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Introduction

Fractals like the Mandelbrot and Julia sets require intensive computation to generate images.

The goal is to leverage parallel programming in Haskell to reduce execution time using multi-core processors.

Objectives:

e Implement sequential and parallel versions of the fractal generator.

° Explore strategies: parBuffer, Repa, and more.
e  Analyze performance with speedup graphs and ThreadScope.




The Mandelbrot and Julia Sets

2.1 Mandelbrot Set

The Mandelbrot set is defined as the set of complex numbers ¢ for which the sequence defined
by:

Z",,,l —_ Z;z! -+ C, 20 = 0 (1)
remains bounded. A point is considered part of the Mandelbrot set if |z,| < 2 for all iterations

n. The number of iterations before |z,| > 2 determines the color of the corresponding pixel
in the fractal image.

2.2 Julia Set

The Julia set is generated similarly to the Mandelbrot set but with a fixed complex parameter
¢ instead of varying it for each pixel. For a given complex parameter ¢, the Julia set includes
all points z; where the sequence:

Znl = 2’21 +c (2)

remains bounded.



Fractal Generation - Core Computation

We are generating an image where each pixel maps to a point

. function mandelbrotIter(c, maxIter):
in the complex plane.
z =0
Escape Time: Number of iterations before |z|>2
iterations = ©
Computation challenge:
. ) while |z| <= 2 and iterations < maxIter:
° Millions of pixels.

e  Many of iterations per pixel. 7 = 7A2 + ¢

iterations += 1

return iterations



Escape Time Computation

mandelbrotIterations Double Double Int
mandelbrotIterations cr ci = go 0 0 0

go 'i !zr !zi
i maxIter zrxzr zikxzi 4.0 i
otherwise
zr' zZrkzr zikzi cr
zi' 2kzZrxzi (oh }
go (i+1) zr' zi'

julialterations (Double, Double) Double Double Int
juliaIterations (cr, ci) zr zi = go 0 zr zi

go 'i !zr !zi
i maxIter zrxzr zikzi 4.0 i
otherwise
zr' zrkzr zikzi cr
zi® 2xzrxzi + ci
go (i+1) zr' zi'

We found that a recursive approach greatly improved performance and parallelism.
Also avoiding computationally expensive sqrt by checking if square of the number > 4.



Computing with Parallel Strategies

computeParallel String (Double Double Int) Int Int (Double, Double)
Word8)1]
computeParallel strategy iterationFn width height bounds
rows [ [ iterationToColor (iterationFn re im)
X [0 width - 1]
r (re, im) pixelToCoord x y width height bounds |

y [0 height - 1] 1
strategy

"seq rows

"parListChunk" rows parListChunk 8 rdeepseq
"parBuffer" rows parBuffer 32 rdeepseq
error "Invalid parallel strategy"

[[(Word8, Word8,




Computing Grid using REPA

computeRepa (Double Double Int) Int Int (Double, Double)
Word8, Word8))
computeRepa iterationFn width height bounds

R.computeUnboxedP ¢ R.fromFunction (Z :. height :. width) (74
(re, im) pixelToCoord x y width height bounds
iterationToColor (iterationFn re im)

I0 (R.Array R.U R.DIM2 (Word8,
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Sequential Implementation (Baseline)

Description:

e Computes each pixel's escape time sequentially.
e No parallelism or load balancing.

Results:

e  Mandelbrot (1 core): 1.959s
e  Julia (1 core): 0.810s



Parallel Strategy - parBuffer

Descrlptlon: parBuffer Mandelbrot
e Divides the pixel grid into chunks using I
parBuffer 8

e Dynamically allocates tasks to threads,
allowing chunks to be processed in
parallel as threads become available. 6

e This dynamic scheduling helps mitigate
load imbalance more effectively
compared to fixed chunking strategies.

Observed Speedup

Execution Times:

e Mandelbrot:
o 1 core: 3.156s
o 4 cores: 1.18s 0 !
o 8cores: 1.435s readGoutt
o Best speedup: 2.67x




Parallel Strategy - Repa

Description:

e Defines the pixel grid using fromFunction,
where each element is computed based on its
coordinates.

e Uses computeUnboxedP to evaluate the entire
grid in parallel.

e The data-parallel approach processes the grid
uniformly but struggles with workload variability
and sequential bottlenecks, leading to no
significant improvement over the sequential
implementation.

Execution Times:

e Mandelbrot:
o 1 core: 3.083s
o 4 cores: 2.767s
o 8cores: 2.424s
o Best speedup: 1.46x

Repa Mandelbrot

== Observed Speedup == |deal Speedup

Observed Speedup

4 6

Thread Count



Issues with Parallelization of Julia

e Unpredictable workloads: Iteration counts vary across the grid.
e Sequential bottlenecks: Faster base runtime amplifies unparallelized steps.
e High overhead: Parallel overhead outweighs runtime gains.

parBuffer Julia Repa Julia

== Observed Speedup ++ Ideal Speedup == Observed Speedup == Ideal Speedup

-

Observed Speedup
.
Observed Speedup

Thread Count Thread Count



Threadscope
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