
Mancala Parallelization Using Minimax: Functional Programming Approach
Daniel Manjarrez (dam2274), Caiwu Chen (cc4786), Sindhu Krishnamurthy (sk4699)

Dec 18, 2024

1. Introduction

This report describes a parallel Haskell implementation of a Mancala game solver using

adversarial search via the Minimax decision-making algorithm aided by the Alpha–Beta Pruning

search algorithm, an approach commonly used in two player turn-based zero-sum games.

Mancala is played on a board consisting of 12 small pits and 2 larger pits called “stores”

or “mancalas.” Each player controls 6 small pits on their side and has one store to collect

captured stones. During gameplay, players take turns picking up all the stones from one of their

pits and “sowing” them into subsequent pits one by one counterclockwise. Players may sow

stones into their own store, but skip the opponent's store. If the last stone lands in the player’s

store, they get another turn; otherwise, control passes to the opponent. If the last stone lands in an

empty pit on the player’s side, they capture all stones from the opponent’s directly opposite pit.

The game ends when all pits on one player's side are empty; at this point, any remaining stones

are collected into the opponent’s store. The player with the most stones in their store wins.

Section 2 includes an overview of the Adversarial Search Algorithms along with details

of implementation for the Mancala game solver in Haskell. Section 3 introduces three versions of

parallelism being applied to the sequential implementation, which together aimed to significantly

improve the overall average performance of the Mancala game solver.

Figure 1. Mancala Board [1]

2. Adversarial Search Algorithms

2.1 Minimax with Alpha-Beta Pruning

We use the Minimax algorithm to make strategic decisions by evaluating potential moves

and anticipating the opponent’s responses. During gameplay, the algorithm recursively explores

possible game states, alternating between the player and opponent, and the depth decrements

with each recursive call. When the depth reaches zero, the game ends, or the player has no

remaining moves, the evaluation of the board is returned based on a heuristic function. The

scores from these leaf nodes of the tree are then propagated back up, with MAX nodes selecting

the highest score and MIN nodes selecting the lowest. The optimal move is chosen based on the

highest score at the root node. To reduce computation time during this process, we apply

alpha-beta pruning to eliminate unnecessary branches from the search tree.

Alpha-beta pruning introduces two parameters: alpha, the maximum score that the

maximizing player is guaranteed to achieve so far, and beta, the minimum score that the

minimizing player is guaranteed to achieve so far. These parameters track the best possible

scores for both the MAX and MIN players. For the maximizing player, alpha starts at -∞, and for

the minimizing player, beta starts at ∞. During the search, alpha and beta are updated at each

node based on the current best scores for the players. If the current node is a MAX node and its

value exceeds beta, it means the minimizing player would not choose this move, so the branch is

pruned. Similarly, if the current node is a MIN node and its value is less than alpha, then the

Unset

maximizing player would not choose this move, so the branch is pruned. Thus, the algorithm

effectively avoids unnecessary computations.

2.2 Haskell Implementation

The program takes 2 arguments: <depth>, the depth of the search tree to be used for the

minimax algorithm, and <parallelDepth>, the depth at which the minimax algorithm shifts

from parallel to sequential. The program starts with the following command: cabal exec

Parallel-Minimax-Mancala <depth> <parallelDepth>. For more detailed usage

information, refer to Appendix A and the README file. The program outputs the board display

after each player’s move until the game ends and the winning player is displayed. By setting

<parallelDepth> greater than <depth>, the program effectively runs sequentially (this

approach is used for the parallel vs. sequential analysis discussed later); otherwise, it begins with

a parallelized approach and switches to sequential once the <parallelDepth> threshold is

reached. While the complete implementation of the Mancala game solver can be found in

Appendix B, this section will focus on explaining the critical portions of the code.

The Mancala game solver implements all core mechanics of the game, including the logic

for making moves, sowing and capturing seeds, and determining when the game has ended.

However, the main driving logic for determining the best move lies in the MiniMax.hs file.

The BestMove function calculates scores for each valid move and selects the move with the

highest score for the maximizing player. It depends on the minimax function to help make this

decision. In turn, the minimax function relies on evaluateBoard to calculate a heuristic score

for a given board.

The evaluateBoard function:

evaluateBoard :: GameState -> Int

evaluateBoard (GameState b Player1) = b !! 6 - b !! 13

evaluateBoard (GameState b Player2) = b !! 13 - b !! 6

Unset

evaluateBoard utilizes a simple heuristic: From the point of view of Player1, how

many more seeds are in Player1’s store compared to Player2’s store; and from the point of view

of Player2, how many more seeds are in Player2’s store compared to Player1’s store. There

remains plenty of room for improvement in this heuristic function; other valuable considerations

include captures and extra turns. However, given the scope of the project and its specific focus

on the impact of parallelization, a straightforward heuristic is used.

In order to help evaluate the best move for a player, the minimax function utilizes the

principle variation method - specifically, the Young Brothers Wait Concept (YBWC). Based on

this approach, the leftmost node, or “oldest brother,” is evaluated sequentially with alpha-beta

pruning; using these narrowed bounds, the remaining sibling nodes are evaluated in parallel [3].

Thus, we are able to effectively lower the overhead of parallelization by still enabling a degree of

pruning to occur. While the minimax function encompasses the YBWC logic, whenever a

subtree needs to be evaluated with sequential minimax, it calls a separate seqMinimax

function.

The minimax function:

minimax :: GameState -> Int -> Bool -> Int -> Int -> Int -> Int

minimax state depth maximizingPlayer alpha beta parallelDepth

| depth == 0 || isGameOver state || null validMovesList = evaluateBoard state

| depth >= parallelDepth =

let (firstMove:restMoves) = validMovesList

firstValue = seqMinimax (makeMove state firstMove) (depth - 1) (not

maximizingPlayer) alpha beta

(newAlpha, newBeta) = if maximizingPlayer

then (max alpha firstValue, beta)

else (alpha, min beta firstValue)

values = parMap rdeepseq

(\pit -> minimax (makeMove state pit) (depth - 1) (not

maximizingPlayer) newAlpha newBeta parallelDepth)

Unset

restMoves

combined = firstValue : values

in if maximizingPlayer then maximum combined else minimum combined

| otherwise =

let values = map (\pit -> seqMinimax (makeMove state pit) (depth - 1)

(not maximizingPlayer) alpha beta) validMovesList

in if maximizingPlayer then maximum values else minimum values

where

validMovesList = validMoves state

The function’s base case ensures that if the depth reaches 0, the game is over, or there are

no moves left, the board is evaluated to obtain a “score.” When the depth is greater than or equal

to the specified <parallelDepth>, however, we proceed with the YBWC approach. The first

valid move is evaluated sequentially using seqMinimax, which generates an initial alpha or beta

value depending on whether it is the maximizing or minimizing player’s turn. After that, the

sibling nodes - corresponding to the remaining valid moves - are recursively evaluated in parallel

using parMap and rdeepseq to call minimax.

The results are then combined with the result of the first move, and the function returns

either the maximum score for the maximizing player or the minimum score for the minimizing

player. In this way, scores from the leaf nodes of the tree - generated by the base case - propagate

up the tree through recursive calls, allowing each level of the tree to combine and compare

results to determine the optimal move.

For depths below <parallelDepth>, minimax calls seqMinimax to process all moves

sequentially.

The seqMinimax function:

-- seqMinimax

seqMinimax :: GameState -> Int -> Bool -> Int -> Int -> Int

seqMinimax state depth maximizingPlayer alpha beta

| depth == 0 || isGameOver state || null validMovesList = evaluateBoard state

| otherwise = alphaBeta validMovesList (alpha, beta)

where

validMovesList = validMoves state

alphaBeta [] (a, b) = if maximizingPlayer then a else b

alphaBeta (pit:pits) (a, b) =

let newValue = seqMinimax (makeMove state pit) (depth - 1) (not

maximizingPlayer) a b

(newAlpha, newBeta) = if maximizingPlayer

then (max a newValue, b)

else (a, min b newValue)

in if newAlpha >= newBeta

then if maximizingPlayer then newAlpha else newBeta

else alphaBeta pits (newAlpha, newBeta)

seqMinimax shares the same base case as minimax, since it too must evaluate the board

once the depth has reached 0, the game is over, or there are no more valid moves. Otherwise, the

function evaluates each move by recursively calling itself on the game state resulting from that

move, decrementing the depth and alternating the player. If the current player is the

maximizingPlayer, alpha is updated if the new value is larger; otherwise, beta is updated if the

new value is smaller. If alpha becomes greater than or equal to beta, the branch is pruned and no

further moves are explored for the current state. Otherwise, the function continues by recursively

exploring the remaining moves in the current branch and updating alpha and beta values as

needed.

3. Parallelization

Our approach toward parallelization underwent several iterations. Before parallelizing,

we implement an elementary sequential version of the algorithm in MancalaSolver.hs (not

used in later comparison due to changes in implementation). Then, in the first iteration, we

firstly parallelize computing the best move at each state without considering parallelized depth.

Unset

The full code is in ParaMancala1.hs. In the second version, we introduce parallelized depth

using hybrid sequential and parallelization. At deeper levels, the algorithm computes the values

for all possible moves in parallel. While at shallower levels, the algorithm falls back to the

standard sequential alpha-beta pruning. The full code is in ParaMancala2.hs. In the third

version, we reverse the hybrid execution order. At shallower levels, the algorithm computes

parallelly; at deeper levels, the algorithm computes sequentially. The full code is in

ParaMancala3.hs. In the last version, whose code lies in src/, we introduce the idea of

principal variation search [3]. Each level has the leftmost branch evaluated sequentially to

provide alpha beta cutoffs for the remaining branches to be evaluated in parallel.

Figure 2. Principal Variation graph [3]

3.1 Parallel Evaluation of Rest of the Moves in minimax

Parallelizing the rest of the moves speeds up the computation when there are multiple

valid moves to evaluate at deeper levels of the minimax tree. The full code can be found in

MiniMax.hs.

...

values = parMap rdeepseq

(\pit -> minimax (makeMove state pit) (depth - 1) (not

maximizingPlayer) newAlpha newBeta parallelDepth)

restMoves

...

Unset

The parMap function applies the provided lambda function to each element in the list of

valid moves, evaluating them in parallel. Each evaluation involves recursively calling the

minimax function, and the game state is updated by making a move. Parameters like search

depth, player type, and alpha-beta bounds are adjusted. rdeepseq ensures that each move's

evaluation is fully computed before it is used, improving performance by leveraging parallelism.

3.2 Parallel Evaluation of All Moves in bestMove

Since the number of valid moves is typically small at the root level (e.g., 6-7 moves in

games like Mancala), parallelizing this computation ensures fast decision-making without

introducing significant overhead. The full code can be found in MiniMax.hs:

...

then parMap rdeepseq

(\pit -> (pit, minimax (makeMove state pit) (depth -

1) False (-1000) 1000 parallelDepth))

moves

...

For each move, it computes a tuple of the moves and its corresponding minimax value.

The minimax function is applied to a new game state with the search depth reduced by 1, player

switched, and alpha-beta bounds set to a reasonable range. The parameter <parallelDepth>

controls the depth of parallel search, and rdeepseq ensures that each evaluation is fully

evaluated before use, ensuring that all computations are completed before proceeding.

4. Performance Evaluation

We evaluated the performance of our parallelization efforts in our solver implementation

and drew conclusions of its performance based on these aspects: Speedup as the depth of the

search tree grew; spark conversion ratio as the depth of the search tree grew; speedup as the

number of threads grew; spark conversion ratio as the number of threads grew; and the

Threadscope eventlog. Speedup naturally lends itself well as a comparison to the sequential

version of the game solver both in the context of the parallel version’s efficiency as the search

tree grows and of the parallel version’s efficiency as the number of threads used grows. Spark

conversion ratio helps provide more context to the parallel version’s performance potential as the

search tree grows and as the number of threads used grows. Together, the speedup and spark

conversion ratio help evaluate the parallel solver in comparison to the sequential one in terms of

runtime, as well as evaluate its performance in the quality of its parallelization during a given

runtime. According to our data, significant reduction in overall runtime was found with more

room for optimization.

When it came to the speedup as the depth of the search tree grew, we experienced the

speedup increase more and more as the depth of the search tree got larger, but then peak after a

search tree of size 12, where it then started to decrease more and more.

Figure 3. Speedup corresponding to depth

When it came to the spark conversion ratio as the depth of the search tree grew, we

experienced the ratio increase more and more as the depth of the search tree got larger, but then

start to plateau after a search tree of size 12, where it started to increase less and less.

Figure 4. Spark Conversion Ratio corresponding to depth

When it came to the speedup as the number of threads used grew, we experienced the

speedup increase more and more as we increased the number of threads used, but then start to

plateau after more than 6 threads for smaller depth search trees and after 9 threads for larger

depth search trees, where it started decreasing little by little.

Figure 5. Speedup corresponding to threads and depth

When it came to the spark conversion ratio as the number of threads used grew, we

experienced the ratio increase more and more as we increased the number of threads used, and

this was the one plot where we did not observe a very evident decrease or plateau.

Figure 6. Spark Conversion Ratio corresponding to threads

The event log generated with Threadscope demonstrated that the parallel solver had a

fairly equal and well-balanced activity workload divided among all the threads that were used at

a given runtime with constant activity, as seen in the figure below:

Figure 7. ThreadScope Analysis

Overall, we found that the best performance for the parallel solver in terms of speedup

was when 6 threads were used on a search tree of 12 with <parallelDepth> being set to 10,

with an overall speedup of 5.6986046975. In terms of the highest quality parallelization

performed in terms of sparks converted, we observed that with all 12 of the threads at our

disposal used on a search tree of size 15 with <parallelDepth> set to 13, the overall spark

conversion ratio was 0.4436936937. When it came to optimizing runtime for any given depth of

search tree, the <parallelDepth> worked best being set to 2 less than the depth of the search

tree, while using only 6 threads for smaller depth search trees or only 9 threads for larger depth

search trees. For obtaining the highest quality parallelization, i.e. the highest spark conversion

ratio, increasing the number of threads used as well as increasing search tree depth helped while

keeping <parallelDepth> set to 2 less than the depth of the search tree. Overall speedup

gained from the parallel solver was significant with the average speedup among all testing being

3.851003774, with much more room for improvement; the average spark conversion ratio was

0.2027896166, which indicated that about 20.28% of the generated sparks were executed in

parallel, suggesting that parallelism was not fully exploited. However, we did see significant

performance improvement, further suggesting that the parallel tasks executed had a large impact.

5. Conclusion

By testing multiple versions of parallelism with different strategies, the resulting parallel

Mancala solver achieves significant speedup despite a lower spark conversion ratio. With the

capabilities provided by Haskell, effective parallelism can be introduced and integrated into the

minimax algorithm with just a few lines of carefully placed code. This approach results in

substantial performance improvements while leaving room for further optimization.

References
[1] M. Blake, "Understanding the Rules of Mancala: Capture the Win," LoveToKnow, Jul. 9,

2019. [Online]. Available: https://www.lovetoknow.com/life/lifestyle/mancala-rules. Accessed:

Nov. 17, 2024.

[2] A. S. Biermann, "Parallel Implementation and Optimization of the Minimax Algorithm with

Alpha-Beta Cutoffs in the Context of the Game Othello," CRPC Summer Research Student,

Caltech, [Online]. Available: https://www.pressibus.org/ataxx/autre/minimax/node6.html.

Accessed: Dec. 17, 2024.

[3] M. Guidry and C. McClendon, "Techniques to Parallelize Chess," [Online]. Available:

https://ww2.cs.fsu.edu/~guidry/parallel_chess.pdf. Accessed: Nov. 17, 2024.

[4] "Young Brothers Wait Concept," Chessprogramming Wiki. [Online]. Available:

https://www.chessprogramming.org/Young_Brothers_Wait_Concept. Accessed: Dec. 15, 2024.

https://www.lovetoknow.com/life/lifestyle/mancala-rules
https://www.pressibus.org/ataxx/autre/minimax/node6.html
https://ww2.cs.fsu.edu/~guidry/parallel_chess.pdf
https://ww2.cs.fsu.edu/~guidry/parallel_chess.pdf
https://www.chessprogramming.org/Young_Brothers_Wait_Concept
https://www.chessprogramming.org/Young_Brothers_Wait_Concept

Unset

Unset

Appendix A

[1] Parallel Solver’s Usage:

Display.hs:

module Display where

import GameState (GameState(..))

-- Function to display the game board
displayBoard :: GameState -> IO ()
displayBoard (GameState b _) = do
let player1Pits = take 6 b

player1Store = b !! 6
player2Pits = take 6 (drop 7 b)
player2Store = b !! 13

putStrLn "--------------------"
putStrLn $ "| " ++ show player2Store ++ " | " ++ unwords (map show (reverse

player2Pits)) ++ " |"
putStrLn "|------------------|"
putStrLn $ "| " ++ unwords (map show player1Pits) ++ " | " ++ show

player1Store ++ " |"
putStrLn "--------------------"

GameLogic.hs:

module GameLogic where

import GameState (GameState(..), Player(..), switchPlayer, Pit, Board)

sow :: GameState -> Int -> Int -> (Board, Int)
sow (GameState b p) start seeds = go b start seeds 0
where
go board _ 0 finalIdx = (board, finalIdx)
go board idx n _ =
let nextIdx = (idx + 1) `mod` 14

Unset

shift = if p == Player1 && nextIdx == 13 || p == Player2 && nextIdx
== 6 then 1 else 0

nextIdx' = (nextIdx + shift) `mod` 14
in go (updateBoard board nextIdx' (+1)) nextIdx' (n - 1) nextIdx'

updateBoard board idx f = take idx board ++ [f (board !! idx)] ++ drop (idx
+ 1) board

makeMove :: GameState -> Pit -> GameState
makeMove (GameState b p) pit =
let seeds = b !! pit

b1 = take pit b ++ [0] ++ drop (pit + 1) b -- Remove seeds from the
selected pit

(b2, finalIdx) = sow (GameState b1 p) pit seeds
isOwnStore = (p == Player1 && finalIdx == 6) || (p == Player2 && finalIdx

== 13)
isCapture = p == Player1 && finalIdx < 6 && b2 !! finalIdx == 1 && b2 !!

(12 - finalIdx) > 0
|| p == Player2 && finalIdx > 6 && finalIdx < 13 && b2 !!

finalIdx == 1 && b2 !! (12 - finalIdx) > 0
b3 = if isCapture

then captureSeeds b2 finalIdx p
else b2

nextPlayer = if isOwnStore then p else switchPlayer p
in GameState b3 nextPlayer

captureSeeds :: Board -> Int -> Player -> Board
captureSeeds b idx player =
let captured = b !! (12 - idx)

b1 = take (12 - idx) b ++ [0] ++ drop (13 - idx) b
b2 = take idx b1 ++ [0] ++ drop (idx + 1) b1
storeIdx = if player == Player1 then 6 else 13

in take storeIdx b2 ++ [(b2 !! storeIdx) + captured + 1] ++ drop (storeIdx +
1) b2

validMoves :: GameState -> [Pit]
validMoves (GameState b Player1) = [i | i <- [0..5], b !! i > 0]
validMoves (GameState b Player2) = [i | i <- [7..12], b !! i > 0]

GameState.hs:

module GameState where

Unset

type Pit = Int
type Board = [Int]
data Player = Player1 | Player2 deriving (Eq, Show)
data GameState = GameState { board :: Board, currentPlayer :: Player } deriving
(Show)

isGameOver :: GameState -> Bool
isGameOver (GameState b _) =
all (== 0) (take 6 b) || all (== 0) (take 6 (drop 7 b))

switchPlayer :: Player -> Player
switchPlayer Player1 = Player2
switchPlayer Player2 = Player1

MiniMax.hs:

module MiniMax where

import GameLogic (makeMove, validMoves)
import GameState (GameState(..), Player(..), Pit, isGameOver)
import Control.Parallel.Strategies (parMap, rdeepseq)
import Data.List (maximumBy, uncons)
import Data.Function (on)

-- Heuristic to evaluate the board
evaluateBoard :: GameState -> Int
evaluateBoard (GameState b Player1) = b !! 6 - b !! 13
evaluateBoard (GameState b Player2) = b !! 13 - b !! 6

-- Minimax with alpha-beta pruning
minimax :: GameState -> Int -> Bool -> Int -> Int -> Int -> Int
minimax state depth maximizingPlayer alpha beta parallelDepth
| depth == 0 || isGameOver state || null validMovesList = evaluateBoard state
| depth >= parallelDepth =
let (firstMove:restMoves) = validMovesList

firstValue = seqMinimax (makeMove state firstMove) (depth - 1) (not
maximizingPlayer) alpha beta

(newAlpha, newBeta) = if maximizingPlayer
then (max alpha firstValue, beta)

else (alpha, min beta firstValue)
values = parMap rdeepseq

(\pit -> minimax (makeMove state pit) (depth - 1) (not
maximizingPlayer) newAlpha newBeta parallelDepth)

restMoves
combined = firstValue : values

in if maximizingPlayer then maximum combined else minimum combined
| otherwise =

let values = map (\pit -> seqMinimax (makeMove state pit) (depth - 1)
(not maximizingPlayer) alpha beta) validMovesList

in if maximizingPlayer then maximum values else minimum values
where
validMovesList = validMoves state

seqMinimax :: GameState -> Int -> Bool -> Int -> Int -> Int
seqMinimax state depth maximizingPlayer alpha beta
| depth == 0 || isGameOver state || null (validMovesList) = evaluateBoard

state
| otherwise = alphaBeta (validMovesList) (alpha, beta)
where
validMovesList = validMoves state
alphaBeta [] (a, b) = if maximizingPlayer then a else b
alphaBeta (pit:pits) (a, b) =
let newValue = seqMinimax (makeMove state pit) (depth - 1) (not

maximizingPlayer) a b
(newAlpha, newBeta) = if maximizingPlayer

then (max a newValue, b)
else (a, min b newValue)

in if newAlpha >= newBeta
then if maximizingPlayer then newAlpha else newBeta
else alphaBeta pits (newAlpha, newBeta)

bestMove :: GameState -> Int -> Int -> Pit
bestMove state depth parallelDepth =
let moves = validMoves state
in if null moves

then error "No valid moves available"
else let scores = if depth >= parallelDepth

then parMap rdeepseq
(\pit -> (pit, minimax (makeMove state pit) (depth -

1) False (-1000) 1000 parallelDepth))
moves

else map

Unset

(\pit -> (pit, minimax (makeMove state pit) (depth -
1) False (-1000) 1000 parallelDepth))

moves
in fst $ maximumBy (compare `on` snd) scores

Run.hs:

module Run where

import GameState (GameState(..), isGameOver, Player(..), currentPlayer, board)
import Display (displayBoard)
import MiniMax (bestMove)
import GameLogic (makeMove, validMoves)

playGame :: GameState -> Int -> Int -> IO ()
playGame state depth parallelDepth
| isGameOver state = do

displayBoard state
putStrLn "Game Over!"
let finalBoard = board state

-- Player 1's score is in pit 6
player1Score = finalBoard !! 6 + sum (take 6 finalBoard)
-- Player 2's score is in pit 13
player2Score = finalBoard !! 13 + sum (take 6 (drop 7 finalBoard))

putStrLn $ "Final Scores - Player 1: " ++ show player1Score ++ ", Player
2: " ++ show player2Score

if player1Score > player2Score
then putStrLn "Player 1 Wins!"
else if player2Score > player1Score
then putStrLn "Player 2 Wins!"
else putStrLn "It's a tie!"

| otherwise = do
displayBoard state
let move = bestMove state depth parallelDepth
putStrLn $ "Player " ++ show (currentPlayer state) ++ " chooses pit " ++

show move
let newState = makeMove state move
playGame newState depth parallelDepth

Main.hs:

Unset

module Main where

import System.Environment (getArgs)
import Run (playGame)
import GameState (GameState(..), Player(..))

main :: IO ()
main = do
args <- getArgs

case args of
[depthStr, parallelDepthStr] -> do
let depth = read depthStr :: Int

parallelDepth = read parallelDepthStr :: Int
putStrLn "Starting Mancala Game"
let initialState = GameState [4, 4, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 0]

Player1
playGame initialState depth parallelDepth

_ -> do
putStrLn "Usage: ParaMancala3 <depth> <parallelDepth>"

