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A. Introduction:
Most conventional approaches to sampling a signal are based on Shannon's sampling theorem: the 
sampling rate should be twice the maximum frequency in the signal (a.k.a. Nyquist rate). When it comes 
to pictures, which are not bandlimited, the sampling rate is determined by the desired resolution of the 
picture. Compressive sensing (CS) provides a way to recover an image from far fewer samples than 
would normally be necessary. CS relies on two basic principles: sparsity and incoherence. Sparsity is the 
idea that the bandwidth of a signal may be larger the actual number of "information" samples. This 
leads to the fact that if these samples were represented in the right basis ψ, they would be less sparse 
(more compressed). Incoherence extends the duality between time and frequency: something that is 
compressed in ψ will be spread out in the domain that it was acquired in.

The typical approach to sensing is the following:

yk = <f, φk>

where f is the image to be sampled, φk is the sensing waveform, and yk is the sampled data. If the φk's 
are indicator functions of pixels, then the yk's are the typical image data collected from a camera. The 
complexity arises from the number of dimensions of y, which we'll call n. One could try to take n 
measurements (more pixels in a CCD) or one could be clever and find a solution that allows him to 
undersample, collecting m samples instead of n (m << n). In that case, one could create an m x n 
sensing matrix, A, composed of m rows of the φk's: φ1*, φ2*, ... , φm* (where a* denotes the complex 
transpose of a). Since f is n-dimensional, but y is of dimension m and y = Af, there are an infinite 
number of possibilities for f. However, in some cases, there is a way out of this.

SPARSITY:
If f was an element of Rn and sampled in an n dimensional basis φ1, φ2, ... , φn, then we have the 
following relationship:

f = ∑
i=1

n

x iφi

However if some of those x_i's are small there may be a subset of the φ_i's that almost add up to f. In 
that case:

f = ∑
i=1

s

x iφi

or
f = Φ * xs where Φ is an n x n matrix of φ1 - φn as columns, and xs are the s largest coefficients of the xi's. 
The figure below shows how this works, and can be quite good at reconstructing the image.



 
Fig. 1

Part a of Fig. 1 [1] shows the initial image. Part b is the image in the φ basis. Note that there are only a 
few discrete φi's that have xi's with large coefficients. Part c is the reconstruction of the image using the 
φi's linked to the largest 25,000 coefficients. This means that 97.5% of the sampled data was thrown 
away and the picture still looks quite good.

INCOHERENCE:
Since f is an element of Rn, we can find two basis sets Φ and Ψ for the space. Φ will represent f as shown 
before, and Ψ will be used as the sensing basis. The coherence measures the largest correlation 
between any two elements of Φ and Ψ. Compressive sensing looks for low coherence pairs (maximum 
incoherence). Since Φ will be some fixed basis, it has been shown that the best basis for Ψ is a random 
basis (white Gaussian noise).

As mentioned before, y can be sensed in the Ψ basis: y = Ψ f or yk = <f, ψk> (dot product of f with each 
basis vector in Ψ). In order to recover the image we look at the following:

yk = <φk, Ψ*f>, where f is the signal to be recovered

Solving this equation for f is impossible. However, we believe (or know) that f is sparse. In that case we 
can look for the following signal that will solve the minimization problem:

min {||x||0 , Ψ*x = y}

Essentially here we are looking for an x with the least number of non-zero coefficients that will satisfy Ψ 
* x = y. This too is intractable. So we will use:

min {||x||1 , Ψ * x = y}

This can be done in a reasonable amount of time. Finally frec = Φ * x.

L1 minimization algorithms are not the only way to recover compressively sensed data. There are 
greedy algorithms available that allow one to do is as well.

B. Overall Architecture:
The goal of this project is to implement the decompression side of a CS system on the Altera Cyclone II 
FPGA board.  The CPU on the board will have a C program allowing it to get a y-dimensional compressed 
image from the computer. This image will then be decompressed and displayed on the VGA display. For 
our application we are going to use a 200x200 pixel resulting image (n = (3 colors per pixel) * (200 
pixels wide) * (200 pixels high) * (8 bits per color)= 120,000 bytes). We are expecting the compressed 
image to be around 3000 bytes (40:1 compression). Both the compressed and decompressed images 
will be stored in the SRAM (which has a total of 512 kB available). 



Fig. 2: Overall Hardware Design

C. Hardware Design:
1. VGA Controller
The VGA Controller will communicate with the VGA DAC on the board. The VGA controller will use data 
stored in the last 120,000 bytes of the SRAM as source data for the VGA (to display the image). This set 
of data will be updated by the ALU as the decompression progresses. If the algorithm is slow one should 
be able to see the image slowly appear on the screen as the 120,000 bytes go from 0 to the value of the 
original image.

2. SRAM Controller
The SRAM Controller will store both the compressed image and decompressed image. Initially the 
addresses associated with the decompressed image will store zeros. Thus the image on the VGA will be 
a black square. As the decompression algorithm is carried out, the image should start to form on the 
VGA. 



Fig. 3: Organization of 512 kB SRAM
    
3. Decompression Engine 
This is the most significant part of the project. The goal here is to replicate what is normally done in 
software (Matlab, etc) in hardware to boost speed, both because calculations in hardware are faster and 
because we can compute much of the algorithm in parallel.
We will be implementing an algorithm called Regularized Orthogonal Matching Pursuit, or ROMP [8], 
which we expect to provide an appropriate balance between accuracy and ease of implementation. 
Using Matlab code provided by the developers of the algorithm [9], we intend to implement as much of 
the algorithm in hardware as is feasible, with the rest being coded on the NIOS II.  While we hope to 
exploit all available opportunities for parallelism in the algorithm, the three color channels represent an 
embarrassingly parallel problem, in that each color can be decompressed independently of the other 
two.

D. Software Architecture:
1. VGA (Driver Layer) 
This driver will simply display the decompressed image and is interfaced with the hardware VGA. 
2. Image Compression in Software (Application)
a. Start with a .tif image. Use Matlab to generate three n x 1 matrices for R, G and B. Multiply each of 
these by a m x n matrix of Gaussian white noise (between 0 and 1, the result is rounded to the nearest 
whole number). This gives us compressed data. We can then use sparsity to generate a y-dimensional 
array (however this is not necessarily necessary... but preferred).  This process is similar to how a JPEG 
image is compressed. Essentially, the y largest coefficients of the m-dimensional array are selected.  
b. The compressed image will be transmitted to the FPGA CPU and stored in the first y bytes of the 
SRAM.

E. Milestones:
1. Milestone 1: Compression of image in software and detailed plan for hardware implementation of the 
decompression algorithm.
2. Milestone 2: Ability to load an uncompressed image into the SRAM and have the VGA display it.
3. Milestone 3: Load compressed image into SRAM and have the Decompression Engine working (no 
parallel processing).
4. Final: Parallel processing and optimization of the Decompression Engine 
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