1 Introduction

This is a template file for scribe notes for COMS 6998. This class is about Boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Here is some filler text.

Check out the style files 6998 .sty and 6998 -thm.sty (in the same directory where you found this file); those files contain macros, etc that can make your notes easier to write and more attractive to read.

Here's an example of an embedded link (in this case, a link to a free online version of Wegener's "blue book"): The Complexity of Boolean Functions.

2 Some hints about organization

It's a good idea to organize your scribe notes into sections according to logical breakpoints in the material. Similarly, it's a good idea to organize technical material into lemmas, claims, theorems, et cetera. LaTeX is great at automatically handling references to material in your text. Here's a simple example:

Theorem 1. This is a dummy theorem.
By labeling the theorem in the LaTeX source it's easy to refer to it later in an automatic way (for example, this parenthetical references Theorem 1 - see the LaTeX source).

3 Some hints about exposition

You should strive for clarity in your writeup of scribe notes - don't be too concise, but also avoid unnecessary over-explanation. A good imaginary reader to keep in mind is a friend who's smart and mathematically mature, but doesn't have any special expertise or knowledge of this area.

4 Some hints about presentation

Pictures/diagrams/figures are extremely helpful! It's a good idea to include as many of these as you need. You can draw them in LaTeX itself or import files, whatever you prefer - the key thing is that your figures are legible and informative. See Appendix A for an example of a figure. (It's taken out of context so don't worry about the content - but hopefully you are convinced that in whatever context it came from, the figure helps explain what is going on!)

Everybody likes to read good-looking mathematics; or rather, nobody likes to read math that's ugly or hard to parse. (Subjectivity alert) Here is an example of some reasonably good-looking math:

$$
(16 n)^{s}=2^{\log (16 n) \cdot 2^{n} / 2 \log (n)}=2^{\frac{4+\log (n)}{2 \log (n)} \cdot 2^{n}}<2^{0.51 \cdot 2^{n}} \ll\left(1-\frac{1}{2^{n}}\right) \cdot 2^{2^{n}}
$$

Finally, a typical set of scribe notes should provide references to relevant papers, books, etc. as appropriate. This sentence contains several references to various papers [Sha49, Sub61, Hås86].

References

[Hås86] Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proc. 18th Annual ACM Symposium on Theory of Computing (STOC), pages 6-20. ACM Press, 1986. 4
[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical Journal, 28:59-98, 1949. 4
[Sub61] B. A. Subbotovskaya. Realizations of linear functions by formulas using $+, *,-$. Soviet Mathematics Doklady, 2:110-112, 1961. 4

A An example figure

Figure 1: The figure illustrates a typical $\tau \in\{\bullet, \circ, *\}^{A_{k}}$. For $a \in A_{k-1}, \tau_{a}$ is a block of length w_{k-1}, i.e. a string in $\{\bullet, \circ, *\}^{w_{k-1}}$. We may think of the block τ_{a} as being located at level k. By Condition (1) of Definition 72, for every $a \in A_{k-1}$ we have that $\left|\tau_{a}^{-1}(*)\right|$, the number of $*$'s in τ_{a}, is roughly $q w=\tilde{\Theta}(\sqrt{w})$. The lift $\hat{\tau}$ of τ is a string in $\{\bullet, 0, *\}^{A_{k-1}}$, and for $\alpha \in A_{k-2}, \hat{\tau}_{\alpha}$ is a block of length w_{k-2}. We may think of the block $\hat{\tau}_{\alpha}$ as being located at level $k-1$. As stipulated by equation (86), for every $\alpha \in A_{k-2}$, the string $\hat{\tau}_{\alpha}$ belongs to $\{*, \circ\}^{w_{k-2}}$. By Condition (2) of Definition 72 , for every $\alpha \in A_{k-2}$, we have that $\left|\left(\hat{\tau}_{\alpha}\right)^{-1}(*)\right|$, the number of $*$'s in $\hat{\tau}_{\alpha}$, is at least $w_{k-2}-w^{4 / 5}=w_{k-2}(1-o(1))$. Finally, we observe that equation (55) and Condition (2) of Definition 72 imply that $\hat{\boldsymbol{\tau}}_{\alpha}=*$ for every $\alpha \in A_{k-2}$.

