998: Unconditional Lower Bounds and Spring 2024
Derandomization

Lecture 7: February 27, 2024

Lecturer: Rocco Servedio Scribes: Akshat Yaparla, Ashvin Jagadeesan

1 Lecture Overview

In this lecture, we cover the following ideas. Broadly speaking, we concern ourselves
with k-wise independent random variables and e-bias distributions. Here are the con-
tents in detail.

e k-wise independent /uniform random variables.
— Pairwise independence
— Derandomization application: MAXCuUT
— Constructing k-wise uniformly random variables
— Derandomization application: MAX-3SAT
— PRGs for k-juntas and depth-k decision trees
e c-bias distributions
— PARg
— e-bias random variables
— e-generator for e-biased random variable

— Combine k-wise, e-biased random variable

2 k-wise Independent/Uniform Random variables
In this section, we introduce the concept of k-wise independent random variables and
k-wise uniform random variables.

Definition 1. Let X1, Xo,...,X,, be a set of random variables with support over A.
The sequence, (Xy,...,X,), is k-wise independent if for all subsequences a;,, ..., a;,
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where 1 < i1 < 19+ <1 < n, we have that

Pr /\ (Xz-]. = aij) = H Pr[X;, = a;]
]

J€[k] j€lk

Informally, a set of random variables is k-wise independent if any subset of size at
most k is mutually independent. We often think about a set of k-wise independent
random variables whose joint distribution is uniform over its joint support. Such a set
of random variables are referred to as k-wise uniform.

When we are dealing with & = 2—wise independent random variables, we will often
refer to them as two-wise or pairwise-independent random variables. Pairwise inde-
pendence appears often in the context of hash function families, where the concept is
used to analyze the probability of collisions in buckets.

Example 2 (1-wise independence). Let’s consider the set of random variables, {X;}icp) €
{0,1}. Here, Xy = 1 with probability 1/2. Furthermore, X; = Xy for all j € [n] \ {1}.
This set of random variables is 1-wise independent.

Example 3 (2-wise independent). Let’s consider the set of random variables, {X1, Xa, X3}.
Here, X1 = 1 with probability 1/2. Xy has the same distribution as X;. Furthermore,
X3 = X1 @ Xy. This set is pairwise independent.

2.1 Generating n-pairwise uniform bits with small seed length

In this section, we constructively prove that it is possible to generate n-pairwise uniform
bits with seed length k = [log(n + 1)] bits. Here is the construction.

For each non-empty S C [k], let by, ..., bg be independent, uniform random bits over
support {0,1}. Furthermore, let

XSZ@bi

i€S

Note that there are n = 2% — 1 of such subsets of this type. Now, consider any two,
non-empty subsets S1, Sy C [k], 51 # Sz. Next, consider any element (a, 3) € {0,1}2.
Without loss of generality, assume that S; \ Sy # (). With this set up, we can state
that

Pr

bi,..., bk[

XSl = a7X52 - 6} = PI"[X52 - 6] 'Pr[Xsl = | XS2 - B]
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We can fix the outcomes of each coin flip except for that of the last outcome of Ss.
Let the outcome of the last coin flip be denoted as b;. We can now say that the
single outcome of b, causes Xg, to be either 0 or 1 with equal probability. Thus,
Pr[Xs, = ] = 1/2.

Now, to show that Pr[Xgs, = «|Xgs, = ] = 1/2, we can note the following. Let
j € 51\ S2. We can fix all b;,i € Sy such that Xg, = 5. We can also fix all b; other
than ¢ = j' such that b;,7 € Sy. In the first setting of j/, we have that Xg, = a, and
in the other setting, we have that Xg, # «. By this construction, we have shown that
both outcomes are equally likely, and that Pr[X,, = a | X,, = ] = 1/2. To that end,
we can say that

b Pr [XS1 = a7XS2 = B] = Pr[XSQ = B] ’ Pr[XS1 = | XS2 = 6] = 1/4

2.2 Derandomization application: MaxCut

The optimization variant of the MAXCuUT problem is known to be NP-hard. It is
described as follows. Given a graph, G = (V, E), as input, find a partition of the
vertex set V' = X UY such that X NY = () and the number of edges crossing X to Y
is maximized.

There is a well-known randomized algorithm that 1/2-approximates the optimal solu-
tion. It is given as follows.

Algorithm 1 MaxCut(G = (V, E))
X=0
for v € V do
Toss an unbiased coin, and set its value to b
if b =1 then
X =X U{v}
Y =V-X
return (X,Y)

For ease of analysis, let E = (X,Y) be the set of edges that crosses from a vertex
u € X to leads to a vertex u € Y. Furthermore, let OPT be the size of the optimal
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cut. Note that we can compute the following expectation.

E[|E(X,Y)|] = Z Pr[{u,v} crosses cut]

{uv}elE

Since each edge has a probability of 1/2 of crossing the cut, due to linearity of expec-
tation, we can say that

1 1
:5_: E|l>--0PT
2 ’|_20

ecE

2.3 Constructing General k-wise Uniformly Random Variables

Our goal is to construct some general k-wise uniform random variables X = (X4, ...,X,,)
over the finite field F that contains n elements. Pick k variables cg, ..., c,_; indepen-
dently and uniformly from F, requiring klogn bits of randomness. We want to view
these c; as coefficients of a univariate polynomial over F. That is, for o € F, let

k-1
X, = Zciai = p(a)
=0

Claim 4. X, is a k-wise uniform random variable over IF.
Proof. We get k-wise independence by using the Lagrange interpolation, which states

that for any desired {a;}icpr € F and for any distinct {; }icp) € F there exists a unique
set of coefficients (c, ..., cx_1) such that

— ;)
@ J#% J
Z ’ (o

]751 ij) ’
with
Xo; = plai) = a
for all ¢ = 1,...,k. We then have that our uniform distribution over (co,...,cx_1)
induces uniformity over (aq, ..., ax), meaning
i 1
Pr é}ﬂ (Xo, =a;)| = HPI[X% =aq] = T

Hence, X, is a k-wise uniform random variable over [ of size n. [ |
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2.4 Official Homework Problem

Let F be a field with |F| = n = 27 and let ¢ < j. Show how to generate n elements
Xyq,...,Xy0f{0,1,...,2°—1} which are k-wise uniform using k; independent uniform
random bits. Use the construction presented in the previous section to help you do so.

2.5 Derandomization Application: Max3SAT

MAX3SAT is another well known NP-Hard optimization problem. Given a 3CNF
instance ¢ = A", C;, where each C; = (l;, V1;, Vl;,), find an assignment that satisfies
a maximal number of clauses. Here, there are m clauses and n variables.

Here’s a simple randomized algorithm that 7/8-approximates the optimal solution.

Algorithm 2 MAX3SAT(¢)
Let b =1" be a string, where L is a special character.
for i € [n] do

b; = 1 with probability 1/2, and b; = 0 otherwise.
return b

Let S be a non-negative random variable that counts the number of satisfied clauses.
Furthermore, let C;(b) be a boolean value denoting whether or not C; is satisfied by
assignment b ~ {0,1}" uniformly. Finally, let OPT denote the maximal number of
satisfiable clauses. Given this algorithm, we can say that

E[S] — iPr[Ci(b) —1]= g m>L.0PT

col

Say b was only 3-wise independent. If we can enumerate over all

2%108m — poly(n)

strings (as the seed length of our PRG is klogn), we now have a derandomization
assumption if we can choose the b that satisfies the most clauses, that is,

m

7
ZPr[C’i(b) =1] > g m

i=1



2 k-WISE INDEPENDENT/UNIFORM RANDOM VARIABLES 6

2.6 PRG-type Applications: Fooling Juntas and Decision Trees
Definition 5 (k-junta). A k-junta over {0,1}" is a function f such that

floy, ..o xn) =gy, -, 24,)

for some other function g and indices iy < - -+ < 1.

Definition 6 (7).
T.={f | f:{0,1}"—={0,1}, f is k-junta}

Definition 7 (DT}).

DT ={f1|f:{0,1}"—{0,1}, f is computed by k-depth Decision Tree}

Observation 8. The class of all k-juntas is a strict subset of the class of all k-depth
decision trees. That 1is,
Je C DTy

Corollary 9. If X is constructed to be k-wise independent over {0,1}", then X per-
fectly fools Jy.

Proof. Note that the seed length of the PRG used to construct X has klogn. Since
a k-junta is essentially a function over k variables, we can capture the scope of all k-
juntas by iterating through all seeds. We then output the same values when computing
f(X) or f(U). Hence,

E[f(X)] = E[f(U)],

meaning X 0-fools, or perfectly fools, all f € . [ |
Lemma 10. Since X perfectly fools Jy, then X perfectly fools DTy.

Proof. Let f € DTy. Let L be the set of all 1-leaves of the decision tree that computes
f. Then, define f in terms of many f,:

F=> 1t
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Each f, is also a k-junta as they are at most a conjunction of k variables. Recall the
definition of X fooling Jj, with f, € Ji:

E[f(X)] = E[f.(U)].
Then,

EfX)] =E

> fe(X>]

leL

(linearity of expectation) = Z E[f/(X)]

leL

(0-fooling of Jy) = E[f,(U)]

> fe(U>]

leL

=E[f(U)]
As f € DT}, X then also 0-fools DT. [ |

=E

We will generalize this result to achieve the triangle inequality.

Lemma 11 (Triangle Inequality). Let f1, ..., fi : {0,1}=R and Ao, ..., \s € R. Define

=X+ Nfix).
=1

If random variable X ¢€;-fools each f; for all i € [t], then X also e-fools f for

t
€ = Z |Az|€z
i=1

Proof. This is a relatively straightforward proof. We first expand out the definition of
f, then apply triangle inequality under the usual metric. Note that if X ¢;-fools all f;,

E[fi(X)] = E[fi(U)]| < e.
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So,

EL/(X)] — ELF(U)) = |3 ABLA - Y AZ-EWU)]‘

_ Z N (E[f5(X)] — E[fi(U)D'

(triagle inequality) < Z Al - |E[fi(X)] = E[f;(U)]|

i—1
t

(e; fooling of f;) < Z |\ile:
i—1

Now define .
€ = Z ‘)\i|€i,
i=1
implying that
[E[f(X)] —E[f(U)]| <e,

hence showing X does indeed e-fool f if it also ¢;-fools all f;. ]
In summary, constructing k-wise independent variables lead to PRG-type applications
of perfectly fooling k-juntas and k-depth decision trees. Upon generalizing the real-
ization that a depth k decision tree is the sum of many k-juntas, we come up with a
general application of PRGs. This application states that if a certain group of func-

tions are ¢;-fooled by some k-wise independent random variable X, then we can also
e-fool any linear combination of these functions for some e.

3 e-bias Distributions

Definition 12 (PAR). PAR = {ps}scn], where

Ps = Z x; mod 2
i€S

- D

In other words, PAR is the class of all parities over x1,...,x, € {0,1}".
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Also, let xg(z) = (=1)P5(®) = ¢(pg(x)) be the character function, outputting in {1}.

Definition 13 (e-biased). We call Random Variable X = (X4, ...,X,,) e-biased if it
€/2-fools PAR, hence e-fooling all characters xs.

[Elxs(X)] = E[xs(U)]| <,
and
0 if S#0

Euduﬂ:{l if S =0

We will use e-biased Random Variables to fool DEG,, the class of Fy polynomials with
degree d.

3.1 Constructions of e-biased Random Variables

We begin by generalizing the field extension mentioned in the previous lecture from [,
tO IFQZ .

Definition 14 (Fy). Up to an isomorphism, Fye is an unique field of size 2°. Recall
that Foe is constructed as the extension field of Fy modulo p(t), where is an irreducible
Fy polynomial of degree €. That 1is,
Folt
F2Z — ﬁ
p(t)

Fact 15. Fye contains 2° elements, and any polynomial of degree at least ¢ can be
reduced to one of these elements.

Our standard construction of (FFy)® is an f-length vector of Fy values. Let bij :
Foc—(IF3)¢ be a linear bijection, meaning

bij(z 4 y) = bij(x) + bij(y).
For ¢ = log(n/¢), define a generator G : (Fy)?—{0,1}" as

G(z,y) = (ro,...,rn_1), 7 = (bij(y), bij(z")) mod 2.
Here, o refers to the ith power of € Fyr, so ' € Fyr, bij(x'), bij(y) € (F)¢, and for
a,b € (Fy)%, the inner product is defined as

l

{(a,b) = Zaibi mod 2.

1=0



3 €-BIAS DISTRIBUTIONS 10

Lemma 16. G as defined above is an e-biased generator. That is for { = log(n/e),
U ~ {0,1}*, G(U) is an e-biased random variable.

Proof. We need to show that G can fool all parities, meaning for all nonzero o € {0,1}",

n—1
[Z o;r; = 1 mod 2] — =
’I‘NG 2

From the definition of G,

n—1
Za,rz =1 mod 2] = xyN]F [Z a;(bij(y),bij(x")) =1 mod 2]

- sz] Zabw >Elmod2]

= Pr{{bij(y ),bw(pa( ))) =1 mod 2],

—_

€
—_— 2 .

TNG(U

where p,(z) = deg-(n — 1) Fy polynomial 37" a;a’. Define event E to occur if
(bij(y),bij(pa(x))) = 1 mod 2.

Now perform casework on p,(z).

Pr(E] — 0 if po(z)=0
v L if pala) £0

Condition using outcomes of p,(z).

n—1
=1 d2 Pr|E
r~G(U [Z&r mo ] y[ ]

as Pry[E|pa(z) = 0] = 0,Pr,[E|pa(z) # 0] = 1/2 using the above casework on p,(x).
For a lower bound on Pr,[p,(z) # 0], use that p, is a degree n — 1 polynomial over
Fo. As 2l =n/e,
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Hence,
[n—1 T 1 c
P T = 1 d 2] < — — -,
TNG(rU) ; ar o -2 2
and _— )
P ”Z: r; =1 mod 2 L < S
r ;T = - = X =.
r~G(U) | = 2 2
Hence, GG is an e-biased generator. |

3.2 Application to Coding Theory

Distributions over (F2)™ that are k-wise independent and e-biased are closely related
to linear codes over Fy. There is motivation from coding theory to give e-biased
distributions that have a smaller seed length than 2¢ = 2log(n/e).

3.3 Project Topic

The information-theoretic best possible seed length for an e-biased distribution is

1 1
logn + 2log <> — loglog <> :
€ €

Can this be achieved with an explicit construction? Ta-Shma ’17 showed a bound of

1 ~ o 1
logn + 2log <> +0 (logz/d ())
€ €

4 k-wise e-biased Random Variables

Definition 17. Random Variable X = (Xy,...,X,,) is k-wise e-biased if it € fools all
Xs with |S] < k.

Lemma 18. There exists explicit k-wise e-biased X = (X, ...,X,,) = G(U) with seed
length

1
log k + log (—) + loglogn
€
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Proof. Let G : {0,1}°—{0,1}" be a k-wise uniform generator that is a linear trans-
formation viewed as F5—TF}. Let Y be an e-biased distribution over {0,1}". Overall,
X = G(Y), with output in {0,1}". Hence, the seed length is

1
2log <§> =0 <logk + log (—) + loglog n)
€ €

We want to show G(Y) e-fools parities of size at most k. Let S C [n], |S| < k. This
parity is

ps(z) = in,x € (Fy)°.

ieS
Let M € F3™® be a matrix acting as a linear transformation for G. Denote M; to be
the jth row of M. Then,

G(Y) = ((M,Y), ..., (M, Y)) € F7.

For Y € IF;, we have

- Z (Z Mij> Y;.

j=1 i€S

Notice how this is a PAR over Y = (Y1,...,Y,). Since Y is e-biased,

[E[ps(G(Y)] = Elps(G(U)]] <

DO ™

Since py is a k-junta and G is k-wise uniform, we have

Elps(G(U))] = Elps(G(Un))]-

So,
Elps(G(Y))] - Elps(G(UL)]| < 5.
meaning Y (e/2)-fools pg. [
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