
2048 Multithreaded Solver
Linh Bui



 Introduction



Intro

Objective: This Haskell program implements a solver for the 2048 game using the Expectimax algorithm. The solver simulates 
games and evaluates moves using heuristic functions.

Key Features:

● Intelligent move generation.
● Heuristic evaluation.
● Simulation of multiple games to analyze performance.



Board Representation

Data Structure:

● The game board is represented as a 4x4 grid of 
integers (Board = [[Int]]).

● Empty tiles are represented by 0.

Weight Matrix:

● A matrix (weights) prioritizes high-value tiles in 
favorable positions for heuristic evaluation.



Game Logic

Initialization:

● initialBoard: Creates an empty board and adds two random tiles (either 2 or 4).
● addRandomTile: Places a new random tile at an empty position with probabilities 90% for 2 and 10% for 4.

Move Generation:

● getMoves: Simulates all possible moves (Up, Down, Left, Right) and returns valid resulting boards.
● moveLeft/moveRight: Implements the logic for merging and shifting tiles in a row.

Game State Checks:

● isFull: Checks if the board is completely filled.
● hasReachedTarget: Checks if the 2048 tile is present.



Heuristic Functions

● Monotonicity (getMonotonicity):
○ Measures how aligned the tiles are in descending order along predefined paths.
○ Higher monotonicity scores indicate a more organized board.

● Smoothness (getSmoothness):
○ Penalizes large differences between neighboring tiles, encouraging smooth transitions.

● Weighted Sum (getWeightedSum):
○ Rewards high-value tiles in important positions based on the weights matrix.

● Max Corner (getMaxCorner):
○ Rewards the board if the largest tile is in the top-left corner, which is a strategic goal in 2048.

● Combined Heuristic (heuristic):

heuristic = monotonicity - smoothness + weightedSum + maxCorner



Expectimax Algorithm

Purpose: Simulates moves and evaluates their outcomes using the heuristic to find the best move.

1. Expectimax Logic:
○ Maximizing Node: Simulates player moves and chooses the move with the highest expected score.
○ Chance Node: Simulates the random addition of tiles (2 or 4) and calculates the weighted average of outcomes.

2. Parallelization:
○ The evaluations of possible moves (getMoves) and random outcomes (calculateChance) are parallelized using 

parMap rpar to utilize multiple CPU cores.



Simulation

simulate10Games: Runs 10 simulations, calculates success rates, and averages the number of moves.for 1,2,4,6,8,10 cores

Outputs:

● Total games reaching 2048.
● Average number of moves per game.



Results

● Was not able to get 2048 consistently, only about half the time 2048 was reached. 
● Reached 2048 31 out of 60 runs

Core Moves Total time Time per move

10 7917 239.7 0.03

8 8948 293.8 0.032

6 8674 310.7 0.035

4 9000 328.3 0.036

2 7922 330.6 0.041

1 8266 453.7 0.054



Thanks!

 


