Quick Hull

George Morgulis and Henry Lin

The Convex Hull Problem

The Convex Hull Problem

Algorithm Part 1

Algorithm 1 Quick Hull Algorithm

- 1: function QUICKHULL(points)
- $a1 \leftarrow \text{findMinPoint}(points)$ $2:$
- $a2 \leftarrow \text{findMaxPoint}(points)$ $3:$
- $h1 \leftarrow \text{hullHelper}(points, a1, a2)$ $4:$
- $h2 \leftarrow \text{hullHelper}(points, a2, a1)$ $5:$
- return $a1 : a2 : (h1 + +h2)$ $6:$
- 7: end function

Algorithm Part 2

Algorithm 2 Quick Hull Helper

- function HULLHELPER($points, a1, a2$) $1:$
- $group \leftarrow groupLeftOf(points, a1, a2)$ $2:$
- if *group* is empty then $3:$

 $return $\sqrt{ }$$

else 5:

 $4:$

- $m1 \leftarrow \text{findFurtherhostPoint}(group, a1, a2)$ $6:$
- $h1 \leftarrow \text{hullHelper}(group, a1, m1)$ 7:
- $h2 \leftarrow \text{hullHelper}(group, m1, a2)$ 8:
- return $m1:(h1 + +h2)$ $9:$
- end if $10:$
- 11: end function

- Parallelize the recursive calls
- Parallelize findMinPoint, findMaxPoint, and findFurthestPoint by breaking the sets up into smaller chunks, applying the functions on the chunks, and comparing the results to find the final values

IT WAS NOT THAT SIMPLE.

- Parallelization **findMinPoint, findMaxPoint**, and **findFurthestPoint** was useless for sets of points of size 4,000,000.
- The parallel implementation that I described only slowed down the code

- Parallelizing the recursive calls is tricky!
- The difficulty is that on average, the convex hull of a set of points is many times smaller than the input set. For example, we found that the convex hull size for a set of 4,000,000 randomly generated points rarely exceeds a 200 points.
- This, in turn, means that the depth of the tree rarely exceeds the single digits.
- Indeed, the QuickHull algorithm is already so efficient at eliminating point not in the hull, that even large input sizes are very quickly whittled down.

Note about Data Structures

● Our initial implementation utilized the standardized Haskell Linked List, which created an immense overhead with regards to memory usage due to the storage of pointers at each node

Note about Data Structures

● For this reason, we resolved to use a random access data structure. The choice was between the RBB vector and the Unboxed Vector.

- \bullet The RBB vector was interesting because it supported $O(log(n))$ time insertion, which is very important for QuickHull as nearly every stage of the algorithm requires insertion and concatenation; this is compared to Unboxed vector in which all such operations take O(n) time.
- However, the RBB Vector also had a significant memory footprint, making it rather infective for our algorithm.

● For this reason, we decided to use Haskell Unboxed Vector as the data structure for QuickHull.

Parallel Implementation

Algorithm 3 Parallel Quick Hull Algorithm

- 1: function QUICKHULL(points)
- $d \leftarrow threadCount$ $2:$
- $a1 \leftarrow \text{findMinPoint}(points)$ $3:$
- $a2 \leftarrow \text{findMaxPoint}(points)$ $4:$
- $h1 \leftarrow \text{hullHelper}(points, a1, a2, d)$ $5:$
- $h2 \leftarrow \text{hullHelper}(points, a2, a1, d)$ $6:$
- return $a1 : a2 : (h1 + +h2)$, with parallel $(h1, h2)$ $7:$

8: end function

Parallel Implementation

 $\overline{}$

Service \sim

ALC: YES

Contract Contract

A note about timing

```
SPARKS: 1 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 1 fizzled)
  INIT
          time
                  0.000s0.003s elapsed)
                         \sqrt{2}27.172s (49.761s elapsed)
 MUT
          time
                 0.422s ( 1.099s elapsed)
 GC
          time
 EXIT
                 0.000s ( 0.000s elapsed)
          time
                27.594s ( 50.864s elapsed)
  Total
          time
 Alloc rate
                3,410,975,710 bytes per MUT second
  Productivity 98.5% of total user, 97.8% of total elapsed
PS C:\Users\georg\HaskellProjects\final\convex-hull> |
```


End