
Writing VHDL for RTL Synthesis

Stephen A. Edwards, Columbia University

December 21, 2009

The name VHDL is representative of the language itself: it is a two-level acronym

that stands for VHSIC Hardware Description Language; VHSIC stands for very high

speed integrated circuit. The language is vast, verbose, and was originally designed

for modeling digital systems for simulation. As a result, the full definition of the lan-

guage [1] is much larger than what we are concerned with here because many con-

structs in the language (e.g., variables, arbitrary events, floating-point types, delays) do

not have hardware equivalents and hence not synthesizable.

Instead, we focus here on a particular dialect of VHDL dictated in part by the IEEE

standard defining RTL synthesis [2]. Even within this standard, there are many equiv-

alent ways to do essentially the same thing (e.g., define a process representing edge-

sensitive logic). This document presents a particular idiom that works; it does not try

to define all possible synthesizable VHDL specifications.

1 Structure

Much like a C program is mainly a series of function definitions, a VHDL specification

is mainly a series of entity/architecture definition pairs. An entity is an object with

a series of input and output ports that represent wires or busses, and an architecture

is the “guts” of an entity, comprising concurrent assignment statements, processes, or

instantiations of other entities.

Concurrent assignment statements that use logical expressions to define the values

of signals are one of the most common things in architectures. VHDL supports the

logical operators and, or, nand, nor, xnor, xnor, and not.

library ieee; -- add this to the IEEE library

use ieee.std_logic_1164.all; -- includes std_ulogic

entity full_adder is

port(a, b, c : in std_ulogic;

sum, carry : out std_ulogic);

end full_adder;

architecture imp of full_adder is

begin

sum <= (a xor b) xor c; -- combinational logic

carry <= (a and b) or (a and c) or (b and c);

end imp;

1



1.1 Components

Once you have defined an entity, the next thing is to instantiate it as a component within

another entity’s architecture.

The interface of the component must be defined in any architecture that instantiates

it. Then, any number of port map statements create instances of that component.

Here is how to connect two of the full adders to give a two-bit adder:

library ieee;

use ieee.std_logic_1164.all;

entity add2 is

port (

A, B : in std_logic_vector(1 downto 0);

C : out std_logic_vector(2 downto 0));

end add2;

architecture imp of add2 is

component full_adder

port (

a, b, c : in std_ulogic;

sum, carry : out std_ulogic);

end component;

signal carry : std_ulogic;

begin

bit0 : full_adder port map (

a => A(0),

b => B(0),

c => ’0’,

sum => C(0),

carry => carry);

bit1 : full_adder port map (

a => A(1),

b => B(1),

c => carry,

sum => C(1),

carry => C(2));

end imp;

1.2 Multiplexers

The when...else construct is one way to specify a multiplexer.

library ieee;

use ieee.std_logic_1164.all;

entity multiplexer_4_1 is

port(in0, in1, in2, in3 : in std_ulogic_vector(15 downto 0);

s0, s1 : in std_ulogic;

z : out std_ulogic_vector(15 downto 0));

end multiplexer_4_1;

architecture imp of multiplexer_4_1 is

begin

z <= in0 when (s0 = ’0’ and s1 = ’0’) else

in1 when (s0 = ’1’ and s1 = ’0’) else

in2 when (s0 = ’0’ and s1 = ’1’) else

in3 when (s0 = ’1’ and s1 = ’1’) else

"XXXXXXXXXXXXXXXX";

end imp;

2



The with...select is another way to describe a multiplexer.

architecture usewith of multiplexer_4_1 is

signal sels : std_ulogic_vector(1 downto 0); -- Local wires

begin

sels <= s1 & s0; -- vector concatenation

with sels select

z <=

in0 when "00",

in1 when "01",

in2 when "10",

in3 when "11",

"XXXXXXXXXXXXXXXX" when others;

end usewith;

1.3 Decoders

Often, you will want to take a set of bits encoded in one way and represent them in

another. For example, the following one-of-eight decoder takes three bits and uses

them to enable one of eight.

library ieee;

use ieee.std_logic_1164.all;

entity dec1_8 is

port (

sel : in std_logic_vector(2 downto 0);

res : out std_logic_vector(7 downto 0));

end dec1_8;

architecture imp of dec1_8 is

begin

res <= "00000001" when sel = "000" else

"00000010" when sel = "001" else

"00000100" when sel = "010" else

"00001000" when sel = "011" else

"00010000" when sel = "100" else

"00100000" when sel = "101" else

"01000000" when sel = "110" else

"10000000";

end imp;

1.4 Priority Encoders

A priority encoder returns a binary value that indicates the highest set bit among many.

This implementation says the output when none of the bits are set is a “don’t-care,”

meaning the synthesis system is free to generate any output it wants for this case.

library ieee;

use ieee.std_logic_1164.all;

entity priority is

port (

sel : in std_logic_vector(7 downto 0);

code : out std_logic_vector(2 downto 0));

end priority;

architecture imp of priority is

begin

code <= "000" when sel(0) = ’1’ else

"001" when sel(1) = ’1’ else

"010" when sel(2) = ’1’ else

"011" when sel(3) = ’1’ else

"100" when sel(4) = ’1’ else

"101" when sel(5) = ’1’ else

"110" when sel(6) = ’1’ else

"111" when sel(7) = ’1’ else

"---"; -- output is a "don’t care"

end imp;

3



1.5 Arithmetic Units

VHDL has extensive support for arithmetic. Here is an unsigned 8-bit adder with carry

in and out. By default VHDL’s + operator returns a result that is the same width as

its arguments, so it is necessary to zero-extend them to get the ninth (carry) bit out.

One way to do this is to convert the arguments to integers, add them, then convert them

back.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity adder is

port (

A, B : in std_logic_vector(7 downto 0);

CI : in std_logic;

SUM : out std_logic_vector(7 downto 0);

CO : out std_logic);

end adder;

architecture imp of adder is

signal tmp : std_logic_vector(8 downto 0);

begin

tmp <= conv_std_logic_vector((conv_integer(A) + conv_integer(B) +

conv_integer(CI)), 9);

SUM <= tmp(7 downto 0);

CO <= tmp(8);

end imp;

A very primitive ALU might perform either addition or subtraction:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity alu is

port (

A, B : in std_logic_vector(7 downto 0);

ADD : in std_logic;

RES : out std_logic_vector(7 downto 0));

end alu;

architecture imp of alu is

begin

RES <= A + B when ADD = ’1’ else

A - B;

end imp;

VHDL provides the usual arithmetic comparison operators. Note that signed and

unsigned versions behave differently.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity comparator is

port (

A, B : in std_logic_vector(7 downto 0);

GE : out std_logic);

end comparator;

architecture imp of comparator is

begin

GE <= ’1’ when A >= B else ’0’;

end imp;

Multiplication and division is possible, but is very costly in area and can be very

slow.

4



1.6 Generate statements

To get an unusual array, say that for a 4-bit ripple-carry adder, use a generate con-

struct, which expands its body into multiple gates when synthesized.

library ieee;

use ieee.std_logic_1164.all;

entity rippleadder is

port (a, b : in std_ulogic_vector(3 downto 0);

cin : in std_ulogic;

sum : out std_ulogic_vector(3 downto 0);

cout : out std_ulogic);

end rippleadder;

architecture imp of rippleadder is

signal c : std_ulogic_vector(4 downto 0);

begin

c(0) <= cin;

G1: for m in 0 to 3 generate

sum(m) <= a(m) xor b(m) xor c(m);

c(m+1) <= (a(m) and b(m)) or (b(m) and c(m)) or (a(m) and c(m));

end generate G1;

cout <= c(4);

end imp;

2 State-holding Elements

Although there are many ways to express something that behaves like a flip-flop in

VHDL, this is guaranteed to synthesize as you would like

library ieee;

use ieee.std_logic_1164.all;

entity flipflop is

port (Clk, D : in std_ulogic;

Q : out std_ulogic);

end flipflop;

architecture imp of flipflop is

begin

process (Clk) -- Process made sensitive to Clk

begin

if (Clk’event and Clk = ’1’) then -- Rising edge

Q <= D;

end if;

end process P1;

end imp;

Often, you want a synchronous reset on the flip-flop.

library ieee;

use ieee.std_logic_1164.all;

entity flipflop_reset is

port (Clk, Reset, D : in std_ulogic;

Q : out std_ulogic);

end flipflop_reset;

architecture imp of flipflop_reset is

begin

P1: process (Clk)

begin

if (Clk’event and Clk = ’1’) then

if (Reset = ’1’) then Q <= ’0’;

else Q <= D;

end if;

end if;

end process P1;

end imp;

5



2.1 Counters

Counters are often useful for delays, dividing clocks, and many other uses. Here is

code for a four-bit unsigned up counter with a synchronous reset:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter is

port(

Clk, Reset : in std_logic;

Q : out std_logic_vector(3 downto 0)

);

end counter;

architecture imp of counter is

signal count : std_logic_vector(3 downto 0);

begin

process (Clk)

begin

if (Clk’event and Clk = ’1’) then

if (Reset = ’1’) then

count <= "0000";

else

count <= count + 1;

end if;

end if;

end process;

Q <= count;

end imp;

2.2 Shift Registers

Here is code for an eight-bit shift register with serial in and out.

library ieee;

use ieee.std_logic_1164.all;

entity shifter is

port (

Clk : in std_logic;

SI : in std_logic;

SO : out std_logic);

end shifter;

architecture impl of shifter is

signal tmp : std_logic_vector(7 downto 0);

begin

process (Clk)

begin

if (Clk’event and Clk = ’1’) then

for i in 0 to 6 loop -- Static loop, expanded at compile time

tmp(i+1) <= tmp(i);

end loop;

tmp(0) <= SI;

end if;

end process;

SO <= tmp(7);

end impl;

6



2.3 RAMs

While large amounts of memory should be stored off-chip, small RAMs (say 32 × 4

bits) can be implemented directly. Here’s how:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity ram_32_4 is

port (

Clk : in std_logic;

WE : in std_logic; -- Write enable

EN : in std_logic; -- Read enable

addr : in std_logic_vector(4 downto 0);

di : in std_logic_vector(3 downto 0); -- Data in

do : out std_logic_vector(3 downto 0)); -- Data out

end ram_32_4;

architecture imp of ram_32_4 is

type ram_type is array(31 downto 0) of std_logic_vector(3 downto 0);

signal RAM : ram_type;

begin

process (Clk)

begin

if (Clk’event and Clk = ’1’) then

if (en = ’1’) then

if (we = ’1’) then

RAM(conv_integer(addr)) <= di;

do <= di;

else

do <= RAM(conv_integer(addr));

end if;

end if;

end if;

end process;

end imp;

Occasionally, an initialized ROM is the most natural way to compute a certain

function or store some data. Here is what a synchronous ROM looks like:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity rom_32_4 is

port (

Clk : in std_logic;

en : in std_logic; -- Read enable

addr : in std_logic_vector(4 downto 0);

data : out std_logic_vector(3 downto 0));

end rom_32_4;

architecture imp of rom_32_4 is

type rom_type is array (31 downto 0) of std_logic_vector(3 downto 0);

constant ROM : rom_type :=

("0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000",

"1001", "1010", "1011", "1100", "1101", "1110", "1111", "0001",

"0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001",

"1010", "1011", "1100", "1101", "1110", "1111", "0000", "0010");

begin

process (Clk)

begin

if (Clk’event and Clk = ’1’) then

if (en = ’1’) then

data <= ROM(conv_integer(addr));

end if;

end if;

end process;

end imp;

7



2.4 Finite-State Machines

Write a finite state machine as an entity containing two processes: a sequential pro-

cess with if statement sensitive to the edge of the clock and a combinational process

sensitive to all the inputs of the machine.

library ieee;

use ieee.std_logic_1164.all;

entity tlc is

port (

clk : in std_ulogic;

reset : in std_ulogic;

cars : in std_ulogic;

short : in std_ulogic;

long : in std_ulogic;

highway_yellow : out std_ulogic;

highway_red : out std_ulogic;

farm_yellow : out std_ulogic;

farm_red : out std_ulogic;

start_timer : out std_ulogic);

end tlc;

architecture imp of tlc is

signal current_state, next_state : std_ulogic_vector(1 downto 0);

constant HG : std_ulogic_vector := "00";

constant HY : std_ulogic_vector := "01";

constant FY : std_ulogic_vector := "10";

constant FG : std_ulogic_vector := "11";

begin

P1: process (clk)

begin

if (clk’event and clk = ’1’) then

current_state <= next_state;

end if;

end process P1;

P2: process (current_state, reset, cars, short, long)

begin

if (reset = ’1’) then

next_state <= HG;

start_timer <= ’1’;

else

case current_state is

when HG =>

highway_yellow <= ’0’;

highway_red <= ’0’;

farm_yellow <= ’0’;

farm_red <= ’1’;

if (cars = ’1’ and long = ’1’) then

next_state <= HY;

start_timer <= ’1’;

else

next_state <= HG;

start_timer <= ’0’;

end if;

when HY =>

highway_yellow <= ’1’;

highway_red <= ’0’;

farm_yellow <= ’0’;

farm_red <= ’1’;

if (short = ’1’) then

next_state <= FG;

start_timer <= ’1’;

else

next_state <= HY;

start_timer <= ’0’;

end if;

8



when FG =>

highway_yellow <= ’0’;

highway_red <= ’1’;

farm_yellow <= ’0’;

farm_red <= ’0’;

if (cars = ’0’ or long = ’1’) then

next_state <= FY;

start_timer <= ’1’;

else

next_state <= FG;

start_timer <= ’0’;

end if;

when FY =>

highway_yellow <= ’0’;

highway_red <= ’1’;

farm_yellow <= ’1’;

farm_red <= ’0’;

if (short = ’1’) then

next_state <= HG;

start_timer <= ’1’;

else

next_state <= FY;

start_timer <= ’0’;

end if;

when others =>

next_state <= "XX";

start_timer <= ’X’;

highway_yellow <= ’X’;

highway_red <= ’X’;

farm_yellow <= ’X’;

farm_red <= ’X’;

end case;

end if;

end process P2;

end imp;

Acknowledgements

Ken Shepard’s handouts for his EECS E4340 class formed a basis for these examples.

References

[1] IEEE Computer Society, 345 East 47th Street, New York, New York. IEEE Stan-

dard VHDL Language Reference Manual (1076–1993), 1994.

[2] IEEE Computer Society, 345 East 47th Street, New York, New York. IEEE Stan-

dard for VHDL Register Transfer Level (RTL) Synthesis (1076.6–1999), September

1999.

9


