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1 Introduction

Our project, K-queens, is a play on the classic N-Queens problem, which itself
is derived from the well known Eight Queens Puzzle, where one must place
eight queens on a chessboard such that no two queens share the same row,
column, or diagonal (i.e. no two queens ”attack” one another”. The goal is to
return how many such configurations exist for a given n-dimensional board.

Figure 1: An example of a solution for an 8x8 board.

Initially published in 1848, the problem is known for its potential computa-
tional intensity, thus opening it up to potential optimizations via parallelizations
which is why we chose this problem.
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2 Sequential Solution

For our initial sequential solution, we took a brute force method by generat-
ing all possible configurations of placing N queens. This involved a recursive
function which branched into two paths for each square, one where a queen is
placed on that square and a second where a queen is not placed. This however,
means that the branching factor is dependent on the number of squares in the
grid which itself is the square of the dimension of a square board. Thus, the
overall runtime is a rather abysmal 2(n∗n) where n is the input dimension of the
board.

Despite the existence of more optimized algorithms, we deliberately chose
this brute force approach because it offered a clear path to explore potential
speedup opportunities via parallelization. The simplicity of the method made
it easier to identify areas where parallel execution could reduce runtime signif-
icantly. Below is our initial code for the sequential implementation, alongside
the main file which handles IO.

Listing 1: app/main.hs

module Main ( main ) where

import Lib
import System . Environment (getArgs )
import Text .Read ( readMaybe )
import System . Exit ( exitFailure )

−− getUsageError : : S t r ing
−− getUsageError = ”Usage : s t a c k run <number>”

−− Number must be between 1 and 100 to be v a l i d
validateNum : : Int −> IO ( )
validateNum num

| num < 1 | | num > 100 = do
putStrLn ” Error :  The  i n t e g e r  must  be  between  1  

and  100 . ”
exitFailure

| otherwise = return ( )

−− We need to ensure [ potentai lNum ] i s va l i d , and then
c a l l someFunc wi th i t as the argument

main : : IO ( )
main = do

args <− getArgs
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case args of
[ potentialNum ] −> case readMaybe potentialNum : :

Maybe Int of
Just −> do

let num = read potentialNum : : Int
validateNum num
putStrLn ( someFunc num)

Nothing −> do
putStrLn ” Error :  Argument  must  be  an  

i n t e g e r  between  1  and  100 . ”
exitFailure

−> do
putStrLn ” Error :  P lease  prov ide  exac t l y  one  

argument  ( i n t e g e r  between  1  to  100) . ”
exitFailure

Listing 2: src/Lib.hs

module Lib
( someFunc
) where

import quali f ied Data .Map as Map

−− Given a number n , makes a nxn matrix (2D) wi th a l l
e lements s e t to 0 , us ing a map where the key i s ( row ,
co l ) and the va lue i s 0

generateMatr ix : : Int −> Map.Map ( Int , Int ) Int
generateMatr ix n = Map. f romList [ ( ( i , j ) , 0) | i <− [ 0 . . n

−1] , j <− [ 0 . . n−1] ]

getCoordsFromIndex : : Int −> Int −> ( Int , Int )
getCoordsFromIndex index n = ( index ‘div ‘ n , index ‘mod‘

n )

−− Given a matrix board , p l ace a queen at the g iven index
, re turn the new matrix

placeQueen : : Int −> Map.Map ( Int , Int ) Int −> Int −> Map
.Map ( Int , Int ) Int

placeQueen index board n = Map. insert ( getCoordsFromIndex
index n) 1 board

−− Val ida t e a l l rows : Every row must sum to 1
val idateRows : : Map.Map ( Int , Int ) Int −> Int −> Bool
val idateRows board n = a l l (\ r −> sum [ board Map . ! ( r , c )

| c <− [ 0 . . n−1] ] == 1) [ 0 . . n−1]
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−− Val ida t e a l l columns : Every column must sum to 1
v a l i d a t e C o l s : : Map.Map ( Int , Int ) Int −> Int −> Bool
v a l i d a t e C o l s board n = a l l (\ c −> sum [ board Map . ! ( r , c )

| r <− [ 0 . . n−1] ] == 1) [ 0 . . n−1]

−− Val ida t e a l l d i a gona l s : Every d iagona l must sum to 1
or l e s s

−− va l i d a t eD ia gona l s : : Map.Map ( Int , In t ) In t −> In t −>
Bool

−− va l i d a t eD ia gona l s board n = a l l (\d −> sum [ board Map
. ! ( r , c ) | ( r , c ) <− [ ( r , d − r ) | r <− [ 0 . . n−1] , d −
r >= 0] , r < n , d − r < n ] == 1) [ 0 . . 2 ∗ n−2]

va l i da t eD iagona l s : : Map.Map ( Int , Int ) Int −> Int −>
Bool

va l i da t eD iagona l s board n =
l et mainDiagonal = sum [Map. f indWithDefault 0 ( i , i )

board | i <− [ 1 . . n ] ]
ant iDiagona l = sum [Map. f indWithDefault 0 ( i , n −

i + 1) board | i <− [ 1 . . n ] ]
in mainDiagonal == 1 && ant iDiagona l == 1

−− Val ida t e t ha t t h e r e are n queens on the board in t o t a l
validateNumQueens : : Map.Map ( Int , Int ) Int −> Int −>

Bool
validateNumQueens board n = sum (Map. elems board ) == n

−− Given a matrix board repre sen t ed as a map ( Int , In t )
Int , v a l i d a t e i t ( re turn 1 i f va l i d , 0 o the rw i s e )

−− The sum of every row must be 1
−− The sum of every column must be 1
−− The sum of every d iagona l must be 1 ( and every ant i−

d iagona l must be 1)
va l idateBoard : : Map.Map ( Int , Int ) Int −> Int −> Int
va l idateBoard board n

| not ( val idateRows board n) = 0
| not ( v a l i d a t e C o l s board n) = 0
| not ( va l i da t eD iagona l s board n) = 0
| not ( validateNumQueens board n) = 0
| otherwise = 1

−− Given a current index , a number o f the remaining
queens , and the matrix board as a hashmap ,

−− re turn the number o f ways you can p lace the remaining
queens
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solveNQueens : : Int −> Int −> Map.Map ( Int , Int ) Int −>
Int

solveNQueens n index board
| index == (Map. s i z e board ) = val idateBoard board n
| otherwise = solveNQueens n ( index + 1) board +

solveNQueens n ( index + 1) ( placeQueen index board
n)

−− someFunc must take in an In t and re turn a S t r ing ( t ha t
r e a l l y j u s t says how many

−− d i f f e r e n t ways you can s o l v e the n−queens problem fo r
a g iven n , the input )

someFunc : : Int −> String
someFunc n = ”Answer :  ” ++ show ( solveNQueens n 0 (

generateMatr ix n) )

At n=5, this algorithm takes about 6.5 seconds to return the correct answer
of 10. Let’s see if we can do better.

3 Naive Parallelization

Given the recursive binary branching nature of our sequential algorithm, an im-
mediate potential optimization is simply naively utilizing par for parallelization
for each branch. The only change we need to do is in the main solveNQueens
function in Lib.hs:

solveNQueens : : Int −> Int −> Map.Map ( Int , Int ) Int −>
Int

solveNQueens n index board
| index == (Map. s i z e board ) = val idateBoard board n
| otherwi s e = s o l u t i o n 1 ‘ par ‘ s o l u t i o n 2 ‘ par ‘ (

s o l u t i o n 1 + s o l u t i o n 2 )
where

s o l u t i o n 1 = solveNQueens n ( index + 1) board
s o l u t i o n 2 = solveNQueens n ( index + 1) (

placeQueen index board n)

However, although using the same n=5 (and with 6 cores) we see an imme-
diate speedup to 2 seconds, we see some concerning issues:

• 75 million sparks created

• Only 9,000 converted

• 48 million overflowing

• Tens of millions GC’d or fizzled

We suspect two main issues are occurring here
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1. Spark Pool Overflow: Each recursive call creates two new sparks with-
out forcing evaluation, quickly exceeding the spark pool capacity, since
creating sparks is a quick evaluation which probably outpaces evaluation.

2. Unevaluated Thunks: The build-up of unevaluated computations also
potentially leads to increased memory pressure from stored thunks and
redundant computation attempts (shown by high fizzled count) resulting
in wasted parallelization effort (high GC’d count) as many sparks never
getting evaluated before becoming garbage

An initial quick fix would be to utilize pseq to force evaluation, pacing the
creation of sparks better with that of the actual evaluation as to hopefully not
overflow the spark pool:

solveNQueens n index board
| index == (Map. s i z e board ) = val idateBoard board n
| otherwi s e = s o l u t i o n 1 ‘ par ‘ ( s o l u t i o n 2 ‘ pseq ‘ (

s o l u t i o n 1 + s o l u t i o n 2 ) )
where

s o l u t i o n 1 = solveNQueens n ( index + 1) board
s o l u t i o n 2 = solveNQueens n ( index + 1) (

placeQueen index board n)

Indeed, this fixes the overflow problem (0 overflow) and drastically reduces the
fizzle to tens of thousands. However, there remains a problem where the GC’d
count is still in the tens of millions implying a lot of unnecessary branches of
computation.

4 Optimization By Limiting Par Depth

As title suggests, a method we saw in class is to deal with potentially unnecessary
branches of computation, namely to limit the depth of the parallelization. Note
that there are n2 layers of potential parallelization (one for each element in grid)

For this specific problem, we believe that there are three potential approaches
when considering a board dimension n:

1. Using a fixed depth of par (i.e. only spark 5 times regardless if input n),
then switching to sequential for the rest.

2. Using a fixed depth of sequential, (i.e. sparking until you reach the last 5
elements, which you will deal with sequentially)

3. Using a dynamic depth of par, perhaps as a function of n.

4.1 Fixed Par Depth

Let’s first modify the code to do par but then switch to sequential. To do so,
we modify the main input file to take in a second parameter which is par depth
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which we additionally add a verifier which ensures depth < n2.

We also modify the Lib.hs file with both a parallel and sequential solver, and
code in the parallel to ensure a transition to the sequential once the specified
depth is reached.

−− P a r a l l e l v e r s i o n : handles p a r a l l e l i s m up to a f i x e d
depth

solveNQueens : : Int −> Int −> Map.Map ( Int , Int ) Int −>
Int −> Int

solveNQueens 0 n board index = solveNQueensSequent ia l n
index board

solveNQueens n board index | index == (n ∗ n) =
val idateBoard board n

solveNQueens depth n board index =
s o l u t i o n 1 ‘ par ‘ s o l u t i o n 2 ‘ pseq ‘ ( s o l u t i o n 1 +

s o l u t i o n 2 )
where

s o l u t i o n 1 = solveNQueens ( depth − 1) n board ( index +
1)

s o l u t i o n 2 = solveNQueens ( depth − 1) n ( placeQueen
index board n) ( index + 1)

−− Sequent i a l Vers ion
so lveNQueensSequent ia l : : Int −> Int −> Map.Map ( Int , Int

) Int −> Int
so lveNQueensSequent ia l n index board

| index == (Map. s i z e board ) = val idateBoard board n
| otherwi s e = solveNQueensSequent ia l n ( index + 1)

board + solveNQueensSequent ia l n ( index + 1) (
placeQueen index board n)

−− Updated someFunc to take depth as input
someFunc : : Int −> Int −> St r ing
someFunc n depth = ”Answer : ” ++ show ( solveNQueens depth

n ( generateMatr ix n) 0)

Using n=5 (and 6 cores), we tested different depths and obtained the fol-
lowing data. Additionally, we also tested n=5 from 1 to 6 cores as well to see if
a plateau occurs.

This results in a speedup graph of:
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Figure 2: Data after running varying par depths at n=5.

Figure 3: Cores used vs speedup at n=5 depth=5
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Figure 4: Speedup. Note the rough plateau after depth of 5.
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Figure 5: ThreadScope of n=5 with depth=5

4.2 Fixed Sequential Depth

Intuitively, it might not make sense to have a set depth for all n, since n can
vary. Perhaps it might be better instead to fix the point at which the algorithm
becomes sequential.

This is perhaps best seen where the speedup from parallelization no longer
matters; see the table below for data on n = 3 and n = 4:
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Figure 6: Speedup. Note the limited growth in efficiency when looking at n=3

This may imply that given n=3, the 9 layers of recursive depth may not
be worth parallelizing, as the overhead in creating the sparks might make it
comparable in runtime to simply running the 9 layers sequentially.

Thus, although a crude analysis which would require further more extensive
fine-tuned testing to find the actual fixed sequential depth, we think that the
data shows a proof of concept in this potentially slightly more optimal approach
over fixed par depth.

4.3 Dynamic Par Depth

A final alternative is to dynamically generate par depth based on n value. In-
tuitively, although a fixed sequential depth has the potential benefits we listed
above, by definition fixing sequential means we cannot control the actual par
depth. For example, consider n=100; given fixed sequential when there are
5 layers, there’s definitely going to be spark overflow issues and inefficiencies
which we described which derive from that in the naive parallelization of part
3 because of the other 9,995 layers.

Thus, to ensure balance, a more dynamic approach may be needed, which
may express the optimal depth perhaps as a linear or exponential relation to-
wards n, again more thorough testing would be needed for n¿5.
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5 Other methods/considerations

5.1 Partition

We briefly considered utilizing a static partitioning for parallelization in the
form of breaking a grid into smaller ones (i.e. considering a 8x8 grid as four 4x4
grids). Recursively applying this partition could potentially drastically increase
speedup. However, the key problem occurs when trying to recombine the grids;
the current problem format asks for the number of methods of placement rather
than the different boards. However, if this problem were instead asking for
board layout, this might be a viable approach

5.2 parBuffer

Given that the par depth strategy in part 4 revolved largely around controlling
the number of sparks over a period of time, another potential method which
allows for more granular control is parBuffer. Instead of crudely limiting sparks
via limiting parallelization up to a certain depth, this allows for a sliding win-
dow. However, a key challenge is the recursive nature of the problem which
makes it difficult to use parBuffer as it is applied on lists.

One way we could get this to work though would be to utilize par depth and
parBuffer in conjunction; at the end of each sequential thread in the par depth
method, instead of checking each board one by one, we could potentially add
boards of each thread into a list, which we then apply parBuffer to, resulting in
parallelization within each of the individual threads. (i.e. given n=5 and par-
allelization depth of say, 5, that still means 225−5 = 220 board configurations
per thread. These can be aggregated and checked for verification via parBuffer).

Note for our parallelization efforts, we would end up using the parMap func-
tion (since parBuffer/parList is not necessarily as relevant for an algorithm
consisting of exploring a tree of function calls generated by brute force DFS).
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