K-Queens

Phillip Yan and Viktor Basharkevich
December 2024

1 Introduction

Our project, K-queens, is a play on the classic N-Queens problem, which itself
is derived from the well known Eight Queens Puzzle, where one must place
eight queens on a chessboard such that no two queens share the same row,
column, or diagonal (i.e. no two queens ”attack” one another”. The goal is to
return how many such configurations exist for a given n-dimensional board.

a b ¢c d e f g h

N WA O N
N WA O N

Figure 1: An example of a solution for an 8x8 board.

Initially published in 1848, the problem is known for its potential computa-
tional intensity, thus opening it up to potential optimizations via parallelizations
which is why we chose this problem.



2 Sequential Solution

For our initial sequential solution, we took a brute force method by generat-
ing all possible configurations of placing N queens. This involved a recursive
function which branched into two paths for each square, one where a queen is
placed on that square and a second where a queen is not placed. This however,
means that the branching factor is dependent on the number of squares in the
grid which itself is the square of the dimension of a square board. Thus, the
overall runtime is a rather abysmal 2("*®) where n is the input dimension of the
board.

Despite the existence of more optimized algorithms, we deliberately chose
this brute force approach because it offered a clear path to explore potential
speedup opportunities via parallelization. The simplicity of the method made
it easier to identify areas where parallel execution could reduce runtime signif-
icantly. Below is our initial code for the sequential implementation, alongside
the main file which handles I0O.

Listing 1: app/main.hs

module Main (main) where

import Lib

import System.Environment (getArgs)
import Text.Read (readMaybe)
import System.Exit (exitFailure)

— getUsageError :: String
— getUsageFError = ”"Usage: stack run <number>"

— Number must be between 1 and 100 to be walid
validateNum :: Int — IO ()
validateNum num

| num < 1 || num > 100 = do
putStrLn ”Error:-The-integer -must-be-between-1-
and-100.”
exitFailure
| otherwise = return ()

—— We need to ensure [potentailNum] is walid, and then
call someFunc with it as the argument

main :: I0 ()

main = do
args <— getArgs



case args of
[potentialNum] —> case readMaybe potentialNum
Maybe Int of
Just . — do
let num = read potentialNum :: Int
validateNum num
putStrLn (someFunc num)
Nothing — do
putStrLn ” Error: - Argument - must - be-an-
integer -between-1-and-100.”
exitFailure
- — do
putStrLn ”Error:-Please-provide-exactly -one-
argument - (integer -between-1-to-100).”
exitFailure

Listing 2: src/Lib.hs
module Lib
( someFunc
) where

import qualified Data.Map as Map

— Given a number n, makes a nzn matriz (2D) with all
elements set to 0, using a map where the key is (row,
col) and the wvalue is 0

generateMatrix :: Int —> Map.Map (Int, Int) Int

generateMatrix n = Map. fromList [((i, j), 0) | i <= [0..n
—1], j <= [0..n—1]]

getCoordsFromIndex :: Int — Int — (Int, Int)
getCoordsFromIndex index n = (index ‘div‘ n, index ‘mod‘

n)

— Given a matriz board, place a queen at the given index
, return the new matriz

placeQueen :: Int —> Map.Map (Int, Int) Int —> Int —> Map
.Map (Int, Int) Int

placeQueen index board n = Map.insert (getCoordsFromIndex
index n) 1 board

— Validate all rows: Every row must sum to 1

validateRows :: Map.Map (Int, Int) Int — Int —> Bool

validateRows board n = all (\r —> sum [board Map.! (r, c¢)
| ¢ <— [0..n—1]] = 1) [0..n—1]



— Validate all columns: Every column must sum to 1
validateCols :: Map.Map (Int, Int) Int —> Int —> Bool
validateCols board n = all (\c¢ — sum [board Map.! (r, c¢)

| r <— [0..n—1]] = 1) [0..n—1]

— Validate all diagonals: FEvery diagonal must sum to 1
or less

— walidateDiagonals :: Map.Map (Int, Int) Int —> Int —>
Bool

— walidateDiagonals board n = all (\d —> sum [board Map
Ao(r, o) | (r, ¢)<— [(r, d—1r) | r<— [0..n—1], d —
r>= 0], r<n, d—r<mn]=1) [0..2¥n—-2]

validateDiagonals :: Map.Map (Int, Int) Int —> Int —>
Bool
validateDiagonals board n =
let mainDiagonal = sum [Map.findWithDefault 0 (i, i)
board | 1 < [1..n]]
antiDiagonal = sum [Map. findWithDefault 0 (i, n —
i+ 1) board | 1 <— [1..n]]
in mainDiagonal = 1 && antiDiagonal =— 1

— Validate that there are n queens on the board in total

validateNumQueens :: Map.Map (Int, Int) Int —> Int —>
Bool

validateNumQueens board n = sum (Map.elems board) = n

—— Given a matriz board represented as a map (Int, Int)
Int, wvalidate it (return 1 if walid, 0 otherwise)
—— The sum of every row must be 1
— The sum of every column must be 1
—— The sum of every diagonal must be 1 (and every anti—
diagonal must be 1)
validateBoard :: Map.Map (Int, Int) Int —> Int —> Int
validateBoard board n
| not (validateRows board n) = 0
| not (validateCols board n) = 0
| not (validateDiagonals board n) =
|
|

o

not (validateNumQueens board n) = 0
otherwise = 1

— Given a current index, a number of the remaining
queens, and the matriz board as a hashmap,

— return the number of ways you can place the remaining
queens



solveNQueens :: Int —> Int —> Map.Map (Int, Int) Int —>

Int
solveNQueens n index board
| index =— (Map.size board) = validateBoard board n
| otherwise = solveNQueens n (index + 1) board +
solveNQueens n (index + 1) (placeQueen index board

)

— someFunc must take in an Int and return a String (that
really just says how many

— different ways you can solve the n—queens problem for
a given n, the input)

someFunc :: Int —> String

someFunc n = ”Answer: -7 ++ show (solveNQueens n 0 (
generateMatrix n))

At n=5, this algorithm takes about 6.5 seconds to return the correct answer
of 10. Let’s see if we can do better.

3 Naive Parallelization

Given the recursive binary branching nature of our sequential algorithm, an im-
mediate potential optimization is simply naively utilizing par for parallelization
for each branch. The only change we need to do is in the main solveNQueens
function in Lib.hs:

solveNQueens :: Int —> Int —> Map.Map (Int, Int) Int —>
Int
solveNQueens n index board
| index = (Map. size board) = validateBoard board n
| otherwise = solutionl ‘par‘ solution2 ‘par‘ (
solutionl + solution2)
where
solutionl = solveNQueens n (index + 1) board
solution2 = solveNQueens n (index + 1) (

placeQueen index board n)

However, although using the same n=>5 (and with 6 cores) we see an imme-
diate speedup to 2 seconds, we see some concerning issues:

e 75 million sparks created

e Only 9,000 converted

e 48 million overflowing

e Tens of millions GC’d or fizzled

We suspect two main issues are occurring here



1. Spark Pool Overflow: Each recursive call creates two new sparks with-
out forcing evaluation, quickly exceeding the spark pool capacity, since
creating sparks is a quick evaluation which probably outpaces evaluation.

2. Unevaluated Thunks: The build-up of unevaluated computations also
potentially leads to increased memory pressure from stored thunks and
redundant computation attempts (shown by high fizzled count) resulting
in wasted parallelization effort (high GC’d count) as many sparks never
getting evaluated before becoming garbage

An initial quick fix would be to utilize pseq to force evaluation, pacing the
creation of sparks better with that of the actual evaluation as to hopefully not
overflow the spark pool:

solveNQueens n index board

| index = (Map.size board) = validateBoard board n

| otherwise = solutionl ‘par‘ (solution2 ‘pseq‘ (
solutionl + solution2))

where
solutionl = solveNQueens n (index + 1) board
solution2 = solveNQueens n (index + 1) (

placeQueen index board n)

Indeed, this fixes the overflow problem (0 overflow) and drastically reduces the
fizzle to tens of thousands. However, there remains a problem where the GC’d
count is still in the tens of millions implying a lot of unnecessary branches of
computation.

4 Optimization By Limiting Par Depth

As title suggests, a method we saw in class is to deal with potentially unnecessary
branches of computation, namely to limit the depth of the parallelization. Note
that there are n? layers of potential parallelization (one for each element in grid)

For this specific problem, we believe that there are three potential approaches
when considering a board dimension n:

1. Using a fixed depth of par (i.e. only spark 5 times regardless if input n),
then switching to sequential for the rest.

2. Using a fixed depth of sequential, (i.e. sparking until you reach the last 5
elements, which you will deal with sequentially)

3. Using a dynamic depth of par, perhaps as a function of n.

4.1 Fixed Par Depth

Let’s first modify the code to do par but then switch to sequential. To do so,
we modify the main input file to take in a second parameter which is par depth



which we additionally add a verifier which ensures depth < n2.
We also modify the Lib.hs file with both a parallel and sequential solver, and

code in the parallel to ensure a transition to the sequential once the specified
depth is reached.

— Parallel version: handles parallelism up to a fixed

depth

solveNQueens :: Int —> Int —> Map.Map (Int, Int) Int —>
Int — Int

solveNQueens 0 n board index = solveNQueensSequential n
index board

solveNQueens _ n board index | index =— (n * n) =

validateBoard board n
solveNQueens depth n board index

solutionl ‘par‘ solution2 ‘pseq‘ (solutionl +

solution2)
where

solutionl = solveNQueens (depth — 1) n board (index +
1)

solution2 = solveNQueens (depth — 1) n (placeQueen
index board n) (index + 1)

— Sequential Version
solveNQueensSequential :: Int —> Int —> Map.Map (Int, Int
) Int — Int
solveNQueensSequential n index board
| index = (Map. size board) = validateBoard board n
| otherwise = solveNQueensSequential n (index + 1)
board + solveNQueensSequential n (index + 1) (
placeQueen index board n)

— Updated someFunc to take depth as input

someFunc :: Int — Int — String

someFunc n depth = ”Answer: ” 4++ show (solveNQueens depth
n (generateMatrix n) 0)

Using n=5 (and 6 cores), we tested different depths and obtained the fol-
lowing data. Additionally, we also tested n=>5 from 1 to 6 cores as well to see if
a plateau occurs.

This results in a speedup graph of:



Sparks Time

Board N Size  Depth (1 to n*2) Sparks Total Converted GCed Fizzled Time Total Elapsed Speedup from sequential
5 1 1 1 0 o] 6.5 3.47 1.873198847
5 2 3 3 0 o] 6.244 1.93 3.367875648
5 3 6 0 1 6.4 1.83 3.551912568
5 4 15 12 0 3 6.51 1.49 4.362416107
5 5 31 14 0 17 6.51 1 .39| 4.676258993.
5 6 63 22 0 41 6.727 1.735 3.746397695
5 7 127 30 0 97 6.645 1.535 4.234527687
5 8 255 38 0 217 7.176 2.167 2.999538533
5 9 512 42 1 469 6.684 1.517 4.284772577
5 10 1023 71 0 952 6.812 1.782 3.647586981
5 11 2050 47 3 2000 7.074 1.963 3.311258278
5 12 4098 63 3 4032 6.742 1.598 4.067584481
5 13 8203 14 539 7550 6.846 1.582 4.108723135
5 14 16407 93 4428 11886 6.884 1.75 3.714285714
5 15 32816 129 16570 16117 6.862 1.58 4.113924051
5 16 65633 170 45200 20263 6.782 1.498 4.339118825
5 17 131263 210 106423 24630 6.887 1.544 4.20984456
5 18 262541 243 233031 29267 6.842 1.473 4.412763069
5 19 525131 240 488991 35900 6.88 2.075 3.13253012
5 20 1054080 688 999281 54111 7.178 1.898 3.424657534
5 21 2103267 599 2045935 56733 7.091 1.669 3.894547633
5 22 4208578 "7 4117332 90529 7.291 1.665 3.903903904
5 23 8408301 446 8283775 124080 7.427 1.783 3.645541223
5 24 16844393 562 16622464 221367 8.232 2.103 3.090822634

Figure 2: Data after running varying par depths at n=5.

Cores vs Speedup

61 —® Actual Speedup
—&— Best Potential Speedup

-~
L

Speedup from Sequential
w

Cores

Figure 3: Cores used vs speedup at n=>5 depth=5



Speedup from Sequential

Speedup vs Depth

ATATTNINR

VAN

3.0 /
2.5

2.0 l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Depth

Figure 4: Speedup. Note the rough plateau after depth of 5.



-
[} o [Users|viktorl i ji Q
File View Move Help

Blkesl & aq

Key |Traoss | Bookmarks | Timeline

N running 0s 058 P =
m— GC I S TR R L

GC waiting Aoty

| create thread
seq GC req
par GC req

migrate thread
thread wakeup HEC 0
shutdown

perftracepoint

I user message
| perfoounter L TR

all create spark Heo2

[‘JL dud spark

I _all overflowed spark;

lal nnsparc [ "

I _a |l fizzled spark

| ol coessparc ] e O D ONANIO T | |

= I O R TR
e —
Time | Heap | GC Spark stats | Spark sizes | Process info | Raw events |
HEC | Total | Converted | Overfiowed | Dud | GCed |Fizzled
Total 31 31 [ 0 [ [
HECO 5 o o o 0 [
HEC1 13 7 o o 0o [
HEC2 6 13 [ 0 [ [
HEC4 0 o [ o [ [
HEC5 0 0 0 0 0 0
0 |

[/Usershiktorbash/Documents/Github_Projects/KQueens/KQueens-exe.eventlog (92228 events, 1.708s)

Figure 5: ThreadScope of n=5 with depth=>5

4.2 Fixed Sequential Depth

Intuitively, it might not make sense to have a set depth for all n, since n can
vary. Perhaps it might be better instead to fix the point at which the algorithm
becomes sequential.

This is perhaps best seen where the speedup from parallelization no longer
matters; see the table below for data on n = 3 and n = 4:

10



Sparks Time

Board N Size  Depth (1to n*2) Sparks Total  Converted GCed Fizzled Time Total Elapsed Speedup from sequential
3
3 1 1 1 0 0 0.005 0.011 1.363636364
3 2 4 1 0 3 0.005 0.011 1.363636364
3 3 12 8 0 0.005 001 15
3 4 15 0 0 15 0.005 0013 1153846154
3 5 73 20 0 53 0.005 0012 1.25
3 6 185 33 0 152 0.005 0013 1153846154
3 7 138 69 0 69 0.007 0012 1.25
3 8 633 6 0 627 0.004 0.011 1.363636364
4
4 1 1 1 0 0 0018 0.014 2.428571429
4 2 3 3 0 0 0017 0013 2615384615
4 3 7 0 0 0018 0012 2.833333333
4 4 16 10 1 5 0018 0013 2615384615
4 5 35 17 8 10 0.021 0013 2615384615
4 6 72 19 20 33 0.022 0012 2.833333333
4 7 145 22 65 58 0.02 0.011 3.090909091
4 8 333 60 118 155 0.023 0012 2.833333333
4 9 598 58 331 209 0.02 0013 2615384615
4 10 170 63 540 567 0.021 0012 2.833333333
4 1 2651 59 1202 1390 0.023 0013 2615384615
4 12 4603 273 2861 1559 0.021 0.011 3.090909091
4 13 10158 138 5232 4788 0.024 0.011 3.090909091
4 14 17602 57 10157 7388 0.02 0013 2615384615
4 15 36997 69 16242 20686 0.023 0013 2615384615

Figure 6: Speedup. Note the limited growth in efficiency when looking at n=3

This may imply that given n=3, the 9 layers of recursive depth may not
be worth parallelizing, as the overhead in creating the sparks might make it
comparable in runtime to simply running the 9 layers sequentially.

Thus, although a crude analysis which would require further more extensive
fine-tuned testing to find the actual fixed sequential depth, we think that the
data shows a proof of concept in this potentially slightly more optimal approach
over fixed par depth.

4.3 Dynamic Par Depth

A final alternative is to dynamically generate par depth based on n value. In-
tuitively, although a fixed sequential depth has the potential benefits we listed
above, by definition fixing sequential means we cannot control the actual par
depth. For example, consider n=100; given fixed sequential when there are
5 layers, there’s definitely going to be spark overflow issues and inefficiencies
which we described which derive from that in the naive parallelization of part
3 because of the other 9,995 layers.

Thus, to ensure balance, a more dynamic approach may be needed, which

may express the optimal depth perhaps as a linear or exponential relation to-
wards n, again more thorough testing would be needed for n;5.

11



5 Other methods/considerations

5.1 Partition

We briefly considered utilizing a static partitioning for parallelization in the
form of breaking a grid into smaller ones (i.e. considering a 8x8 grid as four 4x4
grids). Recursively applying this partition could potentially drastically increase
speedup. However, the key problem occurs when trying to recombine the grids;
the current problem format asks for the number of methods of placement rather
than the different boards. However, if this problem were instead asking for
board layout, this might be a viable approach

5.2 parBuffer

Given that the par depth strategy in part 4 revolved largely around controlling
the number of sparks over a period of time, another potential method which
allows for more granular control is parBuffer. Instead of crudely limiting sparks
via limiting parallelization up to a certain depth, this allows for a sliding win-
dow. However, a key challenge is the recursive nature of the problem which
makes it difficult to use parBuffer as it is applied on lists.

One way we could get this to work though would be to utilize par depth and
parBuffer in conjunction; at the end of each sequential thread in the par depth
method, instead of checking each board one by one, we could potentially add
boards of each thread into a list, which we then apply parBuffer to, resulting in
parallelization within each of the individual threads. (i.e. given n=>5 and par-
allelization depth of say, 5, that still means 22°~5 = 220 board configurations
per thread. These can be aggregated and checked for verification via parBuffer).

Note for our parallelization efforts, we would end up using the parMap func-

tion (since parBuffer/parList is not necessarily as relevant for an algorithm
consisting of exploring a tree of function calls generated by brute force DFS).

12



