
COMS 6998: Unconditional Lower Bounds and
Derandomization

Spring 2024

Lecture 8: March 5, 2024
Lecturer: Rocco Servedio Scribe: Mark Chen

Last Time:

• Finished the missing proof for the second correlation bound, stated as the fol-
lowing: for some deg-d F2-polynomial p and P = e(p) = (−1)p, we have

Cor[F, P ] ≤ Ud+1(F )
1

2d+1 .

The proof was done by using three facts that we also proved in the last lecture.

• Started derandomization part of the course by introducing basic tools for PRGs:

– K-wise independent RV’s (we did a construction with seed length K · log n).
– ϵ-biased RV’s (we did a construction with seed length O(log n

ϵ
).

– K-wise independent ϵ-biased RV’s (we did a construction with seed length
O(K + log 1

ϵ
+ log log n).

Today:

• (1) Basic Fourier analysis over Boolean functions. We apply it to better the
following results (compared with what we have seen last time using more bare-
minimum approaches):

– Fooling size-s DTs.

– Fooling K-juntas.

• (2) Sandwiching approximators & fooling.

• (3) Viola’s Theorem: Sum of d ϵ-biased RVs fools DEGd (we showed most of the
proof for Viola’s theorem this time, except for the second case [balanced case] of
the key lemma to be shown next time).
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1 Fourier Analysis over Boolean Functions

Motivation (partially): Fourier analysis can be used to better some of the results we
have seen from last class (see section 1.4).

The specific kind of Fourier analysis we will look at is over Boolean functions (to see
more beyond today’s lecture on this topic, see Ryan O’Donnell’s Analysis of Boolean
Functions [O’D14]).

1.1 Basics

Definition 1 (Basics). All functions of the form f : {0, 1}n → R form a 2n-dimensional
vector space (with one dimension for each x).

Inner product of this space is given by

⟨f, g⟩ = E
x∼U

[f(x) · g(x)],

and we define the norm in this space as:

||f || =
√

⟨f, f⟩,

which is known as the ℓ2 norm, in contrast to the L1 norm given in definition 3.

Proposition 1 (Basis). The set of all 2n character functions, (χS)S⊆[n] , is an or-

thonormal basis of the space as defined in definition 1. [Recall that we defined
character functions last time:

χS(x) = (−1)

∑
i∈S

xi

= e

(∑
i∈S

xi

)
].

Proof. WTS, by the definition of orthonormal basis, that:

• ⟨χS, χS⟩ = 1,∀S.

• ⟨χS, χT ⟩ = 0, if S ̸= T .

Consider general S, T (i.e. they may not be different), we have, by definition:

⟨χS, χT ⟩ = E
x∼Un

[χS(x)χT (x)] = E
x∼Un

[
(−1)

∑
i∈S

xi+
∑
j∈T

xj
]

= E
x∼Un

[
(−1)

∑
j∈S△T

xj
]
= E

x∼Un

[χS△T (x)],
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where △ is the “symmetric difference” (basic definition is A△B = (A\B)∪ (B\A), see
wikipedia for more).

Now,

E
x∼Un

[χS△T (x)] =

{
1 if S = T (because S = T =⇒ S△T = ∅ =⇒ (−1)0 = 1)

0 if S ̸= T (we have shown last time)
,

so we have exactly what we wanted to show. ■

Corollary 1. As a corollary of proposition 1, any f : {0, 1}n → R has a unique

representation as a linear combination of (χS)S⊆[n]. We write f̂(S) as a coefficient
(these are called Fourier coefficients of f) of χS in the linear combination:

f(x) =
∑
S⊆[n]

f̂(S) · χS(x).

Definition 2 (Fourier Coefficient). Fourier coefficient is the inner product of f and
a basis element, χS:

⟨f, χS⟩ = E
U
[χS(U) · f(U)]

= E
U

χS(U) ·
∑
T⊆[n]

f̂(T ) · χT (U)


=
∑
T⊆[n]

f̂(T ) E
U
[χS(U) · χT (U)]︸ ︷︷ ︸

just shown =1 if S=T ; 0 o/w

= f̂(S).

In other words, f̂(S) measures the correlation of f and χS.

Example 1. A special case of Fourier coefficient says that:

f̂(∅) = E[f(x) ·
=1︷ ︸︸ ︷

χ∅(x)] = E[f ].

Remark 1. Sometimes, it’s nice to view f : {−1, 1}n → R. Then,

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi,

and the Fourier representation is exactly the same as the representation as multi-linear
polynomial.

https://en.wikipedia.org/wiki/Symmetric_difference
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1.2 Some Identities

Proposition 2 (Plancherel’s Identity). For any f, g : {0, 1}n → R, we have

⟨f, g⟩ = E[f(U) · g(U)] = E

[(∑
S

f̂(S)χS

)
·

(∑
T

ĝ(T )χT

)]

=
∑
S,T

f̂(S) · ĝ(T ) ·
=1 ⇐⇒ S=T︷ ︸︸ ︷

E
U
[χS(U) · χT (U)] =

∑
S

f̂(S) · ĝ(S)

Proposition 3 (Parseval’s Identity). The special case of Plancherel’s where f = g
is

∥f∥2 = E
U
[f(U)2] =

∑
S

f̂(S)2.

Remark 2. Proposition 3 is really a generalization of Pythagorean’s theorem (square
of the length of a vector is equal to the sum of the squares of the vector’s length in each
direction of its basis).

Remark 3. Sometimes, it’s helpful to think of our Boolean functions as having outputs
in {−1, 1}, because, with such an f : {0, 1}n → {±1},

∥f∥2 = E[f 2] = 1 =
∑
S⊆[n]

f̂(S)2,

which lets us think of the Boolean function’s “energy” to spread out among its Fourier
coefficients (as their squares sum up to 1).

Official Homework Problem: Let the inner product function be defined as:

IP : {0, 1}n → {±1}, IP(x1, . . . , xn) = (−1)x1x2+x3x4+...+xn−1xn .

• Write the Fourier representation of IP.

• Infer that ∀ deg-1 F2 polynomial p(x) (which is parity or its negation), we have:

Pr
U
[IP(U) = p(U)] = 1

2
± 1

2n/2
.
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1.3 Fourier L1 Norm

Definition 3 (Fourier L1 Norm). Let f : {0, 1}n → R, the Fourier L1 Norm is

L1(f) =
∑
S⊆[n]

∣∣∣f̂(S)∣∣∣ .
Proposition 4. If f : {0, 1}n → [−1, 1] (i.e. an interval instead of two discrete
points), then we have

L1(f) ≤ 2n/2

Proof. Use Cauchy-Schwarz:

L1(f) =
∑
S⊆[n]

|f̂(S)|
c-s

≤
√

2n ·
∑
S⊆[n]

f̂(S)2 =
√
2n · E[f(U)2] ≤

√
2n ,

since E[f(U)2] ≤ 1. ■

1.4 Applications

Here, equipped with Fourier, we can better three things we already showed last time:

• Use △-inequality to come up with an explicit error bound for δ-biased RV: corol-
lary 2.

• Fool DTs “Better” (not exactly comparable): proposition 5.

• Fool K-juntas better: proposition 7.

Lemma 1 (△-inequality). Recall the △-inequality for PRGs which we proved in the
last lecture. Let f1, . . . , ft : {0, 1}n → R. Let λ0, λ1, . . . , λt ∈ R. Let

f(x) = λ0 +
t∑

i=1

λifi(x).

If X ϵi-fools each fi, for i ∈ [t], then X ϵ-fools f , where

ϵ =
t∑

i=1

|λi| · ϵi.
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Now that we can think of Boolean functions as linear combination of character func-
tions, but we also constructed a PRG that fools character functions last time (for
ϵ-biased PRG)! So,

Corollary 2. If X is δ-biased RV over {0, 1}n, then X (δ · L1(f))-fools f : {0, 1}n →
R.

Official Homework Problem: Let f : {0, 1}n → {0, 1} be a conjunction of literals
over distinct variables,

e.g ., x1 ∧ x3 ∧ x4 ∧ x6.

Show that
L1(f) = 1.

Proposition 5. Also, recall from last time that we were able to 0-fool depth-d DTs,
using d-wise independence (with seed length of d · log n). Now, we can fool size-s DTs!

Formally (modified this time): If X is a δ-biased RV over {0, 1}n, then X fools size-s

DTs with error δ · s (so, get ϵ-PRG for DTs with seed length O(log s+ log n+ log 1
ϵ
)).

Proof. Let

• T = size-s DT.

• L = the set of 1-leaves (leaves that evaluate to 1) on T .

• fl = conjunctions that correspond to the 1-leaf, l ∈ L.

We have f(x) =
∑
l∈L

fl, so

L1(f) ≤
∑
l∈L

L1(fl)
last OHP

≤ |L| ≤ s.

Finally, by corollary 2, the error that X fools f with is

δ · L1(f) ≤ δ · s, as desired.

■
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The PRG gives us an “input-oblivious” algorithm to do deterministic approximate
counting, but, if we are willing to look at the input representation as a size-s decision
tree (DT), T , then it’s easy to do exact counting for decision trees:

Proposition 6. Given a size-s DT, T , we can compute exactly

Pr
U
[T (U) = 1] =

∑
1-leaf,l∈L

2−depth(l).

Proposition 7. Now, let’s fool K-juntas better (last time, we needed a seed length of
K · log n). We do so by using K-wise, ϵ-biased.

Formally (modified this time): If X is K-wise, ϵ-biased RV over {0, 1}n, then X fools

{±1}-valued K-juntas with error δ·2K/2 = ϵ, with seed length of O(K+log 1
ϵ
+log log n).

Proof. By definition of K-juntas, we know that f(x) = g(xi1 , . . . , xik) for some g :
{0, 1}K → {±1}. Now,

L1(g) ≤ 2K/2,

so X δ · 2K/2-fools g (as well as f). ■

2 Sandwiching & Approximation

Suppose we have f : {0, 1}n → {0, 1} which we want to fool. Suppose we have
g : {0, 1}n → {0, 1} that approximates f as well as

f(x) ̸= g(x) for ≤ ϵ · 2n inputs.

Finally, suppose X as an RV ϵ-fools g. The problem is: WE CANNOT SAY THAT
X THUS ϵ-FOOLS f !

To see why not, let’s visualize the set-up: in the following illustration, the area
enclosed by the red line represents the space for function g; the area enclosed by the
grey line represents the space for function f . The grey-shaded areas are the total errors
when g approximates f . Note that such error is said to be ≤ ϵ · 2n points.
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Think about the following situation to understand the issue better: say X is supported
on 2seed length number of points. Say, the seed length is n

10
, then:

• 2n/10 points are a lot of points, but

• It is still very likely for 2n/10 < ϵ · 2n, since, in this case, ϵ actually needs to be a
very very small value for the inequality to not be true.

In other words, it’s very possible for all of X’s support to be in the grey-shaded error
region. So, in order for the above attempt to make X fooling g, an approximation, suf-
ficient for X to fool f , we need a stronger notion of approximation, in the sandwiching
sense:

Definition 4 (δ-sandwiched). Let f, fl, fu : {0, 1}n → R (“l” for lower and “u” for
upper), then f is δ-sandwiched by (fl, fu) if

1). fl(x) ≤ f(x) ≤ fu(x),∀x ∈ {0, 1}n, and

2). E
x∼U

[fu(x)− fl(x)] ≤ δ.

Lemma 2 (Sandwiching Lemma). Suppose f : {0, 1}n → R is

• δ-sandwiched by (fl, fu), and

• suppose X (RV over {0, 1}n) ϵ-fools fl and ϵ-fools fu.

Then, X (ϵ+ δ)-fools f .

Proof. For the upper inequality, we have:

E
X
[f(X)] ≤ E

X
[fu(X)]

≤ E
U
[fu(U)] + ϵ, by fooling condition

≤ E
U
[f(U)] + δ + ϵ, by sandwiching condition.

Similarly, for the lower inequality:

E
X
[f(X)] ≥ E

X
[fl(X)]

≥ E
U
[fl(U)]− ϵ, by fooling condition

≥ E
U
[f(U)]− δ − ϵ, by sandwiching condition.

■
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Corollary 3 (Sandwiching polynomials =⇒ PRG). A function f : {0, 1}n → R is ϵ-
fooled by any K-wise independent distribution X if ∃ “ϵ-sandwiching” real polynomials
ql, qu : {0, 1}n → R of degree K s.t. the two requirements for definition 4 hold:

1). fl(x) ≤ f(x) ≤ fu(x),∀x ∈ {0, 1}n, and

2). E
x∼U

[fu(x)− fl(x)] ≤ δ.

3 Viola’s Theorem

Firstly, let’s motivate.

3.1 Fooling F2 polynomials with DEGd

Note that real deg-d polynomials can be 0-fooled by d-wise independent RVs with a
seed length of d · log n, which is easy. Fooling DEGd (F2 and deg-d) polynomials is
very different! Here’s why:

Example 2. Let X = (X1, . . . ,Xn) and X is assigned in such a way:

X1 = U1

X2 = U2

...

Xn−1 = Un−1

Xn = U1 ⊕ . . .⊕ Un−1.

Then, with seed length of X = n − 1, X is (n − 1)-wise independent. We know that
X cannot fool PAR[n] ∈ DEG1, because PAR[n] = 0 on every X. Therefore, X fails to
fool even DEG1.

3.1.1 Why is it interesting to fool DEGd after all (now that we have shown
it’s different)?

It is because fooling DEGd gives us insights about other things that we don’t know
how to show.

Definition 5 (AC0(⊕)). AC0(⊕) is the set of all poly(n)-size, O(1)-depth circuits with
this set of gates: {∧,∨,¬,⊕} (⊕ is parity gates).
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Proposition 8. ∃ϵ-PRG against DEGd for d = (log n)ω(1) =⇒ ∃3ϵ-PRG against
AC0(⊕).

Proof. Let G : {0, 1}s → {0, 1}n be ϵ-PRG against DEGd (where d = (log n)ω(1) as we
started with). Let’s first see a fact (to be proved later):

Fact 1. For any O(1)-depth, poly(n)-size circuits C (with {∧,∨,¬,⊕} gates), there’s
a distribution P over deg-(poly log(n)) F2 polynomials, s.t.

∀z ∈ Fn
2 , Pr

p∼P
[p(z) = C(z)] ≥ 1− ϵ.

In other words: distribution of polynomials fools C on every fixed input.

(Back to the proof of the proposition). This means that

Pr
Us

[C(G(Us)) = 1] ≈ϵ Pr
Us,p∼P

[p(G(Us)) = 1].

G is an ϵ-PRG for DEGd, and d > deg of polynomials in P, so

Pr
Us,p∼P

[p(G(Us)) = 1] ≈ϵ Pr
Un,p∼P

[p(Un) = 1].

Since P fools C on every fixed input, we have

Pr
Un,p∼P

[p(Un) = 1] ≈ϵ Pr
Un

[C(Un) = 1].

Connecting all these together:

Pr
Us

[C(G(Us)) = 1] ≈3ϵ Pr
Un

[C(Un) = 1].

■

3.2 Viola’s Theorem [Vio09]

Now that we are fully motivated about wanting PRGs for DEGd. The line of works
in this direction culminated in the Viola’s theorem.

Theorem 1 (Viola’s Theorem). The F2 sum of d independent δ-biased RVs fools
DEGd.
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Formally: Let Y1, . . . ,Yd be independent δ-biased RVs over Fn
2 , where δ ≤ 1

2
. Then,

Y := Y1 + . . .+Yd (over F2)

[
4 (δ/2)2

1
d−1

]
-fools DEGd .

Note that, when we take ϵ = 4 (δ/2)2
1

d−1

, we get a PRG with seed length

O
(
d · log

(n
δ

))
= O

(
d · log n+ d · 2d · log 1

ϵ

)
,

which trivializes when d > log(n) [which means that it breaks exactly where the
correlation bound broke].

Observation 1. Let Y1, . . . ,Yd be independent δ-biased RVs over Fn
2 . Then, Y :=

Y1 + . . .+Yd is δd-biased.

Proof. Let ∅ ≠ S ⊆ [n]. Then,∣∣∣∣∣EY
[
χS

(
d∑

i=1

Yi

)]∣∣∣∣∣ =
∣∣∣∣∣∣EY
(−1)

∑
j∈S

d∑
i=1

Yi,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣EY
(−1)

d∑
i=1

∑
j∈S

Yi,j

∣∣∣∣∣∣
=

∣∣∣∣∣
d∏

i=1

E
Y
[χS(Yi)]

∣∣∣∣∣ ≤ δd, because they are independent.

■

Remark 4. Viola’s theorem also tells us that the sum, Y1+. . .+Yd, fools higher-degree
polynomials.

3.2.1 The Main Result: High-Level Strategy

Show that, if we can fool DEGd−1, then we can add one more biased RV and trade in
for some worse parameters to fool DEGd (a colloquial equivalent of key lemma 3). In
particular, if we can prove the following key lemma, then we can prove the theorem
quite easily:
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Lemma 3 (Key Lemma). Suppose W fools DEGi−1 with error γ and suppose Y is

a δ-biased RV independent of W. Then, W + Y
(√

2γ + δ
2

)
-fools DEGi [note that(√

2γ + δ
2

)
is where we traded in for a worse parameter than γ].

Now, we can prove the theorem assuming the “key lemma” is correct:

Proof. (Viola’s Theorem 1, using Key Lemma). By definition of δ-biased, we have that
Y1

δ
2
-fools DEG1. Let ϵ1 =

δ
2
, and ϵi+1 =

√
2ϵi +

δ
2
. Then, by key lemma 3, we have

Y1 + . . .+Yd ϵd-fools DEGd.

Since δ ≤ 1
2
, we further have

ϵi+1 ≤
√
2ϵi +

√
δ/2

2
≤

δ/2≤ϵi

(√
2 +

1

2

)
√
ϵi ≤ 2

√
ϵi.

So,

ϵ2 ≤ 2 · (δ/2)
1
2

ϵ3 ≤ 21+
1
2 · (δ/2)

1
4

...

ϵd ≤ 21+
1
2
+...+ 1

2d−2 · (δ/2)
1

2d−1 < 4 · (δ/2)
1

2d−1 ,

as desired. ■

3.2.2 Prove Key Lemma 3: Idea by Case Analysis

We show using case analysis depending on the “imbalance” (see definition 6) of the
f ∈ DEGi function we are trying to fool.

Definition 6 (imbal(f)).

imbal(f) =
∣∣∣E
U

[
(−1)f(U)

]∣∣∣ = 2

∣∣∣∣E[f ]− 1

2

∣∣∣∣ .
This value is always in ∈ [0, 1] because:

• (f always 0) You get 2
∣∣0− 1

2

∣∣ = 1.

• (f always 1) You get 2
∣∣1− 1

2

∣∣ = 1.
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• (f ∈ {0, 1} uniformly) You get 2
∣∣1
2
− 1

2

∣∣ = 0.

Intuition 1. We can sense hardness from the value of imbal (hard functions should
be more balanced than easier functions). Here are some intuitions about imbal, for
f ∈ DEGi:

• If f has large imbal(f), it turns out W already fools f quite well (because f is
biased / not too hard).

• If f has small imbal(f), we will do an analysis like the correlation bound analysis
squaring of correlation, derivatives, etc.

So, we do the two cases for the case analysis based on intuition 1 next.

3.2.3 Prove Key Lemma 3: The Imbalanced Case

Lemma 4 (Imbalanced Case Lemma). Suppose W γ-fools DEGi−1. Then, W fools
any f ∈ DEGi with error γ

imbal(f)
.

Notation 1. f+y(x) = f(x+ y).

Definition 7 (Directional Derivative). Recall, for f : Fn
2 → F2, y ∈ Fn

2 , the direc-
tional derivative ∂yf is

∂yf : Fn
2 → F2, ∂yf(x) = f+y(x) + f(x).

It’s easy to see that, if f is deg-i, then ∀y, ∂yf has deg at most (i− 1).

Now, the proof for lemma 4

Proof. (Imbalanced Case Lemma). Need to show that

imbal(f) ·
∣∣∣E [(−1)f(W)

]
− E

[
(−1)f(U

′)
]∣∣∣ ≤ 2γ,

where W is as defined and U ′ is truly uniform.

Let U be independent, uniform. We have that

imbal(f) ·
∣∣∣E [(−1)f(W)

]
− E

[
(−1)f(U

′)
]∣∣∣

=
∣∣∣E [(−1)f(W)+f(U)

]
− E

[
(−1)f(U

′)+f(U)
]∣∣∣ , by definition of imbal

=
∣∣∣E [(−1)f(W)+f(W+U)

]
− E

[
(−1)f(U

′)+f(U ′+U)
]∣∣∣ , true uniformity shifted still uniform

=
∣∣∣E [(−1)f(W)+f+U (W)

]
− E

[
(−1)f(U

′)+f+U (U ′)
]∣∣∣

=
∣∣∣E [(−1)∂Uf(W)

]
− E

[
(−1)∂Uf(U ′)

]∣∣∣ .
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But, both of the derivatives on the RHS would have deg-(i− 1), so they must respec-
tively be γ-fooled by W because of condition for DEGi−1. So,

imbal(f) ·
∣∣∣E [(−1)f(W)

]
− E

[
(−1)f(U

′)
]∣∣∣ = ∣∣∣E [(−1)∂Uf(W)

]
− E

[
(−1)∂Uf(U ′)

]∣∣∣ ≤ 2γ.

■

3.2.4 Prove Key Lemma 3: The Balanced Case

Lemma 5 (Balanced Case Lemma). Suppose W γ-fools DEGi−1. Let Y be indepen-
dent of W, and Y is δ-biased. Then,

W +Y

(
imbal(f) +

√
γ

2
+

δ

2

)
-fools any f ∈ DEGi.

Proof. (Balanced Case Lemma). To be shown next time! ■

3.2.5 Prove Key Lemma 3 by Putting Lemma 4 and Lemma 5 together!

Finally, we use lemma 4 and lemma 5 to prove the key lemma 3:

Proof. (Key Lemma 3). Fix any f ∈ DEGi. Fix any outcome of Y. The function
f+Y(x) = f(Y + x) is a deg-i polynomial in x1, . . . , xn and imbal(f+Y) = imbal(f).

• So, by lemma 4, W +Y L1 :=
(

γ
imbal(f)

)
-fools f .

• By lemma 5, W +Y L2 :=
(
imbal(f) +

√
γ
2
+ δ

2

)
-fools f .

Hence, W +Y min {L1, L2}-fools f , and

min {L1, L2} ≤
√

2γ +
δ

2
.

■

4 Next Time:

• Prove lemma 5, which is the hard case (which finishes the Viola’s theorem).

• Start the proof that PRG fools AC0.
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