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1 Deterministic Approximate Counting for LTFs
Definition 1 (Relative Error Deterministic Approximate Counting for LTFs). Let
f(x) = sign(w · x − θ) be an n-variable LTF. Let ϵ > 0, and let N be the number
of satisfying assignments of f . On input w, θ, ϵ, deterministic approximate counting
outputs an integer N̂ such that N ⩽ N̂ ⩽ (1 + ϵ)N .

The first randomized algorithm to solve this problem dates back 1999. We now
propose a deterministic version as follows:

Theorem 2. Following definition 1, suppose ∀i ∈ [n], wi ∈ Z and θ ∈ Z. Let W =
max({|wi| : i ∈ [n]}∪ {|θ|}). Then there exists a poly(n, log(W ), 1

ϵ
)-time deterministic

algorithm solving the determinisitic approximate counting problem. [GKM10]

The high-level idea of the proof is to:

• approximate the LTF using a branching program (to be defined below)

• use standard dynamic programming to count the exact number of satisfying
assignments to the branching program

Definition 3 (branching program). An (S, T )-branching program ((S, T )-BP) is a
layered directed acyclic graph corresponding to a function f : {0, 1}T→{0, 1}, where:

• there are T + 1 layers, labeled 0, 1, ..., T

• on each layer, there are at most S vertices (“states”)

• layer 0 contains a single source vertex s

• for each layer i where i ∈ {0, ..., T − 1}, for each vertex v1 in layer i, there’s an
edge from v1 to some vertex v2 in layer i+ 1, and another edge from v1 to some
vertex v3 in layer i+1, corresponding to the cases where variable xi+1 is assigned
0 or 1.
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• each vertex in layer T is labeled either 0 (reject) or 1 (accept)
The branching program intuitively calculates a boolean function. In particular, an

LTF f(x) = sign(w · x − θ), where ∀i ∈ [n], wi ∈ Z⩾0 and θ ∈ Z⩾0, can be computed
as follows: Let W =

∑n
i=1 wi. We define a (W + 1, n)-BP, where each state in layer j

corresponds to the possible prefix sums up to index j:
∑j

i=1 wixi. We accept or reject
based on whether the corresponding node in the final layer is reachable. Below is an
illustration of the first 3 layers:
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Fact 4. We can compute the number of satisfying assignments of an (S, T )-BP in
poly(S, T )-time, using dynamic programming.

Now, we approximate the (W + 1, n)-BP for our LTF with a (poly log(W ), n+ 1)-
BP. The states of our new BP corresponds to subsets of the states of the original BP,
gained via a process called rounding:

We partition the states in layer i of the original BP into intervals I1 = [0, v1−1], I2 =
[v1, v2 − 1], ...., It = [vt−1,W ], such that the number of accepting suffixes for all the
partial sums in an interval is roughly the same (in other words, the probability of
elements in each interval reaching the accept state is roughly the same). In particular,
when the acceptance probability drops by a factor of 1 + ϵ, we start a new interval.
I1, ..., It constitutes the new states in layer i+ 1 of our new BP.

The challenge is to calculate the probabilities of reaching acceptance state, which
is itself an instance of approximate counting of number of satisfying assignments of an
LTF. To solve this, we again use dynamic programming, but this time from back to
front (i.e. we round layer n + 1 first, and then layer n, util reaching layer 0). This
is because the probability of a prefix sum in layer i reaching acceptance state can
be calculated by combining the probability of a prefix sum in layer i + 1 reaching
acceptance state and by the value of xi, which naturally defines a recurring problem.
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An illustration of the “back to front” approach is given below:

Note that solving the non-negative integer version of the problem automatically solves
the integer version of the problem: the possible sums range from −

∑n
i=1 |wi| − |θ| to∑n

i=1 |wi|+ |θ|, which can be expressed with max({|wi| : i ∈ [n]} ∪ {|θ|}) bits.

2 Deterministic Approximate Counting for PTFs
Definition 5 (PTF). A degree-d PTF is a boolean function f : {−1, 1}n→{−1, 1}
such that f(x) = sign(p(x)), where p is a degree-d real polynomial.

Meka and Zuckerman proposed a PRG for degree-d PTFs with seed length (d/ϵ)O(d) log(n)
[MZ13]. By enumerating over all seeds, this gives an approximate counting algorithm
running in n(d/ϵ)O(d) time. Another PRG is proposed with seed lengthOd(1) poly(1/ϵ) log(n)
seed length, and this yields an approximate counting algorithm running inOd(1) poly(1/ϵ)
time [Kan17].

It turns out that this is a problem for which we can do faster deterministic approx-
imate counting than just enumerating over all seeds of a PRG: it is known that we can
do O(d, ϵ)(1)-time deterministic approximate counting for degree-d PTFs. Note that
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the input size of degree-d PTF is roughly nd, so for constant d this time complexity is
polynomial in input size.

2.1 d = 2

We draw special attention to the d = 2 case and provide an overall sketch. The high
level idea is to extend Berry-Esseen theorem from the previous lecture. The insight of
Berry-Esseen is that regular linear formulas on independent random variables behave
like a Gaussian. Using the “invariance principle” proposed by Mossel et al. [MOO05],
we can extend Berry-Esseen to low-degree polynomials.

Let p(x) be a “regular” polynomial (similar to the “regular” LTFs defined in the
previous lecture). The goal is then to transfer the distribution of p(x1, ...,xn), where
x ∼ {±1}n, to the distribution of p(g1, ..., gn), where g ∼ N (0, 1)n, and analyze the
polynomials with Gaussian inputs.

3 Nisan-Widgerson PRG
3.1 High level overview
The Nisan-Widgerson (NW) PRG is a generic way of constructing a PRG. The high
level idea is that given an average-case lower bound against a “richer” class C ′ of r-
variable boolean functions, we are able to construct a PRG for a “simplier” class C of
n-variable boolean functions.

On a high level, the NW generator G takes s truly-random bits U = U1, ...,Us as
input, and outputs a n-bit pseudorandom string. It works as follows:

Let S = (S1, ..., Sn), where ∀i ∈ [n], Si ⊆ [s] and |S1| = ... = |Sn| = r. We make it
such that for each i, j ∈ [n] where i 6= j, |Si ∩ Sj| is very small. Let h : {0, 1}r→{0, 1}
be average-case hard for C ′. The NW generator is:

G(U) = (h(U|S1), ..., h(U|Sn)). (*)

The intuition is that the hardness of h makes each bit of the output unpredictable,
which shows a “hardness vs randomness” intuition.

Now we define the class C ′ as a composition of C and Juntas. Let k be the supremum
of |Si ∩ Sj| where i 6= j. Let Juntar,k be the set of functions f : {0, 1}r→{0, 1} such
that f is a k-junta.

C ′ = C ◦ Juntar,k = {f(g1(x), ..., gn(x)) : f ∈ C, ∀i ∈ [n], gi ∈ Juntar,k}.
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3.2 Preliminary theorem
Before introducing the NW theorem, consider the following preliminary version:

Theorem 6 (Preliminary NW theorem). Let C be a class of functions {0, 1}n→{0, 1}.
Let h be ϵ-hard for C ′ = C ◦ Juntar,k. Let S = (S1, ..., Sn) be an (s, k, r)-design (to be
defined in definition 7). Then the generator (*) (ϵn)-fools C and has seed length s.

We define and prove the existence of (s, k, r)-design below:

Definition 7 ((s, k, r)-design). A list S = (S1, ..., Sn) of n subsets Si ⊂ [s] is an
(s, k, r)-design if

1. ∀i ∈ [n], |Si| = r

2. ∀i 6= j, |Si ∩ Sj| ⩽ k

We would want the following properties:

• s << n, since the seed length should be small

• k is very small, since large k implies more powerful Juntar,k and therefore more
powerful C ′, making it hard to find a good h

However, we notice the following tensions among the parameters:

• small k leads to large s

• s ⩾ log(n) by definition of seed

Fortunately, we’re able to construct a design following a greedy algorithm:

Lemma 8. Let c ⩾ 1, s = 100c2 log(n), r = c log(n), k = log(n). There exists a greedy
algorithm that constructs S satisfying definition 7 that runs in ⩽ poly(n) · 2s time.

Proof. The greedy algorithm runs in n stages: it tries all |Si| = r at stage i, looking
for one such that ∀j < i, |Si ∩ Sj| ⩽ k. It FAILs if no such sets exist.

The proof for time complexity is trivial. We’ll show this algorithm never fails:
After picking sets S1, ..., Si−1, a random S ⊂ [s] where |S| = r has the following

property:
Pr
S
[∃j ∈ [i− 1], |S ∩ Sj| > k] < 1.
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which follows from showing:

Pr
S
[|S ∩ {1, ..., r}| > k] <

1

n
.

But

ES[|S ∩ {1, ..., r}|]
=ES[|S ∩ {1, ..., c log(n)}|]

=c log(n)
c log(n)

100c2 log(n)

=
log(n)

100

=
k

100
.

This suggests that it is very unlikely that |S∩ {1, ..., r}| > k. Using the multiplicative
version of Chernoff bound for negatively correlated random variables, or equivalently,
calculating directly with binomial coefficients, we can prove our result. ■

3.3 Actual NW Theorem
Now it’s time to introduce the actual NW theorem:

Theorem 9 (NW theorem). Let C be a class of functions {0, 1}n→{0, 1}. Let h
be ϵ-hard for C ′ = C ◦ Juntar,k. Let S = (S1, ..., Sn) be an (s, k, r)-design where
c ⩾ 1, s = 100c2 log(n), r = c log(n), k = log(n). Then the generator (*) (ϵn)-fools C
and has seed length s [NW88].

Before proving the theorem, we first look at an application: fooling AC0 circuits.

Corollary 10. For M ⩾ n, the NW generator gives a δ-PRG for AC0
M,d with seed

length s = (log(M/δ))2d+O(1), computable in poly(n) · 2s time.

Proof. With proper parameter setting and our earlier average case lower bound against
AC0, using AC0

M,d ◦ Juntar,k is contained in AC0
M+n·2k,d+2. ■

Now we prove theorem 9. The key notion is “next-bit unpredictability”:
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Definition 11. Let X be a random variable over {0, 1}n. Let f : {0, 1}n→{0, 1}. Let
ϵ > 0. We say X is ϵ-next-bit-unpredictable for f (ϵ-nbu) if for each i ∈ [n], for each
a ∈ {0, 1}n−i+1, we have

|Pr
X
[f(X1, ...,Xi−1, a) = Xi]−

1

2
| ⩽ ϵ.

equivalently, X ϵ-fools x 7→ f(x1, ..., xi−1, a)⊕xi.

We can therefore decompose theorem 9 into the following lemmas:

Lemma 12. NW generator, under setup of theorem 9, is ϵ-nbu for all f ∈ C.

Lemma 13. Let X be a random variable over {0, 1}n. Let f : {0, 1}n→{0, 1}. If X is
ϵ-nbu for all f ∈ C, then X ϵn-fools every f ∈ C.

To prove the first lemma:

Proof. Fix any f : {0, 1}n→{0, 1} in C. Fix any i ∈ [n], a ∈ {0, 1}n−i+1. Let U ∼ Us,
X = G(U). We have:

|Pr
X
[f(X1, ...,Xi−1, a) = Xi]−

1

2
|

=|EU[s]\Si
[Pr
USi

[f(h(U|S1), ..., h(U|Si−1
), a)]]− 1

2
|

⩽EU[s]\Si
|[Pr
USi

[f(h(U|S1), ..., h(U|Si−1
), a)]]− 1

2
|.

For each fixing of U[s]\Si
, write Z = USi

. For each j < i, since we fixed U[s]\Si
and

|Si ∩ Sj| ⩽ k, there’s a k-junta gj such that h(U|Si
) = gj(Z). So

|[Pr
USi

[f(h(U|S1), ..., h(U|Si−1
), a)]]− 1

2
|

=|[ Pr
Unif Z

[f(h(g1(Z)), ..., h(gi−1(Z)), a)]]−
1

2
|

⩽ϵ.

The last inequality is because h is ϵ-hard for C ◦ Juntar,k. ■

To prove the second lemma, we use the hybrid argument:
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Proof. Let B = (B1, ...,Bn) ∼ Un. Consider the following hybrid distributions over
{0, 1}n:

D0 = (B1, ...,Bn) = B

D1 = (X1,B2, ...,Bn)

D2 = (X1,X2,B3, ...,Bn)

...

Di = (X1, ...,Xi,Bi+1, ...,Bn)

...

Dn = (X1, ...,Xn) = X

By triangular inequality:

|E[f(X)]− E[f(D)]|
=|E[f(Dn)]− E[f(D0)]|

⩽
n∑

i=1

|E[f(Di)]− E[f(Di−1)]|. (**)

Fix i ∈ [n]. We have:

|E[f(Di)]− E[f(Di−1)]|

=|E[f(Di)|Bi = Xi]− (
1

2
E[f(Di−1)|Bi = Xi] +

1

2
E[f(Di−1)|Bi 6= Xi])|

=|E[f(Di)|Bi = Xi]−
1

2
E[f(Di)|Bi = Xi]−

1

2
E[f(Di−1)|Bi 6= Xi]|

=|1
2
E[f(Di)|Bi = Xi] +

1

2
E[f(Di)|Bi 6= Xi]−

1

2
|

=|E[f(Di)⊕Bi ⊕Xi]−
1

2
|

=EB[|EX[f(Di)⊕Bi ⊕Xi]−
1

2
|].

Note that from the third to the fourth equality, we utilize the fact that for any p,
−p = (1− p)− 1.

For any fixing of B, if we let g(x) = f(x1, ..., xi−1,Bi, ...,Bn)⊕Bi ⊕ xi, either g or
g is checking whether f successfully predicts xi given x1, ..., xi−1. So by ϵ-nbu of f for
X, the above is ⩽ ϵ. Hence (**) ⩽ ϵn, i.e. X ϵ-fools f . ■
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