COMS 6998: Unconditional Lower Bounds and Spring 2024
Derandomization

Lecture 10: March 26, 2024

Lecturer: Rocco Servedio Scribes: Szymon Snoeck and Patrick Yeh

Last Time

We previously went over results from the [BRS91] and [LMNO93] papers, with the overall
goal to combine the best of both results using the [Bra08] construction.

Today
1 [L,M,N] L, Approximator for AC’

Theorem 1. Let f € ACS’d, then there is a real polynomial py of degree O((log(%)d)
such that:

Exad[(f(x) = p2(x))%] <.

Continuing the proof from the previous class, all that is left to show is lemma 2.
Recall from the previous class, that a random restriction p ~ R, can be written as
(J,z) where J are the variables that remain unrestricted (i.e. are %’s) and z is the
assignment of the restricted variables. Furthermore, f | p = fj.,.

Lemma 2. For all f: {+1,—1}" — {+1,—1} and any p < 55, it holds that:

W2P(f) =2 By gy, W' (f3.0)].
To prove lemma 2, we prove a sequence of compounding claims:

Claim 3. Fiz some (J,z) ~ R,, then for all f : {+1,—-1}" — {+1,—1} and any
S C [n):

o _Jo S
faa(s) {ZTQJC f(SUT)xr(z) ifSCJ W
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Proof. We can view fj5, as a |J|-junta over n-variables. In other words, fj.(x) =

f(z3,z). Suppose S Z J, then S contains an irrelevant variable for fj, so f5,(S) =
E[f5z - xs] = 0. Alternatively suppose S C J, then:

fra(z) = f(x3,2) = > [(R)xalzs,2)=>_ > F(SUT)xs(xs) - xr(2)

RC[n] SCI TCJIe
= xs(z3)- D F(SUT)xr(2).
SCJ TCJe
Hence f]\Z( ) = ZTCJC (SUT)XT< )- .

Building on the above claim, the following sequence of claims can be proven:
Claim 4. For fized J, S C [n] and uniformly random z ~ {+1, —1}'°, it holds that:

o113 fa2(8)] = 1[S C J|F(S)
Eoirr-13[f12(8)] =1[S C I D F(SUT)

TCJIe
Claim 5. For (J,z) ~ R, it holds that:

E(J z)NRp[sz( )] = p‘S|J?(S)

E(Jz~7aprz Z 2. P5[TNJ = 5]
TC[n|
Claim 6.
E30~r, (W (f32)] = Y W7(f) - P[Bin(r,p) > k]
r>k

where Bin(r, p) is a binomial random variable with r trials and probability p of success.

Now we can finally prove lemma 2:

Proof. Claim 4 gives us that:
E.2)~r, (W25 (f3.)] Z W (f) - P[Bin(r,p) > k.

r>k/p

For each r > k/p, we have P[Bin(r, p) > k] > . Thus:

B, W2 (fra)] = 5 30 W() = SWHIe(),

r>k/p

This concludes the proof of theorem 1.
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2 Proof of Braverman’s Theorem

In 2010, Braverman proved the following theorem:

Theorem 7. (Braverman’s Theorem) Let k = (log %)O(dz) and D be any k-wise inde-
pendent random variable over {0,1}", then D e-fools ACY ,

Note that the state of the art result gives k = log(S)9(@ log(%). Before proving
Braverman’s Theorem, we must first improve the BRS (i.e. pointwise) approximator
from the last lecture:

Theorem 8. Let f € AC),. Consider any D over {0,1}". There exists a real-valued
polynomial, p, such that:

i) Pxplp(x) = f(x)] > 1—¢
ii) deg(p) < (log £)°)
iii) Vo € {0,1}", |p(x)| < exp((log £)°@)

iv) There exists a circuit E € Acﬂoly(s aro(ny such that E(z ) =0 = px) = f(x)
(i-e. p(x) # f(x) = E(x) =1) and Pxp[E(x) = 1] <

Proof. Ttems i), ii), iii) were proved last class hence it suffices to show iv). The idea
is that E functions as an indicator of when something went wrong during the building
of the polynomial p. Consider some fixed OR-gate circuit ¢ = g; V- --V g; where t < s.
Our polynomial approximation is p(gy, -+ ,g;) = 1 — deylog(t/ e)( — D jes, 9j) Where
Si C [t]. Thus, p(g1,--+ . 9:) # g(g1,-++ . g¢) s true only if:

1) At least one gi,--- , g is equal to one.
2) Each set {g; | j € S;} does not contain 1 or contains > 2 1’s.

Fortunately, these conditions can be checked with constant depth:

\/ ga/\gb

1<a<b<t

FE' is satisfied if and only if any two g1, -+ ,¢; are 1. Thus indeed, if E' = 0 then
p(z) = g(x). Repeat this process for each gate in f and OR the results together
the results to get E. To finish the proof, note that in order to obtain the bound

Pep[p(x) # f(x)] < € during the previous class, it was proved that Py p[F(x) = 1] <
€. |
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Before we dive into proving Braverman’s theorem, recall the sandwiching lemma
from 2 classes ago:

Theorem 9. A function f : {0,1}" — {0,1} is e-fooled by a k-wise independent
distribution if there exists an "e-sandwiching” by real polynomials q;,q, : {0,1}" — R
of degree at most k such that:

1) Bxa[qu(x) — qu(x)] < €

Observe that since Ang is closed under negation, to show the above, it is sufficient
to show there exists ¢; such that ¢; < f and E[f —¢q] < §. Indeed this implies ¢, = 1—¢q
is a valid upper sandwich real polynomial.

Another key observation is that it is sufficient enough to provide a ¢;, such that
it can depend on the particular k-wise distribution D and also is a lower sandwich
polynomial for a function f’ that is “close” to f under both D and U.

Keeping this in mind, we will consider the following lemma:

Lemma 10. Suppose for every k-wise distribution D there exists a boolean function f'
and a degree-k polynomial q; such that:

i) Pxpf(x) # f/(x)] < § and Py f(x) # f'(x)] < §

i) q < f and Exw[f(x) — q(x)] < §

Then E[f(U)] — Exwp[f(x)] < €. Combining this with the version for q,, this means
that D e-fools f.

Proof. Condition i) and the fact that ¢ < f gives us the following bound:

Exp[f (%)] = Exnlf'(x)] —

€

> Exopla(x)] — 3

Since D is a k-wise independent distribution and deg(q;) < k, we get that the righthand
side of the inequality above is equivalent to:

Oolm

€

Exvlq(x)] — 3

By the second half of condition i), and then applying condition i), we get:

€ 2¢e

> Exs[f'(%)] = 5 2 B[ f(x)] — €

Applying the same result to ¢, = 1 — ¢;, we get that D e-fools f. |

Exula(x)] -
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As a result, to finish our proof of Braverman’s theorem, it suffices to show the
following lemma:

Lemma 11. Let f € Acﬂyd, k = (O (log f))o(dQ), and D be a k-wise independent
distribution. Then there exists a boolean function f' and a degree-k polynomial q; such
that the following conditions both hold:

i) Paep[f(x) # /(x)] < & and Py/[f(x) # f/(x)] < £
i) @ < f and Exadf(x) — a(x)] < §

Proof. Apply the BRS approximator to f using the distribution (D + ) and error
parameter <. This gives a polynomial py such that

€

‘.
a) Pxuplpo(x) # f(x)] <
b) Peulpo(x) # f(x)] <

We are also given a poly(s)-size, d + O(1)-depth error-detecting circuit E such that
a) f(x) # polx) = E(x) =1
b) PaunlE(x) = 1] < & and Pyy[E(x) = 1] <

I

FNE

NIo}

We will now apply the LMN result on E. Let pgs be the polynomial of degree

(log (%))O(d) for some value ¢ that will be fixed later such that

Eu [(E(w) = ppa(w)?] <6

For the actual construction, set f' = fVE, ¢ = po(1—pg2), and our desired polynomial
p=q =1—(1-¢q)% We will show that f’ and p satisfy conditions i) and ).

The intuition is that since the error region is small, f’ is close to f. Moreover, pg
may make wild errors on f’ when F(z) = 1, but we will tame this error by multiplying
by 1 — pg2. However, ¢ = po(1 — pg2) may not be a lower sandwiching polynomial
when f/(z) = 1. Thus, we let p = 1 — (1 — ¢)? < 1 to force our polynomial to be a
lower sandwiching polynomial. (Please refer to Figure 1 for further intuition.)

To show condition i) holds, note that f'(x) # f(z) only if E(z) = 1. Furthermore,
under both distributions D and U, we have Py .p[E(x) = 1] < { and Py y[E(x) =
1] < ¢. Thus, condition i) is satisfied.

For condition i) to hold, we will prove two claims:

Claim 12. If f'(z) =0, then q(z) = 0.
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Proof. 1f f'(x) = f(z) V E(z) = 0, then E(x) = 0. In other words, we are not in the
error region, so po(z) = f(z) = 0 and ¢(z) = 0. [

Claim 13. Let = €-exp ( log (f))o(d) such that

1 = qlls < \[ o (c1og (1)) Vi < \[

Proof. Recall that for functions a, b : {+1, —=1}" — R, [la=b||> = Eyyy [(a(z) — b(w))ﬂ z,
We will make use of the triangle inequality:

1F" = allz < [[f" = po(1 = E)ll2 + lIpo(1 = E) — gl

For the first term, by considering the two cases F(z) = 0 (and recognizing that
this case provides zero contribution) and E(x) = 1, we get

1 = po(1 — B)ll2 < v/Pe [ Ex) = 1] < \/g

For the second term, we can write po(1 — E) — ¢ = po(pr2 — E). By applying our
pointwise bound on py, we have (from the previous lecture’s results):

max Ipo(z)| < exp (10g ( ))O(d)

As a result, we get

51\ 9@
Ipo(1 = B) = gll2 < exp (log (2)) - Ipez = Els

The LMN result gives the bound |pg2 — E|l2 < V9, so we find

0(d)

[po(1 = E) — ql|2 < exp (log (g)) V6

This gives us our desired bound:

1" =qlls < \/7+€Xp<log< >>o<d>.\/5
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Given the previous two claims, we show that condition i) naturally follows. We
will first verify that p = ¢ = 1 — (1 — ¢)? is indeed a lower sandwiching polynomial for
f’. We know that p < f” pointwise. Consider the two cases f'(x) =0 and f'(z) = 1.

If f'(x) =0, then by Claim 1 ¢(z) =0, so p(z) =0 < f'(z).

Otherwise, if f/(x) =1, then f'(z) — p(z) = (1 —q(x))* = (f'(z) — q(x))?*. We now
get the following result, showing that p is indeed a lower sandwicher in this case:

€

Bt [f'(%) = p(x)] = Exeae [| /(%) = p(¥)|] < Eurts [(f’(U) —q(w)’| < 3

Finally, we will verify that deg(p) < k = (O (log f))o(dQ). From our polynomials
q=po(l —pp2) and p=q =1 — (1 —q)*, we get
deg(p) < 2- (deg(po) + deg(pe.2))

We then apply the BRS and LMN results to get

deg(p) <2- (IOg G)o(d) 4 log <§>o(d)) . (log <§>o(d) 4 log G)ow))

This finishes the proof of our lemma and consequently Braverman’s theorem. W

3 Introduction to Linear Threshold Functions

Definition 14. (Linear Threshold Functions) A function f : {+1,—1}" — {+1,—1}
is a linear threshold function (LTF) if f(x) = sign(w-x —0) for some w € R", 0 € R.

Intuitively, an LTF is a hyperplane that divides R™ into half-spaces that separate
the set of vectors for which f(x) = +1 from the set of vectors where f(z) = —1.
One notable example of an LTF is the majority function:

MAIJ(z1, ..., x,) = sign (Z $z>
i=1

Note that lower bounds for LTFs are trivial. For example, the parity function
PAR(x1,zs) is not computable by any LTF since there does not exist a hyperplane
that cleanly separates the preimage of {+1} from that of {—1}.

As a result, we will focus our attention of pseudorandom generators (PRGs) and
deterministic approximate counting for LTFs. An interesting question is whether we
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Figure 1: This figure was taken from [Bra08]. In this case, graph a) shows our function
f. Graph b) gives the polynomial py. Graph c) is the error-detecting circuit £. Graph
d) is the function f’. Graph e) shows the polynomial 1 — pgs. Graph f) depicts

q=po(l —pgs).
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can, given an LTF f, determine | f~!| in poly(n) time. In other words, can we perform
exact counting efficiently? The answer turns out to be no: exact counting is #P-hard,
which is why we settle for approximate counting instead.

When we consider | f~1(1)| for an LTF f, it is helpful to have two perspectives. The
first is to picture a hyperplane dividing the set of inputs into half-spaces. The second
is to picture a discrete probability distribution over R for the 2" values of w-x — 6
as x ranges over {—1,+1}". To visualize this, we will go through several examples.
Note that we will be considering the locations of different w - x, and 6 will be used to
determine what fraction of the points are satisfying assignments.

First, consider w - x = x;. The distribution ends up dividing half of the points to
—1 and the other half to +1.

Second, consider w - x =Y, x;. This gives us a binomial distribution, and thus
a bell-shaped curve that looks roughly like the Gaussian distribution N (0, n).

Finally, the LTF w -2z =Y | 2z; ends up giving a uniform distribution.

Of course, we could also apply this perspective to other arbitrary LTFs such as
wexr =y, jlog”in, However, the distribution in our second example ends up being
the “nicest.” This will pertain to the “regularity” of an LTF, which is a concept that
will be explored further in the next lecture. One can refer to [DGJ*10] to preview the
results we will be showing.

References

[Bra08]  Mark Braverman. Polylogarithmic independence fools ac0 circuits. J. ACM,
57(5), jun 2008. (document), 1

[BRS91] R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back.
In [1991] Proceedings of the Sizth Annual Structure in Complezity Theory
Conference, pages 286-291, 1991. (document)

[DGJ*10] Tlias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio,
and Emanuele Viola. Bounded independence fools halfspaces. SIAM Journal
on Computing, 39(8):3441-3462, 2010. 3

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth cir-
cuits, fourier transform, and learnability. J. ACM, 40(3):607-620, jul 1993.
(document)



REFERENCES 10

~fl

24 o

Figure 2: Visualizing LTFs using probability distributions.
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