COMS 6998: Unconditional Lower Bounds and Spring 2024
Derandomization

Lecture 11: April 2, 2024

Lecturer: Rocco Servedio Scribe: Walter McKelvie

1 Preliminaries

Recall the definition

Definition 1 (LTF). A Linear Threshold Function is a function of the form
sign(w - x — 0)
for some (w,0) € R" x R.

This corresponds to a mapping of whether vertices on the hypercube are on one
side or the other of a particular hyperplane. Also recall that in general computing
|f71(1)] (the number of vertices on one side of a hyperplane) is #P-hard.

Consider a new concept: defining x as a random variable uniform over {+1}", take
the distribution of the linear form w-x corresponding to a particular LTF sign(w-xz—8).
We can illustrate two possible distributions of w - x:

1. If f is a majority function, then w = [1,1, 1, ...] and the distribution is a binomial
distribution (as a sum of independent Bernoulli distributions).

2. If f is a decision list, then w = [1,2,4,...,2"71] (up to permutation) and the
distribution is uniform over the odd integers between 1 — 2" and 2" — 1

We see that the distribution of w - x looks different depending on w—we will argue
that the second case (taking w = [1,1,1,...,1]) is the "nicest” of such distributions to
analyze.

To see this, suppose that instead of being distributed uniformly over {£1}", x; are
each independently a Gaussian N(0,1). Then for any weight vector w = (wy, ..., wy,)
with ||w|ls = 1, we can see that w - x ~ N(0,1) in distribution. This is because the
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sum of independent Gaussians is Gaussian, and by linearity of variance for independent
variables. Succinctly

N(0,07) + N(0,03) ~ N(0,07 + 03).
Recall that N (0, 1) has a "bell curve” distribution of the form

p(r) = \/127 exp (—a?/2)

and that the tails shrink very quickly with area < exp (—t*/2) (i.e., a Chernoff
bound). If our distribution over each x; was independently N (0, 1) rather than uniform
over +1, then our weight vector wouldn’t matter (besides its squared 2-norm which
determines the variance). So, the "nicest” LTF is the majority function

sign

vn

which has distribution w - x with x ~ {£1}" that "looks most like” N(0,1). Now we
will define a notion that corresponds to "looking like” N(0,1).

Definition 2 (e-regularity). We say that an LTF f = sign(w - x — 0) is e-reqular if
[wlls =1 and [[w]le < e

We note that MAJ in fact has the best regularity of any function for given n, with

€= Ln More generally, we can connect the e-regularity with the intuition above by

the so-called "Berry-Esseen Theorem”. This is a quantitative form of the central limit
theorem, which we recall roughly says (for X; iid with unit variance)

N
1
— > X;  —  N(0,1)
\/N i=1 in d{;{t?ﬁgﬁtion
Definition 3. Denoting the respective CDFs of random variables X and Y as
CDFx(t) =P(X <t)

CDFy(t) =P(Y <1t)
the CDF distance between X and Y is defined as

CDF(X,Y) = max|CDFx(t) — CDFy({)|
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Intuitively, CDF(X,Y) = ||CDFx — CDFy||» (this characterization also allows
us to immediately see that CDF distance is a pseudometric). An illustration is given
below:

COF, (4

Theorem 4 (Berry-Esseen Theorem). Let S = X; + ... +X,,, where X;’s are indepen-
dent real random variables with E[X;] = 0 and > Var(X;) = 1. Suppose each X; has
|X;| < 7 almost surely. Then

CDF(S,N(0,1)) < 7

At this point it should be clear that e-regular LTFs are nice: supposing that I give
you an e-regular LTF

f(z) =sign(w - x — 0)
then I can just output P(N(0,1) < €) and that is e additively close to P(f(z) = 1)
by BE Theorem.

Our goal for the rest of the lecture will be to make steps toward proving the following
theorem, closely following [DGJ*10]:

Theorem 5. Any O (é)—wise independent distribution over {£1}" e-fools all LTFs.
In fact we can do better, but not much better.
1. }2 turns out to be optimal up to constant (and possibly logarithmic) factors.

2. It is possible to hand-craft a different PRG of seed length O (logn + log? %)

2 Fooling e-regular LTFs

We will focus first on a special case of the "nice” LTFs from the last section.

Lemma 6. O (6%) -wise independent distribution over {£1}" e-fools all e-reqular LTFs.
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First recall the main way to know that k-wise independence fools something, via
sandwiching polynomials:

Lemma 7. f: {£1}"—{%1} is e-fooled by any k-wise independent distribution D if
3 e-sandwiching polynomials qs, q,, such that:

1. deg(qe), deg(qu) < k.
2. @) < f(x) < qu(x) for all x € {£1}".
3. Ex~u [QU(X) - QK(X)] <e.

To prove Lemma 6, we will show that for any e-regular LTF f(x) = sign(w -2 —0),
there is a univariate O (é)—degree sandwiching polynomial pair ¢y, ¢,. We can do this

by giving good O (é)—degree approximation polynomial for univariate sign(¢) function
under N(0,1).

More specifically, fixing any f(z) = sign(w - © — #) which is e-regular, the Berry-
Esseen Theorem says that the distribution of w-U is e-close in CDF distance to N (0, 1).
Therefore, it suffices

Lemma 8. There exist univariate degree-O (6%) polynomials qu, q, such that
1. qu(t) < sign(t) < qu(t), vt € R.
2. Eeno,1)(qu(g) — sign(t)) < €/2
5. Ee~n(o,1)(sign(t) — qu(g)) < €/2

In other words, graphing as a function of t = w-x — 6, we want to find polynomials
that upper and lower bound a step function:

z
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and where the notion of "distance” is weighted by a Gaussian so that more likely
values of t closer to t = 0 contribute more error.

We will be even more specific with how we construct polynomials that fit the
constraints of Lemma 8.

Lemma 9. Let r = O (%) There is a polynomial Q(g) of degree d < O (6%), with the
following properties:

1. Q(g) = sign(g) =2 —Q(—g),Vg € R
2. Q(g) € [sign(g), sign(g) + €] for all g € [=r, =] U0, ]
5. Q(g)

Q(9)

€[-1,1+¢ for g € [—¢,0].
<2 (4eg)? for |g] > 1.

These are a lot of constraints, but luckily a very pretty picture was drawn by Rocco
in lecture:

We will now convince ourselves that Lemma 9 would imply Lemma 8. We will
choose ¢, := Q(g) and ¢, := —Q(—g), and the first property of Lemma 8 follows easily
from the first property of 9. More difficult is proving the second and third property; it
suffices to prove only the second property, because from there the third would follow
by reflective symmetry of the Gaussian and our definitions.
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We need that
E [Q(g) —sign(g)] < O(e)

g~N(0,1)
and there are three areas which each contribute to the above integral:

1. Most outcomes of g € N (0, 1) are in the region g € [—r, —€]U[0,r]. The pointwise
bound on the error of ) implies that the error of this region is O(e).

2. Tiny regime: if g € [—¢,0] we could have pointwise error as large as O(1), which
would contribute O(e) error.

3. If |g| > r, then the pointwise error |Q(g) — sign(g)| may be huge. However, it
will only grow as a polynomial of degree d while the Gaussian tail bounds are
exponentially small.

Sketch: consider outcomes of ¢ in [r,r + 1]. We have P(g € [r,r + 1]) < P(g >
r) < exp(—1?/2).

On the other hand, for such g, the error of Q) is

< 2 (de(r + 1)) & (polylog(1/e))? ~s 200/*)
By suitable choice of hidden log* factors in r, we get e~ /2 . 200/ < £,
Similar argument gives [r +¢,7 +t + 1] contributes error < 5, so the total is at
most O(e).

Now that we are satisfied that the total error is O(e), we will prove Lemma 9. This
requires another definition and theorem:

Definition 10. Suppose we have a continuous function f :[—1,1]=R. Its modulus of
continuity s

wr(6) = sup [f(z) = f(y)]

r—y<d

Theorem 11 (Dunham Jackson’s Theorem). Let f : [—1,1] =R be bounded, continu-
ous. Let £ > 1,0 € N. There ezists a polynomial J(t), deg(J) < ¢, such that

1
s 190) = (0] <67 (1)

We use these to prove the following lemma:
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Lemma 12. Let a = O(e?), let

3001n * ~
m = nezO(lz)
a €

There is a polynomial q(t) of degree < m such that

_ g <
e fnax lq(t) — sign(t)| < e

(i.e., think of Q(g) as Q(g) = q(g/r), i.e. Q(r-t) =q(t))
Proof of Lemma 12. Define f(t):[—1,1]—[—1,1] by

sign(x x| € |a, 1
fo) - [s@) lal el
x/a lz] <a
We have wy (%) L Take ¢ = % As the great Dunham Jackson tells us, there exists

T a

N
a polynomial J(t) of degree ¢ such that

o |

6
— s < — <<
Jmax |(t) = sign(t)] < max /(1) = f(1)] < o <

We want this % to instead be e. We could use Jackson with larger ¢, but we would

then need degree O (Eig) which is paying a little too much. Instead, we use a trick.
Define a degree-k "amplifying polynomial”

=) (57 (5)

Sk
Jjz5

This is reminiscent of a binomial distribution, in that

Ai(u) = P[toss Lta

-biased coin k times and get > g heads]
and we can use a Chernoff bound to get the following facts:

o Ifue[3/5, 1] then 24, (u) — 1 € [1 — 2exp(—k/6), 1]

o Ifue[—1,-3/5] then 24, (u) — 1 € [-1,—1 + 2exp(—£k/6)]
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Our final polynomial, then, is
4
i) = 24 ($70)) -1

where k = 12log 1. Scale J(t) by 4/5 to ensure that

gj(t) e {-1,-%} U {211

so 2exp(—k/6) < e. As for our degree, we simply note that

2 1 1
deg(g) < deg(J) - deg(Ay) < 22 - 12log - = "L log L =
a € a €

as desired. [ ]

Here we stop to declare a moral victory in fooling e-regular LTFs. Despite several
details going unresolved, the above is the most interesting part of the proof.

For those interested, the remainder of the proof begins on page 15 in [DGJ*10].
The polynomial existence is not really constructive—it starts with the best bounded-
degree polynomial approximation of sign(g) and then uses this to construct another
polynomial. The analysis utilizes Chebyshev’s Theorem on polynomial approximations.

3 Fooling all LTFs

There is still a big piece missing from what we were promised at the beginning: not
every LTF is e-regular. Like, for instance,

sign(2"zy + 2" twy + ... + 2tz — 0)

is only O(1)-regular—it is really not close to a Gaussian at all. However, this spe-
cific LTF is not really difficult to deal with. In fact, it is really a decision list which is
e-close to a log %-j unta. Maybe functions which are not regular are somehow like juntas.

Say your LTF is not e-regular, but still has constraint ||wl|ls = 1. Without loss of
generality, say |w;| > |we| > ... > |wy|. Since it is not regular, we know
|wi| > €

Consider the process of throwing away the first weight and renormalizing the remaining
weights, and seeing whether our new |w;| > e.
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Definition 13. Fiz f(z) = sign(w - x — ), and denote w* = (wy, wey1,...,w,). The
e-critical index of f is the minimum value ¢ such that (we, weiq, ..., wy,) is e-reqular,
i.e.

Jwe| < ellw]y
Fact 14. If ((€) is the e-critical indez of (wy,...,w,), then

HUMH% = Z wJQ. < (1 . 62)2(5)71
j=L(e)

Given any f = sign(w - x — 6), consider three cases based on /(€) = e-critical index of
f:
1. ¢(e) = 1: then f is e-regular and we are done

2. l(e) < 652: then w -z has a "junta part” for the first few variables and a "regular
part” for the remaining variables.

3. L(e) > &: by Fact 14, [[w*||3 < (1 - 62)k/62 < e ¥, Take K = 100log i, we can
show that f is very close to a g—g—junta. The proof of this part is also omitted.
We can prove along these lines a "structure theorem” for LTFs:

Theorem 15. Fiz e > 0 and f(x) = sign(w - © — 0). Then there exists a set H C [n]
of O (%) wariables of f (the ones with the largest |w;|) such that either

1. [ | p is e-reqular for every restriction p fixing variables in H (1,2 above)

2. f is e-close to an H-junta.

This structure theorem can be used to show that O (E%)—Wise independence fools
all LTFSs, not just e-regular ones:

1. O (é)—wise independence fools all H-juntas and another o, (é)—wise indepen-
dence fools every e-regular f | p.

2. 0 (E%)—Wise independence fools any H-junta

Next time: PTFs? Harder, but we can also do some things.
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