
Parallel QuickHull Algorithm in Haskell

George Morgulis (gm3138), Henry Lin(hkl2127)

December 2024

1 Introduction

The convex hull problem is a classical problem in computational geometry. The
essence of the problem is to find the smallest convex polygon, the convex hull,
that fully encloses a given set of points. The convex hull problem applies to
point sets in any dimension, but for this project, we will focus on the planar
convex hull.

The subject of this report will be the QuickHull algorithm, the implementation
of which can be found in Section 2. The planar QuickHull algorithm was in-
vented by Jonathan Scott Greenfield in 1990, whereas the N-Dimensional Quick-
Hull algorithm was discovred Bradford Barber, David P. Dobkin, and Hannu
Huhdanpaa in 1996.

2 QuickHull Sequential

The QuickHull algorithm functions very much like QuickSort. A set of points is
taken as an input. A line is made between the x-coordinate extremes, dividing
the set of points in two and computing the upper and lower hulls. The extremes
are added to the hull.

Let us focus on the upper hull (though the algorithm is exactly the same for
both). We find the point with the longest distance from the line segment; this
point is added to the hull. We use this point, along with the two extremities to
create a triangle. All points within the triangle are eliminated. The remaining
set is further divided into two: those to the left and the right of the maximum
point. The same process is repeated until no points remain.

The result of the QuickHull algorithm is a set of points that make up the con-
vex hull. Notably, intermediate co-linear points are never included in the set,
as they are redundant information.

1

On average, QuickHull runs in O(nlog(n)) time, but in the worst case, it runs
in O(n2) time. Below is the pseudocode for the QuickHull Algorithm.

Algorithm 1 Quick Hull Algorithm

1: function QuickHull(points)
2: a1← findMinPoint(points)
3: a2← findMaxPoint(points)
4: h1← hullHelper(points, a1, a2)
5: h2← hullHelper(points, a2, a1)
6: return a1 : a2 : (h1 + +h2)
7: end function

Algorithm 2 Quick Hull Helper

1: function hullHelper(points, a1, a2)
2: group← groupLeftOf(points, a1, a2)
3: if group is empty then
4: return []
5: else
6: m1← findFurthestPoint(group, a1, a2)
7: h1← hullHelper(group, a1,m1)
8: h2← hullHelper(group,m1, a2)
9: return m1 : (h1 + +h2)

10: end if
11: end function

3 Parallelizing QuickHull

While the divide and conquer nature of the QuickHull algorithm seem very sim-
ple to parallelize, it actually requires a rather moderate and delicate approach.

3.1 Naive Approach

Our naive attempt at parallelizing QuickHull consisted of the following:

• Evaluate h1 and h2 in parallel at the recursive calls

• Parallelize findMinPoint, findMaxPoint, and findFurthestPoint by
breaking the sets up into smaller chunks, applying the functions on the
chunks, and comparing the results to find the final values

3.2 Complications with the Naive Approach

We will start by addressing the parallelization of the smaller functions. Each
of them (findMinPoint, findMaxPoint, and findFurthestPoint) is a linear

2

time function that passes through the input set exactly once. For this reason,
even large sets of points, for example 4, 000, 000 points, are computed incredibly
quickly, and the overhead that comes from managing parallelization trumps any
benefit gained from parallel evaluation. Granted, for increasingly large input
sizes, this type of parallelization might indeed become effective, but our com-
puter is not strong enough to handle such large amounts of data.

The second complication arises from parallelizing the recursive calls. The diffi-
culty is that on average, the convex hull of a set of points is many times smaller
than the input set. For example, I’ve found that the convex hull size for a set
of 4, 000, 000 randomly generated points rarely exceeds a 200 points. This, in
turn, means that the depth of the tree rarely exceeds the single digits. Indeed,
the QuickHull algorithm is already so efficient at eliminating point not in the
hull, that even large input sizes are very quickly whittled down.

However, there are certain edge cases that greatly benefit from the recursive
parallel treatment. Recall that the worst case scenario of QuickHull is O(n2), in
which a significant percentage of the points lie on the boundary of an ellipse-like
shape. In this case, parallelization is incredibly effective. The difficulty, then, is
implementing a parallel algorithm that improves performance around the edge
cases without worsening the performance on the average cases.

3.3 Note About Data Structures

Our initial implementation utilized the standardized Haskell Linked List, which
created an immense overhead with regards to memory usage due to the storage
of pointers at each node.

For this reason, we resolved to use a random access data structure. The choice
was between the RBB vector and the Unboxed Vector. The RBB vector was
interesting because it supported O(log(n)) time insertion, which is very impor-
tant for QuickHull as nearly every stage of the algorithm requires insertion and
concatenation; this is compared to Unboxed vector in which all such operations
take O(n) time. However, the RBB Vector also had a significant memory foot-
print, making it rather infective for our algorithm. For this reason, we decided
to use Haskell’s Unboxed Vector as the data structure for QuickHull.

3.4 Parallel Implementation

The challenge of this project is to parallelize QuickHull such that the edge cases
see a significant speedup without slowing down the average cases. For this rea-
son, three checks must be passed before the program forks into two parallel
threads.

Firstly, if the current group size is less than 250,000 points, there will not be
parallelism. Secondly, parallelization will only take place down to certain depth

3

in the recursion tree Finally, if more than 30% of points are remaining at the
end of a round (compared to the amount of points at the beginning of that
particular round), then there will be a spark for parallel evaluation; otherwise,
the evaluation will proceed sequentially.

Below is the pseudocode for the Parallel QuickHull Algorithm; the full Haskell
implementation can be found at the end of the report.

Algorithm 3 Parallel Quick Hull Algorithm

1: function QuickHull(points)
2: d← threadCount
3: a1← findMinPoint(points)
4: a2← findMaxPoint(points)
5: h1← hullHelper(points, a1, a2, d)
6: h2← hullHelper(points, a2, a1, d)
7: return a1 : a2 : (h1 + +h2), with parallel (h1, h2)
8: end function

Algorithm 4 Parallel Quick Hull Helper

1: function hullHelper(points, a1, a2, d)
2: group← groupLeftOf(points, a1, a2)
3: m1← findFurthestPoint(group, a1, a2)
4: h1← hullHelper(group, a1,m1)
5: h2← hullHelper(group,m1, a2)
6: if group is empty then
7: return []

8: else if d > 0 and length(group) > 250000 and length(group)
length(points) > 0.3 then

9: return m1 : (h1 + +h2) with parallel (h1, h2)
10: else
11: return m1 : (h1 + +h2)
12: end if
13: end function

4

4 Results

Time was computed by taking the difference between end time and start time
of the method run, which was obtained through the getCPUTime method from
the System.CPUTime package, as well as deepseq to force function evaluation.
The reason that standard Haskell timing cannot be used is because the process
of reading a file dominates the program runtime. Samples of four million points
were used to test the parallel algorithm.

4.1 Raw Data

0 2 4 6 8
0

500

1,000

1,500

2,000

Threads

T
im

e
(m

s)

Raw Preformance

No Jitter
Jitter=2
Jitter=5

RandPoints

Threads 0 Jitter (ms) 2 Jitter (ms) 5 Jitter (ms) Rand Points (ms)
1 1304 1562 828 140
2 687 734 671 125
3 720 853 578 93
4 437 671 406 187
5 390 656 562 125
6 531 500 656 187
7 690 651 484 140
8 828 902 692 171

5

4.2 Speedup Data

0 2 4 6 8
0

1

2

3

4

5

Threads

T
im

e
(m

s)
Speed Up

No Jitter
Jitter=2
Jitter=5

RandPoints

Threads 0 Jitter 2 Jitter 5 Jitter Rand Points
1 1.00 1.00 1.00 1.00
2 1.89 1.97 1.23 1.12
3 1.81 1.83 1.43 1.50
4 2.98 2.33 2.04 0.79
5 3.72 2.38 1.47 1.12
6 2.46 3.12 1.26 0.75
7 1.89 2.39 1.71 1
8 1.57 1.73 1.19 0.81

4.3 Note About Data Collection

This data is slightly different from what was shown in our presentation. We
added the jitter feature which creates a donut-like shape that the points oc-
cupy. For example if j = x, the points can by anywhere on the circumference
of the circle or the circumference plus-minus x. A jitter of size 0 produced a
hull of 4000000 points, a jitter of size 2 produced a hull 297393 point, and a
jitter of size 5 produces a hull of size 99469. The fully random hull was of size 49

Furthermore, we ran the code in a slightly different way: we used cygwin instead
of powershell, and we closed all other applications and turned off WIFI. This
way, the code ran much faster, though the speed up itself remains unchanged.

In the next section, we show the thread scope graph for −N4 and −N8, which
were separate runs from the data shown above. Again, minor fluctuations can
be observed, but the bigger picture remains the same.

6

5 Threadscope Graphs

5.1 No Jitter

5.2 Jitter=2

5.3 Jitter=5

5.4 Fully Random Points

7

5.5 Amdahl’s Law

When applying Amdahl’s law, using the data from the sequential case, we esti-
mate P = 1/31

limitN→∞S = 31/30 = 1.033

We can therefore see that the algorithm is bottle-necked by the reading time.
However, convex hull algorithms are typically used within the context of other
tasks, so the impact of the one-time cost of reading would be reduced. Experi-
mentally, we saw large variations in the reading time so we have no included a
discussion about overall speedup.

6 Analysis and Discussion

6.1 Analysis of Results

After completing our project, we have come to see that QuickHull is not as
parallelizable as it initially seems. However, our results show a reasonable par-
allelization of QuickHull along the edge cases, without seeing a decrease in the
average case (randomly generated points). Parallelization seems to be most ef-
fective at around 4 or 5 threads.

As Amdahl’s law shows, the bottleneck of reading the points is quite severe,
overshadowing the gains made from the algorithm itself. However, we see this
issue to be somewhat of an inevitability; no matter what, the points must be
read.

While the overall gains from parallelization are rather slim when taken in iso-
lation, if this algorithm is used in a larger pipeline, where the data is read once
and many operations are preformed, then this parallelization would be justified.

We observed no major issues with garbage collecting, and our implementation
of the algorithm itself is very fast.

6.2 Discussion and Future Work

Our first consideration about further improving our algorithm is attempting to
resolve the bottleneck with regards to file reading. This is indeed the greatest
issue hampering speed up, and resolving it would make our algorithm much
more efficient.

Another area that requires attention is depth control. Our current depth control
makes sure that parallelization only occurs along the recursion tree, however,
the recursion tree expands exponentially with a factor of 2. While our current
implementation manages to keep the workload pretty even, it also means that
the numbers of threads needs to grow exponentially (with the tree) to see con-
sistent improvement. This means our parallelization might not utilize all the

8

threads between powers of 2; notably garbage collection will still be parallelized,
leading to some continual speedups, but the main part of the algorithm will not
parallelize.

Finally, we must consider the accumulation of the hull. Insertion and concate-
nation in Unboxed Vectors is an O(n) operation, which is not optimal. While
this issue does not impact the overall asymptotic complexity of QuickHull, as
there are other operations at each step of the recursion that take O(n) time, it
is an undeniable downside of this parallel implementation.

7 Bibliography

Wikipedia contributors. “Convex Hull Algorithms.” Wikipedia, October 9,
2024. https://en.wikipedia.org/wiki/Convex hull algorithms.

“Quickhull.” Wikipedia, April 25, 2023.
https://en.wikipedia.org/wiki/Quickhull.

Chan, T. “Optimal Output-sensitive Convex Hull Algorithms in Two and Three
Dimensions.” Discrete and Computational Geometry 16 (1996): 361–68.

https://www.cs.umd.edu/class/spring2020/cmsc754/Lects/lect03-hulls-bounds.pdf.

Coman, Andrei. “Project Proposal: Parallel Convex Hull.” Project proposal.
COMS 4995 Parallel Functional Programming, November 27, 2022.

https://www.cs.columbia.edu/ sedwards/classes/2022/4995-fall/proposals/ConvexHull.pdf.

9

8 Haskell Code for QuickHull

Parallel QuickHull Algorithm

1 import Data.Ord (comparing)

2 import qualified Data.Vector.Unboxed as V

3 import Control.Parallel (par , pseq)

4

5 type V2 = (Double , Double)

6 type VV2 = V.Vector V2

7

8 {-Returns the convex hull -}

9 quickh :: VV2 -> Int -> VV2

10 quickh points d = V.cons a1 (V.cons a2 hpar)

11 where

12 a1 = minv points

13 a2 = maxv points

14 h1 = ph points a1 a2 (depthUpdate d)

15 h2 = ph points a2 a1 (depthUpdate d)

16 hpar = h1 ‘par ‘ (h2 ‘pseq ‘ V.concat [h1 , h2])

17

18 {-Helper function for quick hull -}

19 ph :: VV2 -> V2 -> V2 -> Int -> VV2

20 ph points a1 a2 d

21 | V.length group == 0 = V.empty

22 | d > 0 && V.length group > 250000 &&

percentRemaining > 0.3 = V.cons m1 hpar

23 | otherwise = V.cons m1 h

24 where

25 percentRemaining = fromIntegral (V.length group) /

fromIntegral (V.length points) :: Double

26 group = grouper a1 a2 points

27 m1 = maxAreaPoint a1 a2 group

28 h1 = ph group a1 m1 (depthUpdate d)

29 h2 = ph group m1 a2 (depthUpdate d)

30 h = V.concat [h1, h2]

31 hpar = h1 ‘par ‘ (h2 ‘pseq ‘ V.concat [h1 , h2])

32

33 {-Function to find the point with the maximum x-

coordinate -}

34 maxv :: VV2 -> V2

35 maxv points = V.maximumBy (comparing fst) points

36

37 {-Function to find the point with the maximum x-

coordinate -}

38 minv :: VV2 -> V2

10

39 minv points = V.minimumBy (comparing fst) points

40

41 {-Furthest point from a line segment defined by points

a1, a2 -}

42 maxAreaPoint :: V2 -> V2 -> VV2 -> V2

43 maxAreaPoint anchor1 anchor2 points = V.maximumBy (

comparing (triArea anchor1 anchor2)) points

44

45 {-Groups by 2D determinants (cross product). Always

return the points left of segment (a1 ,a2)-}

46 grouper :: V2 -> V2 -> VV2 -> VV2

47 grouper anchor1 anchor2 points = V.filter (\z ->

determinant anchor1 anchor2 z > 0) points

48

49 {-Calculates 2d determinant , cross product -}

50 determinant :: V2 -> V2 -> V2 -> Double

51 determinant (z1, z2) (w1, w2) (u1, u2) = (w1 - z1) * (

u2 - z2) - (w2 - z2) * (u1 - z1)

52

53 {-Area for triangle -}

54 triArea :: V2 -> V2 -> V2 -> Double

55 triArea (z1 , z2) (w1 , w2) (u1 , u2) = abs ((z1 * (w2 -

u2)) + (w1 * (u2 - z2)) + (u1 * (z2 - w2)))

56

57 {-Updates the depth of recursion -}

58 depthUpdate :: Int -> Int

59 depthUpdate d

60 | d <= 1 = 0

61 | otherwise = div d 2

11

Main Method

1 module Main (main) where

2

3 import qualified Data.Vector.Unboxed as VU

4 import QuickHullV (VV2 , quickh)

5 import System.CPUTime

6 import Control.DeepSeq

7 import qualified Data.ByteString as B

8 import qualified Data.ByteString.Char8 as BC

9 import GHC.Conc (getNumCapabilities)

10 import System.Environment (getArgs)

11

12 {-Basic main method. Times code -}

13 main :: IO ()

14 main = do

15 args <- getArgs

16 case args of

17 [fileName] -> do

18 threads <- getNumCapabilities

19 putStrLn $ "Running with " ++ show threads

20 print "Reading:"

21 print fileName

22 points <- readPointsFromFile fileName

23 print (VU.length points)

24 points ‘deepseq ‘ putStrLn "Points have

been fully read and evaluated"

25 print "Starting Test"

26 startT <- getCPUTime

27 let parPoints = quickh points threads

28 endT <- parPoints ‘deepseq ‘ getCPUTime

29 print (div (endT - startT) 1000000000)

30 print (endT - startT)

31 print (VU.length parPoints)

32 print "done"

33 _ -> putStrLn "Usage: program <input_file >"

34

35

36

37 {-Reads and parses the file into a points (vv2) -}

38 readPointsFromFile :: FilePath -> IO VV2

39 readPointsFromFile filePath = do

40 content <- B.readFile(filePath)

41 let linesOfFile = BC.lines content

42 pointsList = map parseLine linesOfFile

43 return $ listToVV2 pointsList

12

44

45 {-Parses a ByteString line into a tuple of doubles -}

46 parseLine :: B.ByteString -> (Double , Double)

47 parseLine line =

48 let [x, y] = map (read . BC.unpack) (BC.split ’,’

line)

49 in (x, y)

50

51 {-Converts a list of tuples to a vector of tupples (

vv2)-}

52 listToVV2 :: [(Double , Double)] -> VV2

53 listToVV2 = VU.fromList

Tester Class

1 import qualified Data.Vector.Unboxed as VU

2 import System.Random (randomRIO)

3 import QuickHullV (V2 , VV2 , quickh)

4 import Data.List (sort , nub)

5 import Andrew (convexHull)

6 import Qhseq (qh)

7

8 {-

9 George Morgulis(gm3138)

10 Henry Lin(hkl2127)

11

12 This class simply checks for the correctness of the

QuickHull Algorithm by comparing it to our correct

13 sequential implementation , and the correct

implementation "Andrew Monontone Chain", which we

found on wikepedia

14 -}

15

16 {-Generate a random point (x, y) where x and y are

between -x and x-}

17 vRandomPoint :: Double -> IO V2

18 vRandomPoint x = do

19 xCoord <- randomRIO (-x, x)

20 yCoord <- randomRIO (-x, x)

21 return (xCoord , yCoord)

22

23 {-Generate a list of random points (n points) -}

24 vGeneratePoints :: Int -> IO VV2

25 vGeneratePoints n = VU.replicateM n (vRandomPoint

100000000)

26

13

27 {-Convert VV2 to a list of tuples -}

28 vv2ToListOfTuples :: VV2 -> [(Double , Double)]

29 vv2ToListOfTuples = VU.toList

30

31 {-This test checks simply for correctness of my

algorithm by running it on a random set of points

32 and checking with a correct implementation

33 -}

34 main :: IO ()

35 main = do

36 print "Starting Point Generation"

37 points <- vGeneratePoints 1000

38

39 let convertedPoint = vv2ToListOfTuples points

40 let seqPoints = sort (nub (qh convertedPoint))

41 let parPoints = vv2ToListOfTuples (quickh points

8)

42 let andrewPoints = sort (nub (convexHull

convertedPoint))

43

44 print (length parPoints)

45 print (length seqPoints)

46 print (length andrewPoints)

47

48 if (sort(nub parPoints) == sort(nub(seqPoints)))

49 then print "Test Passed!"

50 else print "Test Failed!"

51

52 if (sort(nub parPoints) == sort(nub(andrewPoints))

)

53 then print "Andrew Passed"

54 else print "Andew Failed"

55

56 print "Complete!"

Original Sequential QuickHull Algorithm (deprecated)

1 module Qhseq

2 (C2, qh

3) where

4

5 {-

6 George Morgulis(gm3138)

7 Henry Lin(hkl2127)

8 COMS 4995 Parallel Functional Programming

9

14

10 This is our very first sequential implmentation of

Quick Hull.

11 (!!!) This code is not meant to be run as the project

greatly changed since we first we wrote this

12 implementation. This simply exists to show how far the

project has progressed.

13 -}

14

15 import Data.List (maximumBy , minimumBy , nub)

16 import Data.Ord (comparing)

17

18 {- Type used to represent points -}

19 type C2 = (Double , Double)

20

21 qh :: [C2] -> [C2]

22 qh points = (helper1 points [])

23 where

24 helper1 [] hull = hull -- starter

25 helper1 (x : xs) hull =

26 let m1 = maxAreaPoint a1 a2 group1

27 m2 = maxAreaPoint a1 a2 group2

28 group1 = fst (grouper a1 a2 (x:xs))

29 group2 = snd (grouper a1 a2 (x:xs))

30 a1 = mind (x:xs) 0

31 a2 = maxd (x:xs) 0

32 in a1 : a2 : helper2 a1 a2 m1 (keepOuter

a1 a2 m1 group1) (m1 : hull) ++ helper2

a2 a1 m2 (keepOuter a1 a2 m2 group2) (

m2 : hull)

33

34 helper2 _ _ _ [] hull = hull -- calculates

lower and upper hull

35 helper2 o1 o2 pm (y:ys) hull =

36 let m1 = maxAreaPoint o1 pm group1

37 m2 = maxAreaPoint o2 pm group2

38 group1 = fst (grouper o1 pm (y:ys)) --

always picking the left

39 group2 = fst (grouper pm o2 (y:ys)) --

alwyas picking the left

40 in helper2 o1 pm m1 (keepOuter o1 pm m1

group1) (m1 : hull) ++ helper2 pm o2 m2

(keepOuter o2 pm m2 group2) (m2 : hull

) -- important: note the order of

points

41

42 {-Computes the maximum of points by specified

15

dimension -}

43 maxd :: [C2] -> Int -> C2

44 maxd points 0 = maximumBy (comparing fst) points

45 maxd points 1 = maximumBy (comparing snd) points

46 maxd _ _ = error "Invalid arguements."

47

48 {-Computes the minimum of points by specified

dimension -}

49 mind :: [C2] -> Int -> C2

50 mind points 0 = minimumBy (comparing fst) points

51 mind points 1 = minimumBy (comparing snd) points

52 mind _ _ = error "Invalid arguements."

53

54 {-Calculates the maximum area given a line segment -}

55 maxAreaPoint :: C2 -> C2 -> [C2] -> C2

56 maxAreaPoint _ anchor2 [] = anchor2

57 maxAreaPoint anchor1 anchor2 points = maximumBy (

comparing (triArea anchor1 anchor2)) points

58

59 {-Determines whether a point lies to the right or left

of a vector. The first memeber of the return

60 tuple are the points to the left of the vector , the

second are those to the right -}

61 grouper :: C2 -> C2 -> [C2] -> ([C2],[C2])

62 grouper anchor1 anchor2 points = helper anchor1

anchor2 points [] []

63 where

64 helper _ _ [] group1 group2 = (group1 , group2)

65 helper (x1, y1) (x2 , y2) (z:zs) group1 group2

66 | closeEnough ((x2 - x1) * (snd z - y1) -

(y2 - y1) * (fst z - x1)) 0 = helper (

x1, y1) (x2, y2) zs group1 group2 --

collinear points added to neither group

67 | (x2 - x1) * (snd z - y1) - (y2 - y1) * (

fst z - x1) > 0 = helper (x1 , y1) (x2 ,

y2) zs (z : group1) group2 -- left of

68 | otherwise = helper (x1, y1) (x2, y2) zs

group1 (z : group2) -- right of

69

70

71 {-Keeps all points outside the triangle. Works for

everything other than points on triangle itself -}

72 keepOuter :: C2 -> C2 -> C2 -> [C2] -> [C2]

73 keepOuter t1 t2 t3 points = helper t1 t2 t3 points []

74 where

75 helper _ _ _ [] keep = keep

16

76 helper p1 p2 p3 (x : xs) keep

77 | pointInTriangle p1 p2 p3 x = helper p1

p2 p3 xs keep

78 | otherwise = helper p1 p2 p3 xs (x : keep

)

79

80 {-Finds the area of a triangle -}

81 triArea :: C2 -> C2 -> C2 -> Double

82 triArea (x1 , y1) (x2 , y2) (x3 , y3) = abs ((x1 * (y2 -

y3)) + (x2 * (y3 - y1)) + (x3 * (y1 - y2)))

83

84 {-Checks if point lies inside triangle -}

85 pointInTriangle :: C2 -> C2 -> C2 -> C2 -> Bool

86 pointInTriangle t1 t2 t3 p =

87 closeEnough (triArea t1 t2 p + triArea t1 t3 p +

triArea t2 t3 p) (abs (triArea t1 t2 t3))

88

89 {-Epsilon value to mitigate floating point error -}

90 epsilon :: Double

91 epsilon = 1e-9

92

93 {-Method to mitigate floating point error -}

94 closeEnough :: Double -> Double -> Bool

95 closeEnough a b = abs (a - b) < epsilon

9 Python Helper Code

Python Code to generate data around a circle with optional gitter

1 import numpy as np

2 import random

3

4 # George Morgulis(gm3138)

5 # Henry Lin(hkl2127)

6 # Functions to create edge cases that look like donuts

(use jitter =0 for perfect circle)

7 # Based on this stack overflow post:

8 # https :// stackoverflow.com/questions /8487893/ generate

-all -the -points -on -the -circumference -of-a-circle

9 def generate_circle_points(radius , num_points , jitter)

:

10 angles = np.linspace(0, 2 * np.pi , num_points ,

endpoint=False)

11 x_rad = []

12 y_rad = []

17

13 for i in range(num_points):

14 x_rad.append(radius + random.randrange(-jitter

,jitter))

15 y_rad.append(radius + random.randrange(-jitter

, jitter))

16 x_coords = np.multiply(np.array(x_rad), np.cos(

angles))

17 y_coords = np.multiply(np.array(y_rad) ,np.sin(

angles))

18 return x_coords , y_coords

19

20 def write_points_to_file(filename , x_coords , y_coords)

:

21 with open(filename , ’w’) as file:

22 for x, y in zip(x_coords , y_coords):

23 file.write(f"{x},{y}\n")

24

25 radius = 50000000

26 num_points = 4000000

27 jitter = 5

28 x_coords , y_coords = generate_circle_points(radius ,

num_points ,jitter)

29

30 filename = "d4m5j.txt"

31 write_points_to_file(filename , x_coords , y_coords)

32

33 print(f"Points have been written to {filename}")

Python Code to Generate Random Points

1 import random

2

3 def generate_random_points(num_points , x_range ,

y_range):

4 points = []

5 for _ in range(num_points):

6 x = random.uniform (* x_range)

7 y = random.uniform (* y_range)

8 points.append ((x, y))

9 return points

10

11 def write_points_to_file(points , filename):

12 with open(filename , ’w’) as file:

13 for point in points:

14 file.write(f’{point [0]}, {point [1]}\n’)

15

18

16 num_points = 4000000

17 x_range = (-50000000 , 50000000)

18 y_range = (-50000000 , 50000000)

19

20 random_points = generate_random_points(num_points ,

x_range , y_range)

21 write_points_to_file(random_points , ’r4m.txt ’)

10 Bash Helper Code

Runs our code in a batch.

1 #!/ bin/bash

2

3 echo "here"

4

5 run_command () {

6 local n=$1
7 stack run -- +RTS -N$n -s -ls -RTS r4m.txt

8 }

9

10 for n in {1..8}; do

11 echo "Iteration $iteration , running with -N$n"
12 run_command $n
13 done

19

	Introduction
	QuickHull Sequential
	Parallelizing QuickHull
	Naive Approach
	Complications with the Naive Approach
	Note About Data Structures
	Parallel Implementation

	Results
	Raw Data
	Speedup Data
	Note About Data Collection

	Threadscope Graphs
	No Jitter
	Jitter=2
	Jitter=5
	Fully Random Points
	Amdahl's Law

	Analysis and Discussion
	Analysis of Results
	Discussion and Future Work

	Bibliography
	Haskell Code for QuickHull
	Python Helper Code
	Bash Helper Code

