
Quick Hull
George Morgulis and Henry Lin



The Convex Hull Problem

















The Convex Hull Problem 



Algorithm Part 1 



Algorithm Part 2 



Seems Simple to Parallelize

● Parallelize the recursive calls 
● Parallelize findMinPoint, findMaxPoint, and findFurthestPoint by breaking the 

sets up into smaller chunks, applying the functions on the chunks, and 
comparing the results to find the final values



Seems Simple to Parallelize

IT WAS NOT THAT SIMPLE.



Seems Simple to Parallelize

● Parallelization findMinPoint, findMaxPoint, and findFurthestPoint was 
useless for sets of points of size 4,000,000. 

● The parallel implementation that I described only slowed down the code 



Seems Simple to Parallelize

● Parallelizing the recursive calls is tricky!
● The difficulty is that on average, the convex hull of a set of points is many 

times smaller than the input set. For example, we found that the convex hull 
size for a set of 4,000,000 randomly generated points rarely exceeds a 200 
points. 

● This, in turn, means that the depth of the tree rarely exceeds the single digits. 
● Indeed, the QuickHull algorithm is already so efficient at eliminating point not 

in the hull, that even large input sizes are very quickly whittled down.



Note about Data Structures 

● Our initial implementation utilized the standardized Haskell Linked List, which 
created an immense overhead with regards to memory usage due to the 
storage of pointers at each node



Note about Data Structures 

● For this reason, we resolved to use a random access data structure. The choice was between 
the RBB vector and the Unboxed Vector. 

● The RBB vector was interesting because it supported O(log(n)) time insertion, which is very 
important for QuickHull as nearly every stage of the algorithm requires insertion and 
concatenation; this is compared to Unboxed vector in which all such operations take O(n) time. 

● However, the RBB Vector also had a significant memory footprint, making it rather infective for 
our algorithm. 

● For this reason, we decided to use Haskell Unboxed Vector as the data structure for QuickHull.



Parallel Implementation



Parallel Implementation



A note about timing 



Parallel Implementation Results



Parallel Implementation Results



Parallel Implementation Results



Parallel Implementation Results



End


