Parallelized Fractal Image
Generation in Haskell

Mandelbrot and Julia Sets with Parallel Strategies

Max Zhang, Isabel Tu

Introduction

Fractals like the Mandelbrot and Julia sets require intensive computation to generate images.

The goal is to leverage parallel programming in Haskell to reduce execution time using multi-core processors.

Objectives:

e Implement sequential and parallel versions of the fractal generator.

° Explore strategies: parBuffer, Repa, and more.
e Analyze performance with speedup graphs and ThreadScope.

The Mandelbrot and Julia Sets

2.1 Mandelbrot Set

The Mandelbrot set is defined as the set of complex numbers ¢ for which the sequence defined
by:

Z",,,l —_ Z;z! -+ C, 20 = 0 (1)
remains bounded. A point is considered part of the Mandelbrot set if |z,| < 2 for all iterations

n. The number of iterations before |z,| > 2 determines the color of the corresponding pixel
in the fractal image.

2.2 Julia Set

The Julia set is generated similarly to the Mandelbrot set but with a fixed complex parameter
¢ instead of varying it for each pixel. For a given complex parameter ¢, the Julia set includes
all points z; where the sequence:

Znl = 2’21 +c (2)

remains bounded.

Fractal Generation - Core Computation

We are generating an image where each pixel maps to a point

. function mandelbrotIter(c, maxIter):
in the complex plane.
z =0
Escape Time: Number of iterations before |z|>2
iterations = ©
Computation challenge:
.) while |z| <= 2 and iterations < maxIter:
° Millions of pixels.

e Many of iterations per pixel. 7 = 7A2 + ¢

iterations += 1

return iterations

Escape Time Computation

mandelbrotIterations Double Double Int
mandelbrotIterations cr ci = go 0 0 0

go 'i !zr !zi
i maxIter zrxzr zikxzi 4.0 i
otherwise
zr' zZrkzr zikzi cr
zi' 2kzZrxzi (oh }
go (i+1) zr' zi'

julialterations (Double, Double) Double Double Int
juliaIterations (cr, ci) zr zi = go 0 zr zi

go 'i !zr !zi
i maxIter zrxzr zikzi 4.0 i
otherwise
zr' zrkzr zikzi cr
zi® 2xzrxzi + ci
go (i+1) zr' zi'

We found that a recursive approach greatly improved performance and parallelism.
Also avoiding computationally expensive sqrt by checking if square of the number > 4.

Computing with Parallel Strategies

computeParallel String (Double Double Int) Int Int (Double, Double)
Word8)1]
computeParallel strategy iterationFn width height bounds
rows [[iterationToColor (iterationFn re im)
X [0 width - 1]
r (re, im) pixelToCoord x y width height bounds |

y [0 height - 1] 1
strategy

"seq rows

"parListChunk" rows parListChunk 8 rdeepseq
"parBuffer" rows parBuffer 32 rdeepseq
error "Invalid parallel strategy"

[[(Word8, Word8,

Computing Grid using REPA

computeRepa (Double Double Int) Int Int (Double, Double)
Word8, Word8))
computeRepa iterationFn width height bounds

R.computeUnboxedP ¢ R.fromFunction (Z :. height :. width) (74
(re, im) pixelToCoord x y width height bounds
iterationToColor (iterationFn re im)

I0 (R.Array R.U R.DIM2 (Word8,

4
2 o
L

Sequential Implementation (Baseline)

Description:

e Computes each pixel's escape time sequentially.
e No parallelism or load balancing.

Results:

e Mandelbrot (1 core): 1.959s
e Julia (1 core): 0.810s

Parallel Strategy - parBuffer

Descrlptlon: parBuffer Mandelbrot
e Divides the pixel grid into chunks using I
parBuffer 8

e Dynamically allocates tasks to threads,
allowing chunks to be processed in
parallel as threads become available. 6

e This dynamic scheduling helps mitigate
load imbalance more effectively
compared to fixed chunking strategies.

Observed Speedup

Execution Times:

e Mandelbrot:
o 1 core: 3.156s
o 4 cores: 1.18s 0 !
o 8cores: 1.435s readGoutt
o Best speedup: 2.67x

Parallel Strategy - Repa

Description:

e Defines the pixel grid using fromFunction,
where each element is computed based on its
coordinates.

e Uses computeUnboxedP to evaluate the entire
grid in parallel.

e The data-parallel approach processes the grid
uniformly but struggles with workload variability
and sequential bottlenecks, leading to no
significant improvement over the sequential
implementation.

Execution Times:

e Mandelbrot:
o 1 core: 3.083s
o 4 cores: 2.767s
o 8cores: 2.424s
o Best speedup: 1.46x

Repa Mandelbrot

== Observed Speedup == |deal Speedup

Observed Speedup

4 6

Thread Count

Issues with Parallelization of Julia

e Unpredictable workloads: Iteration counts vary across the grid.
e Sequential bottlenecks: Faster base runtime amplifies unparallelized steps.
e High overhead: Parallel overhead outweighs runtime gains.

parBuffer Julia Repa Julia

== Observed Speedup ++ Ideal Speedup == Observed Speedup == Ideal Speedup

-

Observed Speedup
.
Observed Speedup

Thread Count Thread Count

Threadscope

File_View Move Help I
BlleRsl&aq
o Traces] [Tmeine
W running 0s 50ms. 0.1s 0155 0.2s 0258 03s 0355 0.4s 0.45s. 05s 0.55s. 0.6s 0.65s. =]
—GC 1 1 1 | 1 I 1 | 1 | | 1
— |
| createtread
peme
| pwccma A
| mioratetveas
k o 001 O O OO OGN G O O GBI
| usermessage
| pertcounter = 111 Y Y A NN [N [)
| pertwacepoint - ’
| ok cososparc || seca
0 e 110 o
| ol overtowed spar
e 110 N O T 0§

| ol fiazied spark
| ol GCed spark

- L LR

- L —
- S L
- L AL

L

Tme | Heap | GC | Spark stas | Spark sizes | Process nfo | Raw events

Totaltime: 695.359ms.
Mutator time: 554.085ms.
GCtime: 141274ms
Productty: 79.7% of mutator vs fotal

I E—
Facleventos (BaTO ever

05058] %

parBuffer

Fle View Move Help

BllkRslQaa
Kty{ | : Timeline
— running 0s 01s 02s 03s 04ds 055 06s 075 08s 09s =
— GC !
GCwaitng .
| cestotvesa
s096Cr0q
| ewecrq
| i threas
| O B AR
| usermessage
| potcoumer [| IR RN R NN (RN
| portvacepont
| ol crostospark || veos
T s A N A
| el overtowed spar
| ol run spark - | RN RN AR |
|l fezied sparc
| ol coeaspark || weee | I
- |- |
- 1 |
- Im |
il |
| lec| 1 | 1 1
[Heap o | | | | |
Totltme: 10328
Muttor me: 914 236ms
GCtme: 11805ams
Productvy: 88.6% ofmutato vs tal

references

https://complex-analysis.com/content/mandelbrot set.html

https://complex-analysis.com/content/julia set.html

https://complex-analysis.com/content/mandelbrot_set.html
https://complex-analysis.com/content/julia_set.html

