Quick Hull

George Morgulis and Henry Lin

The Convex Hull Problem

[

The Convex Hull Problem

Algorithm Part 1

Algorithm 1 Quick Hull Algorithm

1: function QUICKHULL(points)
2 al < findMinPoint(points)
3 a2 <+ findMaxPoint(points)
4
5

h1l < hullHelper(points, al, a2)
h2 < hullHelper(points, a2, al)
6: return al : a2 : (hl + +h2)
7: end function

Algorithm Part 2

Algorithm 2 Quick Hull Helper

1: function HULLHELPER(points,al, a2)
;. group < groupLcftOf(points, al, a2)
3: if group is empty then
4

53

return ||

else
m1 < findFurthestPoint(group, al, a2)
h1 < hullHelper(group, al, ml)
h2 < hullHclper(group, ml, a2)
return ml : (hl + +h2)

end if
11: end function

Seems Simple to Parallelize

e Parallelize the recursive calls
e Parallelize findMinPoint, findMaxPoint, and findFurthestPoint by breaking the

sets up into smaller chunks, applying the functions on the chunks, and
comparing the results to find the final values

Seems Simple to Parallelize

IT WAS NOT THAT SIMPLE.

Seems Simple to Parallelize

e Parallelization findMinPoint, findMaxPoint, and findFurthestPoint was
useless for sets of points of size 4,000,000.
e The parallel implementation that | described only slowed down the code

Seems Simple to Parallelize

e Parallelizing the recursive calls is tricky!

e The difficulty is that on average, the convex hull of a set of points is many
times smaller than the input set. For example, we found that the convex hull
size for a set of 4,000,000 randomly generated points rarely exceeds a 200
points.

e This, in turn, means that the depth of the tree rarely exceeds the single digits.

e Indeed, the QuickHull algorithm is already so efficient at eliminating point not
in the hull, that even large input sizes are very quickly whittled down.

Note about Data Structures

e Our initial implementation utilized the standardized Haskell Linked List, which
created an immense overhead with regards to memory usage due to the
storage of pointers at each node

Note about Data Structures

e For this reason, we resolved to use a random access data structure. The choice was between
the RBB vector and the Unboxed Vector.

e The RBB vector was interesting because it supported O(log(n)) time insertion, which is very
important for QuickHull as nearly every stage of the algorithm requires insertion and
concatenation; this is compared to Unboxed vector in which all such operations take O(n) time.

e However, the RBB Vector also had a significant memory footprint, making it rather infective for
our algorithm.

e For this reason, we decided to use Haskell Unboxed Vector as the data structure for QuickHull.

Parallel Implementation

Algorithm 3 Parallel Quick Hull Algorithm

1: function QUICKHULL(points)
2: d <+ threadCount

3: al < findMinPoint(points)
4

3]

a2 + findMaxPoint(points)
: h1 < hullHelper(points, al, a2,d)
6: h2 < hullHelper(points, a2, al,d)
7: return al : a2 : (hl + +h2), with parallel (hl, h2)
8: end function

Parallel Implementation

Algorithm 4 Parallel Quick Hull Helper
1: function HULLHELPER(points, al, a2, d)
2: group < groupLeftOf(points, al, a2)
3: ml < findFurthestPoint(group, al, a2)
4
5%

h1 < hullHelper(group,al,m1)
h2 < hullHelper(group, m1, a2)
6: if group is empty then
return ||
else if d > 0 and length(group) > 250000 and tengthlgroup) -,) 3 then

? length(points
9: return ml : (hl 4+ +h2) with parallel (h1, h2)
10: else
T return ml : (hl + +h2)
12: end if

13: end function

A note about timing

SPARKS: 1 (0 converted, 0 overflowed, O dud, © GC'd, 1 fizzled)

INIT time 0.000s (0.003s
MUT time 27.172s (49.761s
GC time 0.422s (1.099s
EXIT time 0.000s (0.000s
Total time 27.594s (50.86us

Alloc rate 3,410,975,710 bytes

elapsed)
elapsed)
elapsed)
elapsed)
elapsed)

per MUT second

Productivity 98.5% of total user, 97.8% of total elapsed

PS C:\Users\georg\HaskellProjects\final\convex-hull> |

Parallel Implementation Results

4,000

3,000 |

2,000

1,000

Performance Data for Edge Case

o— Time (ms)

Threads

Time (ms)

1

3703

2046

1625

1312

984

1437

1468

1622

4

Threads

Parallel Implementation Results

——v Y T

I e), . L | 1
i a1 N e U ek R e e D
om0 PN 8 TR, 110) 1 N, o 1,
S o ot o g s o e

Parallel Implementation Results

DN DN NN S L0111 S UL D L LL LU B

BN DR 0T MR e e reeel UL L L0(0 LULIALI A BN |
9

ENEE =N NINE NS FETTREET T e i rm e m LT Hrme Il Hine
I N D NN O Cr e e 1 T e [T 1 i rrm

6
NI O NN TR REE 00 e W o rrmnwr (AL |
L L B UL W L UL UE IR S 010 DI L LA LU SRR A | | i
DN DN NN B NI DWW L] L Himmnwe o I rimn | 1inm

8
EHE B 0 I N T W I I v

Parallel Implementation Results

4,000

3,000

—

2,000

1,000

Performance Data for (Avg) Case

—e— Time (ms)

Threads

Time (ms)

1

328

375

187

350

207

250

281

343

Threads

= gle

