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● A visual puzzle to construct a picture by filling a grid of cells
● Constraints are provided for rows and columns
● Constraints specify how many blocks are consecutively filled. 

There must also be a space in-between the blocks.
● Initially every cell is unfilled, and players must make inferences.
● Chosen for their scalable complexity. 

Nonograms
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● We collected nonograms from a public github 
repo: https://github.com/mikix/nonogram-db

● We categorized puzzles by their sizes (e.g. 
10x10 is small, 75x50 is large)

● parseNonogram was used to extract rowArgs 

and colArgs (row and column constraints) to be 

inputted into our algorithm

Data & Parsing
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https://github.com/mikix/nonogram-db
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Our nonogram solver base algorithm can be described in three 

parts:

 1) constraint satisfaction

2) iterative inference

3) backtracking for unresolved cases.

Algorithm
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The algorithm begins by iterating through each row and column constraint to compute 

possible placements of blocks for each line.

computeBlocksSeq :: Int -> [Int] -> [[Int]]

● takes the total line length and block constraints as inputs. It recursively places blocks 

into different start positions and continues with the remaining blocks.

● For example, given lineLength = 7 and lineConstraint = [2, 3], the function would 

output [[0, 3], [1, 4]], representing the start positions of the blocks.

generateBlocksSeq :: [[Int]] -> [Int] -> Int -> [[Int]]

● takes the output of computeBlocks—the potential starting positions of the 

blocks—and generates a binary array (Ints of 1s and 0s) to represent possible line 

configurations.

Possible placements are stored in PlacementsDict and updated at each iteration.

1) Constraint Satisfaction
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Purpose: Iteratively deduce definite cell values based on all possible line configurations.

● The main function is IterativeSolve which calls inferValues and updatePlacements. 

IterativeSolve recursively calls itself until the nonogram is solved.

● inferValues: If a cell is filled in all possible configurations, it must be black. If a cell is 

unfilled in all possible configurations, it must be white. -1 represents unknowns. Ex. 

[[0, 1, 0, 0], [0, 1, 1, 1]]  → [[0, 1, -1, -1]]

● After inferValues, we run updatePlacements — prune the search space as some 

placements are now not possible

2) Iterative Inference
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Purpose: backtrack Solve ambiguous nonograms with multiple solutions that cannot be 

resolved through iterative solving alone.

● Tries different placements within a row.

● Checks if the placement results in a valid grid.

● If it's valid, call backtrack recursively until all rows are completed. This is the base 

case of the recursion.

3) Backtracking
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9Sequential Benchmark
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Difficulty of nonogram comes not only from the 
size, but also how sparse the constraints are.
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Motivation for Parallelization

● Row and column processing can be done independently.

● Example: Computing starting placements for one row is unaffected by other rows.

Parallelization Strategy

● Control.Parallel.Strategies (parMap, rdeepseq). We parallelized specific 

functions contributing to the main algorithm: inferValuesPar, computeBlocksPar, 

and generateBlocksPar

Parallelization
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We tested combinations of: inferValuesPar, computeBlocksPar, and 

generateBlocksPar

Parallelization
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Speedup =  (Sequential benchmark) / (Shortest time elapsed for algorithm)

Parallel Generate: Achieved the best performance with a 1.88x speed-up.
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● The graph shows the total 
time elapsed with an 

increasing number of 

threads.

● For all parallelized versions 
of the algorithm, the elapsed 

time decreased, 

demonstrating utilization of 
the threads.

● All algorithms eventually 

level out, indicating 

diminishing returns with an 

excessive number of threads.
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What are some future improvements?

Next Steps
N

E
X

T
 S

T
E

P
S

R
E

SU
LT

S
PA

R
A

LL
E

L
A

LG
O

R
IT

H
M

N
O

N
O

G
R

A
M

S
IN

T
R

O



15

● Difficulty in parallelizing the main 

process of the algorithm — 

iterativeSolve.

○ The sequential nature of 

iterativeSolve makes 

parallelization challenging, as 

each step depends on the result 

of the previous one.

● The activity graph does show some 

success in parallelizing other parts of 

the algorithm: computeBlocksPar 

and generateBlocksPar

Limitations from Iterative 
Solve 
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● The puzzles that we ended up testing on were not ambiguous, so backtracking was 

not utilized.

● Future Improvements:

○ Focus on parallelizing the backtracking part of the algorithm, as multiple 
placements can be explored concurrently.

○ Prioritize solving smaller nonograms primarily through backtracking.

Limited use of backtracking
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● Garbage collection (GC) 

takes up as much time as 

mutator operations

● Explore ways to reduce GC 
time, such as using 

ParBuffer to help manage 

memory usage.

GC Time
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Thank You!


