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Introduction

Fractals like the Mandelbrot and Julia sets require intensive computation to generate images.

The goal is to leverage parallel programming in Haskell to reduce execution time using multi-core processors.

Objectives:

● Implement sequential and parallel versions of the fractal generator.
● Explore strategies: parBuffer, Repa, and more.
● Analyze performance with speedup graphs and ThreadScope.



The Mandelbrot and Julia Sets



Fractal Generation - Core Computation

We are generating an image where each pixel maps to a point 
in the complex plane.

Escape Time: Number of iterations before ∣z∣>2

Computation challenge:

● Millions of pixels.
● Many of iterations per pixel.

function mandelbrotIter(c, maxIter):

    z = 0

    iterations = 0

    while |z| <= 2 and iterations < maxIter:

        z = z^2 + c

        iterations += 1

    return iterations



Escape Time Computation

We found that a recursive approach greatly improved performance and parallelism.
Also avoiding computationally expensive sqrt by checking if square of the number > 4.



Computing with Parallel Strategies



Computing Grid using REPA







Sequential Implementation (Baseline)

Description:

● Computes each pixel’s escape time sequentially.
● No parallelism or load balancing.

Results:

● Mandelbrot (1 core): 1.959s
● Julia (1 core): 0.810s



Parallel Strategy - parBuffer
Description:

● Divides the pixel grid into chunks using 
parBuffer

● Dynamically allocates tasks to threads, 
allowing chunks to be processed in 
parallel as threads become available.

● This dynamic scheduling helps mitigate 
load imbalance more effectively 
compared to fixed chunking strategies.

Execution Times:

● Mandelbrot:
○ 1 core: 3.156s
○ 4 cores: 1.18s
○ 8 cores: 1.435s
○ Best speedup: 2.67x



Parallel Strategy - Repa
Description:

● Defines the pixel grid using fromFunction, 
where each element is computed based on its 
coordinates.

● Uses computeUnboxedP to evaluate the entire 
grid in parallel.

● The data-parallel approach processes the grid 
uniformly but struggles with workload variability 
and sequential bottlenecks, leading to no 
significant improvement over the sequential 
implementation.

Execution Times:

● Mandelbrot:
○ 1 core: 3.083s
○ 4 cores: 2.767s
○ 8 cores: 2.424s
○ Best speedup: 1.46x



Issues with Parallelization of Julia

● Unpredictable workloads: Iteration counts vary across the grid.
● Sequential bottlenecks: Faster base runtime amplifies unparallelized steps.
● High overhead: Parallel overhead outweighs runtime gains.



Threadscope

parBuffer Repa
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