
par-fractal: Fractal Image Generation in Parallel Using
Haskell

Max Zhang, Isabel Tu
mz2956, it2334

December 19, 2024

Abstract

This project implements a parallel fractal image generator using Haskell. Fractals,
like the Mandelbrot and Julia sets, are computationally expensive to generate, making
them ideal candidates for parallel processing. This report explores multiple paralleliza-
tion strategies, including parBuffer, parListChunk,and Repa, to improve performance
and scalability. Benchmarks, speedup graphs, and ThreadScope visualizations provide
insights into the efficiency of each approach.

1 Introduction

The goal of this project is to generate high-resolution fractal images using parallel functional
programming in Haskell. Fractals, such as the Mandelbrot and Julia sets, require extensive
floating-point calculations for each pixel, making them computationally intensive. With
the rise of multi-core processors, parallel programming can significantly reduce computation
time.

The project includes the following objectives:

• Implement sequential and parallel versions of the fractal image generator.

• Leverage parallel Haskell strategies, parBuffer, parListChunk,and Repa arrays.

• Analyze performance improvements using speedup graphs and ThreadScope profiling.

• Compare the observed speedup against the ideal linear speedup.

This report discusses the implementation details, benchmarking results, and insights
gained from parallelizing fractal computations.

2 The Mandelbrot and Julia Sets

Fractals are intricate geometrical shapes generated through mathematical iterations. Two
famous fractals, the Mandelbrot and Julia sets, are defined in the complex plane and serve
as the foundation for this project.

1



2.1 Mandelbrot Set

The Mandelbrot set is defined as the set of complex numbers c for which the sequence defined
by:

zn+1 = z2n + c, z0 = 0 (1)

remains bounded. A point is considered part of the Mandelbrot set if |zn| ≤ 2 for all iterations
n. The number of iterations before |zn| > 2 determines the color of the corresponding pixel
in the fractal image.

2.2 Julia Set

The Julia set is generated similarly to the Mandelbrot set but with a fixed complex parameter
c instead of varying it for each pixel. For a given complex parameter c, the Julia set includes
all points z0 where the sequence:

zn+1 = z2n + c (2)

remains bounded.

3 Implementation

The generation of these fractals involves mapping each pixel in the image to a point in the
complex plane. The computational challenge arises from iterating over millions of pixels and
performing hundreds of iterations for each pixel. The following function demonstrates this
for the Mandelbrot set:

1: Mandelbrot Iteration Function (Pseudo Code)

function mandelbrotIter(c, maxIter):

z = 0

iterations = 0

while |z| <= 2 and iterations < maxIter:

z = z^2 + c

iterations += 1

return iterations

Similarly, the Julia set computation applies the same iterative formula but with a fixed
z0 value:

2: Julia Iteration Function (Pseudo Code)

function juliaIter(c, z0, maxIter):

z = z0

iterations = 0

while |z| <= 2 and iterations < maxIter:

z = z^2 + c

iterations += 1

return iterations

2



4 Generated Images

Using this implementation, we can visualize the generated Mandelbrot and Julia sets by
rendering high-resolution images using our implemented fractal generator. The following
figures showcase the output for different configurations:

Figure 1: Mandelbrot Set generated using 1000 iterations

Figure 2: Julia Set with c = −0.8 + 0.156i generated using 1000 iterations

3



5 Parallelization Strategies

This section analyzes the performance and behavior of different strategies used to compute
the Mandelbrot and Julia sets. For each strategy, we analyze:

• Execution Time: The time taken to compute the fractal on a single core.

• Speedup: The ratio of sequential execution time to parallel execution time.

• ThreadScope Analysis: A visualization of thread activity to assess parallel workload
distribution.

5.1 Sequential Implementation

• Description: The sequential implementation computes the escape time for each pixel
without any parallelism.

• Execution Time:

– Execution time of Mandelbrot on a single core: 1.959s

– Execution time of Julia on a single core: 0.810s

5.2 Parallel Strategies with parListChunk and parBuffer

• Description: The parallel strategy divides the grid into chunks using either parListChunk
or parBuffer to evaluate the chunks in parallel. parListChunk splits the workload
into fixed-sized chunks, distributing these chunks to threads for evaluation. This allows
for predictable and controlled parallelism but may lead to inefficiencies if the workload
within chunks varies significantly. parBuffer, on the other hand, maintains a rolling
buffer of tasks, dynamically allocating work to threads as they become available. This
approach helps balance the workload more effectively, especially when computation is
uneven across chunks.

We observed that parBuffer performed better than parListChunk on Mandelbrot,
as its dynamic task allocation helped reduce the impact of uneven workloads near
the boundary of the fractals, improving overall parallel efficiency. However, neither
strategy performed well for the Julia set due to its highly unpredictable iteration
counts, which caused significant workload variability across the grid. This made it
difficult to achieve balanced parallelism, regardless of the chunking strategy used.

• Execution Time:

– Execution time of Mandelbrot on a single core: 3.156s

– Execution time of Mandelbrot on 8 cores: 1.435s

– Execution time of Julia on a single core: 1.086s

– Execution time of Julia on 8 cores: 1.36s

4



• Speedup

Figure 3: Speedup Graphs for parBuffer

– Mandelbrot max speedup: 2.67 with 4 cores

– Julia max speedup: 1.25 with 2 cores

– Mandelbrot achieves better speedup with parListChunk and parBuffer because
its workload is more uniform and predictable, with many points escaping quickly,
especially far from the set. In contrast, Julia’s iteration count varies significantly
based on the starting point z0 and fixed parameter c, resulting in more unpre-
dictable and imbalanced workloads. This makes it harder for both parListChunk

and parBuffer to distribute the work evenly across threads, as neither strategy
fully compensates for the variability in Julia set computations.

• ThreadScope Results:

Figure 4: Threadscope for Mandelbrot using parBuffer

5



Figure 5: Threadscope for Julia using parBuffer

– The ThreadScope graphs show one thread running longer than the rest due to the
IO step, which is not parallelized. While the Mandelbrot and Julia computations
benefit from parallelism, the sequential rendering of the final image introduces
a bottleneck, causing one thread to appear disproportionately active at the end.
Since the Julia set computation is inherently faster, the unparallelized image
generation step constitutes a larger portion of the total runtime, further limiting
the overall speedup achieved.

5.3 Parallel Strategies with Repa Library

• Description: The Repa implementation uses fromFunction to define the grid, where
each element is mapped to a computation based on its pixel coordinates, using the
provided iteration function to determine the fractal’s color. The computeUnboxedP

function then evaluates the entire array in parallel, ensuring efficient processing of the
grid. This approach minimizes load imbalance by evenly distributing the computation
across threads, leveraging Repa’s strict data-parallel model for uniform and efficient
parallel execution.

• Execution Time:

– Execution time of Mandelbrot on a single core: 3.083s

– Execution time of Mandelbrot on 8 cores: 2.424s

– Execution time of Julia on a single core: 1.147s

– Execution time of Julia on 8 cores: 1.755s

6



• Speedup

Figure 6: Speedup Graphs for Repa

– Mandelbrot max speedup: 1.46 with 3 cores

– Julia max speedup: no observed speedup

– Unlike in parBuffer, where Mandelbrot parallelizes better due to its more pre-
dictable workload, Repa shows limited speedup for Mandelbrot and no speedup for
Julia, which actually becomes slower with more cores. While Repa’s data-parallel
approach processes the grid uniformly and minimizes workload variability, the in-
herently faster Julia computation is dominated by the sequential image generation
step, negating the benefits of parallelism and leading to poorer scaling.

• ThreadScope Results:

Figure 7: Threadscope for Mandelbrot using Repa

7



Figure 8: Threadscope for Julia using Repa

6 Conclusion

This project demonstrates the benefits and challenges of parallelizing fractal image gener-
ation in Haskell using three strategies: parBuffer, parListChunk, and the Repa library.
While parBuffer and parListChunk improve performance over the sequential implementa-
tion, the Repa library fails to achieve any meaningful speedup, highlighting key limitations
in its approach.

Both parBuffer and parListChunk effectively parallelize the Mandelbrot set, with parBuffer
dynamically balancing uneven workloads and parListChunk providing predictable task al-
location. However, Repa’s data-parallel array model shows no improvement over the se-
quential implementation, as the inherently faster Julia computation is dominated by the
unparallelized image generation step, and the grid processing lacks the flexibility to address
workload variability.

Overall, this comparison underscores the strengths of parBuffer and parListChunk

in achieving practical parallel performance, while highlighting the inefficiencies of Repa in
handling fractal computations where workload variability and sequential bottlenecks remain
significant challenges.

Future Work

Outline future directions:

• Parallelize IO process for further speedup potential.

• Optimizing chunk size for parListChunk.

• Optimizing buffer size for parBuffer.

• Extending the implementation to GPU acceleration using Accelerate.

8



7 Full Code

7.1 Fractal

3: Fractal.hs

{-# LANGUAGE BangPatterns # -}

module Fractal (iterationToColor , pixelToCoord , mandelbrotIterations

, juliaIterations) where

import Data.Word (Word8)

maxIter :: Int

maxIter = 1000

iterationToColor :: Int -> (Word8 , Word8 , Word8)

iterationToColor i

| i == maxIter = (0, 0, 0)

| otherwise =

let t = sqrt (fromIntegral i / fromIntegral maxIter)

r = floor (9 * (1 - t) * t * t * t * 255) -- polynomials

for colors found online

g = floor (15 * (1 - t)*(1 - t)*t*t * 255)

b = floor (8.5 * (1 - t)*(1 - t)*(1 - t)*t * 255)

in (fromIntegral r, fromIntegral g, fromIntegral b)

pixelToCoord :: Int -> Int -> Int -> Int -> (Double , Double) -> (

Double , Double)

pixelToCoord x y width height (minRe , maxIm) =

let re = minRe + (fromIntegral x / fromIntegral width) * (5)

im = maxIm - (fromIntegral y / fromIntegral height) * (4)

in (re, im)

mandelbrotIterations :: Double -> Double -> Int

mandelbrotIterations cr ci = go 0 0 0

where

go !i !zr !zi

| i == maxIter || zr*zr + zi*zi > 4.0 = i

| otherwise =

let zr ’ = zr*zr - zi*zi + cr

zi ’ = 2*zr*zi + ci

in go (i+1) zr ’ zi ’

juliaIterations :: (Double , Double) -> Double -> Double -> Int

juliaIterations (cr, ci) zr zi = go 0 zr zi

9



where

go !i !zr !zi

| i == maxIter || zr*zr + zi*zi > 4.0 = i

| otherwise =

let zr ’ = zr*zr - zi*zi + cr

zi ’ = 2*zr*zi + ci

in go (i+1) zr ’ zi ’

10



7.2 Parallel Backend

4: ParallelBackend.hs

module ParallelBackend (computeParallel) where

import Data.Word (Word8)

import Control.Parallel.Strategies

import Fractal (iterationToColor , pixelToCoord)

computeParallel :: String -> (Double -> Double -> Int) -> Int -> Int

-> (Double , Double) -> [[(Word8 , Word8 , Word8)]]

computeParallel strategy iterationFn width height bounds =

let rows = [ [ iterationToColor (iterationFn re im)

| x <- [0 .. width - 1]

, let (re, im) = pixelToCoord x y width height

bounds ]

| y <- [0 .. height - 1] ]

in case strategy of

"seq" -> rows

"parListChunk" -> rows ‘using ‘ parListChunk 8 rdeepseq

"parBuffer" -> rows ‘using ‘ parBuffer 32 rdeepseq

_ -> error "Invalid parallel strategy"

11



7.3 Repa Backend

5: RepaBackend.hs

module RepaBackend (computeRepa) where

import Data.Word (Word8)

import qualified Data.Array.Repa as R

import Fractal (iterationToColor , pixelToCoord)

import Data.Array.Repa ((:.) (..), Z(..))

computeRepa :: (Double -> Double -> Int) -> Int -> Int -> (Double ,

Double) -> IO (R.Array R.U R.DIM2 (Word8 , Word8 , Word8))

computeRepa iterationFn width height bounds =

R.computeUnboxedP $ R.fromFunction (Z :. height :. width) $ \(Z

:. y :. x) ->

let (re , im) = pixelToCoord x y width height bounds

in iterationToColor (iterationFn re im)

12



7.4 IO Handler

6: IOHandler.hs

module IOHandler (writePPM) where

import System.IO

import Data.Word (Word8)

writePPM :: FilePath -> [[(Word8 , Word8 , Word8)]] -> IO ()

writePPM file image = withFile file WriteMode $ \h -> do

let height = length image

width = length (head image)

hPutStrLn h "P3"

hPutStrLn h (show width ++ " " ++ show height)

hPutStrLn h "255"

mapM_ (\row -> mapM_ (\(r,g,b) -> hPutStr h (show r ++ " " ++

show g ++ " " ++ show b ++ " ")) row >> hPutStrLn h "") image

13



7.5 Main Program

7: main.hs

-- compile with ghc -O2 -threaded -eventlog -outputdir build -o par -

fractal main.hs IOHandler.hs Fractal.hs ParallelBackend.hs

RepaBackend.hs

-- to run: ./ fractal [mandelbrot/julia] [parallel/repa] [for

parallel: seq , parBuffer , parListChunk] [for repa: just include a

_]

import System.Environment

import Fractal

import ParallelBackend

import RepaBackend

import IOHandler

import qualified Data.Array.Repa as R

import Data.Array.Repa ((:.) (..), Z(..))

main :: IO ()

main = do

args <- getArgs

case args of

["mandelbrot", backend , strategy] -> runFractal

mandelbrotIterations backend strategy

["julia", backend , strategy] -> runFractal (

juliaIterations (-0.8, 0.156)) backend strategy

_ -> putStrLn "Usage: main <mandelbrot|julia > <parallel|repa

> <strategy >"

runFractal :: (Double -> Double -> Int) -> String -> String -> IO ()

runFractal iterationFn "parallel" strategy = do

let width = 1920; height = 1080

let image = computeParallel strategy iterationFn width height

(-2.5, 2.0)

writePPM "output.ppm" image

runFractal iterationFn "repa" _ = do

let width = 1920; height = 1080

arr <- computeRepa iterationFn width height (-2.5, 2.0)

R.deepSeqArray arr $ writePPM "output.ppm" [[ arr R.! (R.Z :. y

:. x) | x <- [0 .. width - 1]] | y <- [0 .. height - 1]]

14



References

1. https://complex-analysis.com/content/mandelbrot_set.html

2. https://complex-analysis.com/content/julia_set.html

15

https://complex-analysis.com/content/mandelbrot_set.html
https://complex-analysis.com/content/julia_set.html

	Introduction
	The Mandelbrot and Julia Sets
	Mandelbrot Set
	Julia Set

	Implementation
	Generated Images
	Parallelization Strategies
	Sequential Implementation
	Parallel Strategies with parListChunk and parBuffer
	Parallel Strategies with Repa Library

	Conclusion
	Full Code
	Fractal
	Parallel Backend
	Repa Backend
	IO Handler
	Main Program


