Reading: Decipherment Foreign Language

Yu Usami

March 4, 2013

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

"Really written in English, but has been coded in some strange symbols." – [Weaver 1955]

Goal

Translation system from foreign language to English

$$\arg\max_e P(e|f) = \arg\max_e p(e)p(f|e)$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

IBM Model 2

Model P(f|e) with alignments

$$P(f, a|e) = P(a|e)P(f|a, e)$$
$$P(f|e) = \sum_{a} P(f, a|e)$$

where

$$P(f|a,e) = \prod_{j} t(f_{j}|e_{a_{j}})$$
$$P(a|e) = \prod_{j} d(a_{j}|j,l,m)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

IBM Model 3

Introduce a fertility ϕ

Example Mary did not slap the green witch 3 2(chose with $n(\phi_i|e_i)$) 1 0 1 1 1 Mary not slap slap slap the the green witch Mary daba botefada a la bruja no una verde Model

$$P(f,a|e) = \prod_{i=0}^{l} t(f_{a_{j}}|e_{i}) \cdot \prod_{i=1}^{l} n(\phi_{i}|e_{i}) \cdot \prod_{a_{j} \neq 0, j=1}^{m} d(a_{j}|i,l,m)$$
$$\cdot \prod_{i=0}^{l} \phi_{i}! \cdot \frac{1}{\phi_{0}!} \cdot \binom{m-\phi_{0}}{\phi_{0}} \cdot p_{1}^{\phi_{0}} \cdot p_{0}^{m-2\phi_{0}}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

See workbook by Kevin Knight [pdf]

Parallel corpus and non-parallel corpus

Parallel

- Aligned sentence-by-sentence
- Traditional MT: estimate parameters with parallel corpora by using EM

ション ふゆ マ キャット マックシン

Non-parallel

- No alignment
- Unsupervised learning: decipherment

Word Substitution Decipherment

Properties

- Word-to-word
- Deterministic
- No-reordering

Example

The \rightarrow crqq, saw \rightarrow fxyy, ran \rightarrow qdxx

Generative process

- Generate an English sentence $e = e_1, \ldots, e_n$ with probability P(e)
- **2** Substitute each word e_i with a cipher token c_i with probability $P(c_i|e_i)$

うして ふゆう ふほう ふほう ふしつ

Bayesian Approach

Smart sample-choice selection Parallelized Gibbs sampling

Advantages

- Efficient training to scale to large data size
- Efficient inference by using incremental scoring of derivations
- There are no memory bottlenecks
- Prior specification allows us to learn skewed distributions

ション ふゆ マ キャット マックシン

MT as a Decipherment

Given

Foreign text $f = f_1 \dots f_m$ and a monolingual English corpus

Goal

Translate foreign text into English text $e = e_1 \dots e_l$

Model P(f|e) only with monolingual data Estimate the model parameters θ in order to maximize the probability of f

$$\arg \max_{\theta} \prod_{f} P_{\theta}(f) = \arg \max_{\theta} \prod_{f} \sum_{e} P_{\theta}(f, e)$$
$$= \arg \max_{\theta} \prod_{f} \sum_{e} P(e) \cdot P_{\theta}(f|e)$$

うして ふゆう ふほう ふほう ふしつ

Bayesian Method

Goal Train IBM Model 3 parameters t, n, d, p without parallel corpus Distributions

$$f_j | e_i, \theta \sim \operatorname{Mult}(\theta)$$

 $\theta | \alpha \sim \operatorname{Dirichlet}(\alpha)$

CRP formulation

$$t_{\theta}(f_j|e_i) = \frac{\alpha \cdot P_0(f_j|e_i) + C_{history}(e_i, f_j)}{\alpha + C_{history}(e_i)}$$

・ロト ・個ト ・ヨト ・ヨト ヨ ・ のへで

Result

Word Dubstitution Decipiterment			
Method	Decipherment Accuracy		
	Temporal expr.	Transtac	
EM	87.8	intractable	
Iterative EM	87.8	71.8	
Bayesian	88.6	82.5	

Word Substitution Decipherment

MT Decipherment

Method	Decipherment Accuracy	
	Time	OPUS
Parallel (MOSES)	5.6(85.6)	26.8(63.6)
Decipherment (EM)	28.7(48.7)	$65.1 \ (19.3)$
Decipherment (Bayesian)	34.0(30.2)	66.6(15.1)

Discussion

Q. Why did the Bayesian approach underperform? How can we improve it?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・