
Parallelized Fractal Image
Generation in Haskell

 Mandelbrot and Julia Sets with Parallel Strategies

Max Zhang, Isabel Tu

Introduction

Fractals like the Mandelbrot and Julia sets require intensive computation to generate images.

The goal is to leverage parallel programming in Haskell to reduce execution time using multi-core processors.

Objectives:

● Implement sequential and parallel versions of the fractal generator.
● Explore strategies: parBuffer, Repa, and more.
● Analyze performance with speedup graphs and ThreadScope.

The Mandelbrot and Julia Sets

Fractal Generation - Core Computation

We are generating an image where each pixel maps to a point
in the complex plane.

Escape Time: Number of iterations before ∣z∣>2

Computation challenge:

● Millions of pixels.
● Many of iterations per pixel.

function mandelbrotIter(c, maxIter):

 z = 0

 iterations = 0

 while |z| <= 2 and iterations < maxIter:

 z = z^2 + c

 iterations += 1

 return iterations

Escape Time Computation

We found that a recursive approach greatly improved performance and parallelism.
Also avoiding computationally expensive sqrt by checking if square of the number > 4.

Computing with Parallel Strategies

Computing Grid using REPA

Sequential Implementation (Baseline)

Description:

● Computes each pixel’s escape time sequentially.
● No parallelism or load balancing.

Results:

● Mandelbrot (1 core): 1.959s
● Julia (1 core): 0.810s

Parallel Strategy - parBuffer
Description:

● Divides the pixel grid into chunks using
parBuffer

● Dynamically allocates tasks to threads,
allowing chunks to be processed in
parallel as threads become available.

● This dynamic scheduling helps mitigate
load imbalance more effectively
compared to fixed chunking strategies.

Execution Times:

● Mandelbrot:
○ 1 core: 3.156s
○ 4 cores: 1.18s
○ 8 cores: 1.435s
○ Best speedup: 2.67x

Parallel Strategy - Repa
Description:

● Defines the pixel grid using fromFunction,
where each element is computed based on its
coordinates.

● Uses computeUnboxedP to evaluate the entire
grid in parallel.

● The data-parallel approach processes the grid
uniformly but struggles with workload variability
and sequential bottlenecks, leading to no
significant improvement over the sequential
implementation.

Execution Times:

● Mandelbrot:
○ 1 core: 3.083s
○ 4 cores: 2.767s
○ 8 cores: 2.424s
○ Best speedup: 1.46x

Issues with Parallelization of Julia

● Unpredictable workloads: Iteration counts vary across the grid.
● Sequential bottlenecks: Faster base runtime amplifies unparallelized steps.
● High overhead: Parallel overhead outweighs runtime gains.

Threadscope

parBuffer Repa

references

https://complex-analysis.com/content/mandelbrot_set.html

https://complex-analysis.com/content/julia_set.html

https://complex-analysis.com/content/mandelbrot_set.html
https://complex-analysis.com/content/julia_set.html

