Parallelized Fractal Image Generation in Haskell

Mandelbrot and Julia Sets with Parallel Strategies

Max Zhang, Isabel Tu

Introduction

Fractals like the Mandelbrot and Julia sets require **intensive computation** to generate images.

The goal is to leverage **parallel programming** in Haskell to reduce execution time using multi-core processors.

Objectives:

- Implement sequential and parallel versions of the fractal generator.
- Explore strategies: **parBuffer**, **Repa**, and more.
- Analyze performance with **speedup graphs** and **ThreadScope**.

The Mandelbrot and Julia Sets

Mandelbrot Set 2.1

The Mandelbrot set is defined as the set of complex numbers c for which the sequence defined by:

$$
z_{n+1} = z_n^2 + c, \quad z_0 = 0 \tag{1}
$$

remains bounded. A point is considered part of the Mandelbrot set if $|z_n| \leq 2$ for all iterations *n*. The number of iterations before $|z_n| > 2$ determines the color of the corresponding pixel in the fractal image.

Julia Set 2.2

The Julia set is generated similarly to the Mandelbrot set but with a fixed complex parameter c instead of varying it for each pixel. For a given complex parameter c , the Julia set includes all points z_0 where the sequence:

$$
z_{n+1} = z_n^2 + c \tag{2}
$$

remains bounded.

Fractal Generation - Core Computation

We are generating an image where each pixel maps to a point in the **complex plane**.

Escape Time: Number of iterations before ∣z∣>2

Computation challenge:

- Millions of pixels.
- Many of iterations per pixel.

function mandelbrotIter(c, maxIter):

 $z = 0$ iterations $= 0$ while $|z| \leq 2$ and iterations \leq maxiter: $z = z^2 + c$ iterations += 1 return iterations

Escape Time Computation

```
mandelbrotTterations :: Double \rightarrow Double \rightarrow Int
mandelbrotIterations cr ci = go 0 0 0
  where
    go li lzr lzi
         i == maxIter || zr * zr + zi * zi > 4.0 = iotherwise =let zr' = zr * zr - zi * zi + crzi' = 2 \times z \times z \times i + ciin go (i+1) zr' zi'
juliaIterations :: (Double, Double) \rightarrow Double \rightarrow Double \rightarrow Int
juliaIterations (cr, ci) zr zi = go 0 zr zi
  where
    go li lzr lzi
         i = maxIter || zrxr + zixzi > 4.0 = iotherwise =let zr' = zr * zr - zi * zi + crzi' = 2 \times z \times z \times i + ciin go (i+1) zr' zi'
```
We found that a recursive approach greatly improved performance and parallelism. Also avoiding computationally expensive sqrt by checking if square of the number > 4.

Computing with Parallel Strategies

Computing Grid using REPA

```
computeRepa :: (Double -> Double -> Int) -> Int -> Int -> (Double, Double) -> IO (R.Array R.U R.DIM2 (Word8,
Word8, Word8)computeRepa iterationFn width height bounds =
    R.computeUnboxedP $ R.fromFunction (Z :. height :. width) \frac{1}{2} \setminus (Z : Y : X) \rightarrowLet (re, im) = pixelToCoord \times y width height boundsin iterationToColor (iterationFn re im)
```


Sequential Implementation (Baseline)

Description:

- Computes each pixel's escape time sequentially.
- No parallelism or load balancing.

Results:

- Mandelbrot (1 core): **1.959s**
- Julia (1 core): **0.810s**

Parallel Strategy - parBuffer

Description:

- Divides the pixel grid into chunks using parBuffer
- Dynamically allocates tasks to threads, allowing chunks to be processed in parallel as threads become available.
- This dynamic scheduling helps mitigate load imbalance more effectively compared to fixed chunking strategies.

Execution Times:

- Mandelbrot:
	- 1 core: **3.156s**
	- 4 cores: **1.18s**
	- 8 cores: **1.435s**
	- Best speedup: **2.67x**

parBuffer Mandelbrot

Observed Speedup vs. Thread Count

Parallel Strategy - Repa

Description:

- Defines the pixel grid using fromFunction, where each element is computed based on its coordinates.
- Uses computeUnboxedP to evaluate the entire grid in parallel.
- The data-parallel approach processes the grid uniformly but struggles with workload variability and sequential bottlenecks, leading to no significant improvement over the sequential implementation.

Execution Times:

- Mandelbrot:
	- 1 core: **3.083s**
	- 4 cores: **2.767s**
	- 8 cores: **2.424s**
	- Best speedup: **1.46x**

Observed Speedup vs. Thread Count

Issues with Parallelization of Julia

- **Unpredictable workloads**: Iteration counts vary across the grid.
- **Sequential bottlenecks**: Faster base runtime amplifies unparallelized steps.
- **High overhead**: Parallel overhead outweighs runtime gains.

Threadscope

parBuffer

Repa

https://complex-analysis.com/content/mandelbrot_set.html

https://complex-analysis.com/content/julia_set.html