
Nonogram Solver

Dorothy Nelson (dpn2111), Jittisa (Jane) Kraprayoon (jjk2239)

1. Introduction

1.1 Background:

Figure 1. Example nonogram puzzle

In this project, we seek to parallelize a nonogram solver in Haskell. A nonogram is a visual
puzzle where, given a grid of white cells, row constraints, and column constraints, players must
fill out each cell to construct a picture. Row and column constraints are given for each row and
column. "Blocks" are consecutively filled cells. Each constraint describes the number of blocks
within a row or column and the lengths of each. From these constraints, players must iteratively
infer which cells must be filled. Moreover, each block must be separated by at least one white or
unfilled cell. Therefore, a row constraint like "3 2" describes a length 3 block, separated by at
least one white cell, and followed by a length 2 block.

1.2 Challenges:

The nonogram becomes challenging with difficult clues. For example, a row with less cells and
with larger blocks is easier to solve. Conversely a row that is mostly composed of white cells
introduces more ambiguity. Moreover, Puzzles designed for humans generally have one solution
and reveal an image. However, it is also possible for Nonograms to have multiple solutions with
no discernible pictures.

The nonogram also becomes more computationally complex with large grid sizes. As the number
of rows and columns increases, the search space grows exponentially as there are more
possibilities to explore. Nonograms have also been shown to be NP-hard and thus there are a

multitude of possible approaches to solving one that balance correctness with computational
complexity.

2. Implementation

2.1 Nonogram Representation:

In our project, each nonogram is represented with key attributes of height, width, rowArgs
and colArgs. height and width refer to the size of the grid of cells, while rowArgs and
colArgs are lists of lists containing the constraints for each row and column. These are given as
inputs to the algorithm to start solving the nonogram.

2.2 Data Collection and Parsing

Nonograms were taken from https://github.com/mikix/nonogram-db. We stored each nonogram
from this database as a .txt file and used our parseNonogram function to extract rowArgs and
colArgs (constraints) to be inputted into our solver.

2.3 Base Algorithm Overview:

Our nonogram solver base algorithm can be described in three parts: 1) constraint satisfaction, 2)
iterative inference, and 3) backtracking for unresolved cases.

1) Constraint Satisfaction

The algorithm first iterates through each row and column constraint. For each, it comes up with
possible placements of blocks. cmputeBlocksSeq :: Int -> [Int] -> [[Int]]

operates on a line and takes the line length and constraints (block lengths) as input and
recursively tries to place blocks into different start positions and continues with the remaining
blocks. The output is a list of lists where each inner list contains possible start positions for the
blocks within that line. For example, lineLength = 7 and lineConstraint = [2, 3]

would yield an output of [[0, 3], [1, 4]] from computeBlocksSeq.

computeBlocksSeq :: Int -> [Int] -> [[Int]]

computeBlocksSeq lineLength blockLengths = placeBlocks blockLengths 0

where

-- Recursive helper function to place blocks

placeBlocks :: [Int] -> Int -> [[Int]]

placeBlocks [] _ = [[]] -- No blocks left to place

placeBlocks (b:bs) start

| start + remainingLength > lineLength = []

| otherwise = do

pos <- [start .. lineLength - remainingLength]

https://github.com/mikix/nonogram-db

rest <- placeBlocks bs (pos + b + 1) -- Recur with updated start position

return (pos : rest)

where

-- Calculate remaining length

remainingLength = sum (b : bs) + length bs

generateBlocksSeq :: [[Int]] -> [Int] -> Int -> [[Int]] takes the output
of computeBlocks—the potential starting positions of the blocks—and generates a binary array
(Ints of 1s and 0s) to represent possible line configurations.

generateBlocksSeq :: [[Int]] -> [Int] -> Int -> [[Int]]

generateBlocksSeq blockStarts blockSizes totalLength =

map (generateBinaryArray blockSizes totalLength) blockStarts

where

generateBinaryArray :: [Int] -> Int -> [Int] -> [Int]

generateBinaryArray sizes len starts = foldl placeBlock (replicate len 0) (zip starts

sizes)

placeBlock :: [Int] -> (Int, Int) -> [Int]

placeBlock arr (start, size) =

take start arr ++ replicate size 1 ++ drop (start + size) arr

2) Iterative inference

With the possible line configurations, we then move on to the inference step. If in all possible
configurations of a line, a cell is filled, then we know that that cell must be black. Similarly, if
in all possible configurations, a cell is unfilled, then we know that that cell is certainly white.
The function inferValues performs this step and is described as follows: inferValuesSeq
:: PartialSolution -> (Array Int (Set.Set [Int]), Array Int (Set.Set

[Int])) -> PartialSolution. A PartialSolution is a grid representing the current
progress of the puzzle. This array contains values 0, 1, and -1. 0 represents white cells, 1
represents black cells, and -1 represents cells that are still unknown. inferValuesSeq is
called repeatedly until the nonogram is solved.

The main logic in inferValuesSeq is in the following code from the function, and also in a
helper function inferRowOrCol:

let rowOnes = foldl1 (zipWith (.&.)) placements

rowZeros = foldl1 (zipWith (.|.)) placements

inferredRow = inferRowOrCol rowOnes rowZeros

in [((r, c), inferredRow !! c) | c <- [0..numCols - 1], partialSolution ! (r, c) == -1]

-- Infer the result for a row or column based on bitwise results

inferRowOrCol :: [Int] -> [Int] -> [Int]

inferRowOrCol ones zeros =

zipWith resolveCell ones zeros

where

resolveCell 0 1 = -1 -- The cell must be unknown

resolveCell 1 1 = 1 -- The cell must be filled (from ones)

resolveCell 0 0 = 0 -- The cell must be empty (from zeros)

resolveCell _ _ = -1 -- Fallback for unexpected values

We perform bitwise operations to extract indices where it is 1s or 0s across all possible
placements for that line.

3) Backtracking

If the nonogram puzzle is ambiguous—meaning that there are multiple solutions and options
which cannot be deduced by the iterative solver alone—then we use backtracking to solve the
rest of the puzzle. Backtracking works by trying different placements within a row and checking
if this step still results in a valid grid. If the grid is still valid, backtrack is called recursively until
we reach the basecase of all the rows being completed. In our implementation, backtrack is
defined as follows:

backtrack :: PartialSolution

-> Array Int (Set [Int]) -- Row placements

-> [Constraint] -- Row constraints

-> [Constraint] -- Column constraints

-> Set Int -- Completed rows

-> Set Int -- Completed columns

-> [PartialSolution] -- Accumulated solutions

-> [PartialSolution] -- Final list of valid solutions

3. Sequential Algorithm Benchmark

Total Time Elapsed
(s)

Small Bloop (10x10) 0.01

Medium

Ubuntu (35x35) 2.43

42 (23x35) 0.18

Large

Wikimedia (38x39) 1.75

7 medium puzzles solved
sequentially 36.77

Table 1. Sequential algorithm benchmark with puzzles of different sizes

Figure 3. Activity graph for sequential algorithm with 7 puzzles

We first tested our sequential algorithm on puzzles of varying difficulty. As expected, smaller
puzzles were solved very quickly (0.01s), and larger puzzles took more time as there is a larger
search space for the algorithm to go through. As one puzzle may be too little work, we decided
on the benchmark task being to solve 7 medium puzzles. Larger puzzles with sizes 60x70 were
also considered and tested, however the terminal would crash with these sizes, so we settled on
testing the algorithm on multiple puzzles instead.

4. Parallelization Strategy

Our motivation for parallelization came from the fact that row and column processing can be
done independently. For instance, computing the starting placements based on the constraints for
one row is not affected by the result of another row. The Control.Parallel.Strategies
module was used for parallelization and our attempts target separate functions that contribute to
the main algorithm.

4.1 Parallelization Attempt 1: inferValuesPar

We first attempted to parallelize inferValues as each inference for each line is done
independently. Specifically, parMap and rseq were used to allow multiple rows to be processed
simultaneously with updateRows. inferValues is mainly used in iterativeSolve which calls the
function repeatedly. The iterativeSolve function is inherently sequential, as the partial solution
grid must be updated before another call can be made in the next step. Because of this, we do not
expect significant gains from this parallelization strategy. Below is the line of code where
parallelization occurs.

updatedRows = partialSolution // concat (parMap rseq updateRow [r1..r2])

4.2 Parallelization Attempt 2: computeBlocksPar

The second parallelization attempt involves parallelizing computeBlocks—extracting valid
starting positions for each block from the constraints. To be able to control the granularity of the
task, we chunked multiple cells to be processed together using a helper function chunkList. We
noticed that computeBlocksPar benefits from doing this. processChunk applies processPosition
which computes the valid placements for a single starting position. parMap and rdeepseq were
used to ensure parallelization across threads.

computeBlocksPar lineLength blockLengths =

concat $ parMap rdeepseq processChunk (chunkList chunkSize [0 .. lineLength -

totalRemainingLength])

4.3 Parallelization Attempt 3: generateBlocksPar

generateBlocksPar uses the same method from computeBlocksPar for parallelization. It groups
the cells in chunks using chunkList. processChunk then applies generateBinaryArray which
performs the main task of placing the blocks in the binary array. parMap and rdeepseq were used
for parallelization.

generateBlocksPar blockStarts blockSizes totalLength =

concat $ parMap rdeepseq processChunk (chunkList chunkSize blockStarts)

4.4 Parallelization Summary

With these attempts, we accumulate two different versions (sequential and parallel) of each
inferValue, computeBlock, and generateBlocks. For each, you can choose whether to use the
sequential version or the parallelized version. We test different combinations of the three
functions. For example solveParallelComputeGenerate uses both the parallelized version of
computeBlocks and generateBlocks, while solveFullyParallel uses the parallelized version of
computeBlocks, generateBlocks, and inferValues. In total, there are 6 versions of the algorithm:

solveSequential :: FilePath -> IO ()

solveSequential = solveNonogramFromFile computeBlocksSeq generateBlocksSeq iterativeSolveSeq

solveParallelComputeBlocks :: FilePath -> IO ()

solveParallelComputeBlocks = solveNonogramFromFile computeBlocksPar generateBlocksSeq iterativeSolveSeq

solveParallelGenerateBlocks :: FilePath -> IO ()

solveParallelGenerateBlocks = solveNonogramFromFile computeBlocksSeq generateBlocksPar iterativeSolveSeq

solveParallelComputeGenerate :: FilePath -> IO ()

solveParallelComputeGenerate = solveNonogramFromFile computeBlocksPar generateBlocksPar

iterativeSolveSeq

solveParallelIterativeSolve :: FilePath -> IO ()

solveParallelIterativeSolve = solveNonogramFromFile computeBlocksSeq generateBlocksSeq iterativeSolvePar

solveFullyParallel :: FilePath -> IO ()

solveFullyParallel = solveNonogramFromFile computeBlocksPar generateBlocksPar iterativeSolvePar

4. Results

Max Speedup

Sequential 1.00

Parallel Compute 1.40

Parallel Generate 1.88

Parallel Compute Generate 1.50

Parallel Iterative Solve 1.71

Fully Parallel 1.50

Table 2. Speedup graph with different algorithms

The table above shows the speedup, which was calculated as (Sequential benchmark) / (shortest
time elapsed for algorithm). Parallel Generate performed the best with a x1.88 speed up from the
original benchmark, followed by Parallel Iterative Solve with a x1.50 improvement. Fully
Parallel and Parallel Compute Generate did not perform as well. This shows that combining
multiple parallelized functions is detrimental to speed up time, and causes more overhead
computations than it is worth.

Figure 4. Total time elapsed vs. number of threads

The graph above shows the total time elapsed with increasing number of threads. For all
parallelized versions of the algorithm, the time elapsed decreased, showing utilization of the
threads. However, all of the algorithms also level out, showing diminishing returns from an
excessive number of threads.

5. Improvements

5.1 Limitation from Iterative Solve

Figure 5. Activity graph for Fully Parallel -N8

As shown in the activity graph (Figure 5), we struggled to parallelize the main process in the
algorithm — iterativeSolve, which repeatedly infers values until the nonogram is solved. This is
because the nature of iterativeSolve is sequential, where the next step depends on the result of
the previous. However, the activity graph does show somewhat successful parallelization when
doing computeBlocksPar and generateBlocksPar.

As the puzzles were not ambiguous, backtracking did not end up being used. For the next steps,
however, backtracking part of the algorithm would likely gain more from parallelization as
multiple placements can be explored concurrently. We can focus on solving smaller nonograms,
but mainly through backtracking.

5.2 Garbage Collection

Figure 6. GC Time vs. MUT Time for Parallel Generate -N8

We also noticed that garbage collection takes up as much time as mutator operations (Figure 6).
This means that a significant portion of the time is spent on managing memory rather than doing
useful work. A future solution could be to try to reduce GC time, perhaps using ParBuffer, which
could help limit memory usage.

6. References

● https://github.com/mikix/nonogram-db
● https://github.com/Arpanio/nonogram
● https://towardsdatascience.com/solving-nonograms-with-120-lines-of-code-a7c6e0f627e

4

https://github.com/mikix/nonogram-db
https://github.com/Arpanio/nonogram
https://towardsdatascience.com/solving-nonograms-with-120-lines-of-code-a7c6e0f627e4
https://towardsdatascience.com/solving-nonograms-with-120-lines-of-code-a7c6e0f627e4

7. Code

7.1 Main.hs

import NonogramSolverPar (solveSequential, solveParallelComputeBlocks,

solveParallelGenerateBlocks, solveParallelComputeGenerate,

solveParallelIterativeSolve, solveFullyParallel)

import System.Environment (getArgs)

main :: IO ()

main = do

putStrLn "Solving Nonogram Puzzle..."

args <- getArgs

case args of

[mode, filePath] ->

case mode of

"--sequential" -> solveSequential filePath

"--parallel-compute" -> solveParallelComputeBlocks filePath

"--parallel-generate" -> solveParallelGenerateBlocks filePath

"--parallel-compute-generate" -> solveParallelComputeGenerate filePath

"--parallel-iterative-solve" -> solveParallelIterativeSolve filePath

"--fully-parallel" -> solveFullyParallel filePath

_ -> putStrLn "Invalid mode. Usage: ./nonogramSolver [--sequential |

--parallel-compute | --parallel-generate | --parallel-compute-generate |

--parallel-iterative-solve | --fully-parallel] <file-path>"

_ -> putStrLn "Usage: ./nonogramSolver [--sequential | --parallel-compute |

--parallel-generate | --parallel-compute-generate | --parallel-iterative-solve |

--fully-parallel] <file-path>"

putStrLn "Puzzle Solved!"

7.2 Parser.hs

module Parser (parseNonogram) where

import NonogramTypes

import Data.List (isPrefixOf, uncons)

import Data.List.Split (splitOn)

import Data.Maybe (mapMaybe)

-- Parse

parseNonogram :: FilePath -> IO Nonogram

parseNonogram path = do

content <- lines <$> readFile path

let titleLine = extractValue "title" content

heightLine = read (extractValue "height" content) :: Int

widthLine = read (extractValue "width" content) :: Int

rowsSection = extractSection "rows" "columns" content

colsSection = extractSection "columns" "goal" content

goalSection = extractValue "goal" content

rowsHints = parseHints rowsSection

colsHints = parseHints colsSection

return Nonogram { title = titleLine, height = heightLine, width = widthLine, rows =

rowsHints, columns = colsHints, goal = goalSection }

-- Extract value from key in file

extractValue :: String -> [String] -> String

extractValue key allLines =

let matchingLines = [line | line <- allLines, key `isPrefixOf` line]

in case uncons matchingLines of

Just (matchingLine, _) -> unquote $ drop (length key + 1) matchingLine

Nothing -> error $ "Key not found: " ++ key -- empty case

where

unquote s = filter (`notElem` "\"") s -- no quotes

-- Extract sections

extractSection :: String -> String -> [String] -> [String]

extractSection startKey endKey allLines =

takeWhile (not . isPrefixOf endKey) . drop 1 . dropWhile (not . isPrefixOf startKey)

$ allLines

-- Parse hints into list of lists of integers

parseHints :: [String] -> [[Int]]

parseHints = mapMaybe safeParseLine

-- Safe parsing of individual lines

safeParseLine :: String -> Maybe [Int]

safeParseLine line =

if null line then Nothing

else Just (map read $ splitOn "," line)

7.3 NonogramTypes.hs

module NonogramTypes (Nonogram(..)) where

-- Data type for representing a Nonogram puzzle

data Nonogram = Nonogram

{ title :: String -- Title of puzzle

, height :: Int -- Height of puzzle grid

, width :: Int -- Width of puzzle grid

, rows :: [[Int]] -- Row constraints (lists of integers)

, columns :: [[Int]] -- Column constraints (lists of integers)

, goal :: String -- (Optional) Goal or solution representation as a string

} deriving (Show)

7.4 NonogramSolverPar.hs

module NonogramSolverPar (solveSequential, solveParallelComputeBlocks,

solveParallelGenerateBlocks, solveParallelComputeGenerate,

solveParallelIterativeSolve, solveFullyParallel) where

import Data.Array

import Data.List (group, transpose, foldl')

import Data.Set (Set)

import qualified Data.Set as Set

import Data.Bits ((.&.), (.|.))

import Parser (parseNonogram)

import NonogramTypes

import Control.Parallel.Strategies (parMap, rdeepseq, rseq)

computeBlocksSeq :: Int -> [Int] -> [[Int]]

computeBlocksSeq lineLength blockLengths = placeBlocks blockLengths 0

where

-- place blocks

placeBlocks :: [Int] -> Int -> [[Int]]

placeBlocks [] _ = [[]] -- No blocks left to place

placeBlocks (b:bs) start

| start + remainingLength > lineLength = []

| otherwise = do

pos <- [start .. lineLength - remainingLength]

rest <- placeBlocks bs (pos + b + 1)

return (pos : rest)

where

-- remaining length

remainingLength = sum (b : bs) + length bs

-- Compute all valid placements of blocks w/ chunked parallelization

computeBlocksPar :: Int -> [Int] -> [[Int]]

computeBlocksPar lineLength blockLengths =

concat $ parMap rdeepseq processChunk (chunkList chunkSize [0 .. lineLength -

totalRemainingLength])

where

totalRemainingLength = sum blockLengths + length blockLengths - 1

chunkSize = 10

-- Divide list into chunks

chunkList :: Int -> [a] -> [[a]]

chunkList _ [] = []

chunkList n xs = take n xs : chunkList n (drop n xs)

-- Process chunk of starting positions

processChunk :: [Int] -> [[Int]]

processChunk positions = concatMap processPosition positions

-- Process single starting position

processPosition :: Int -> [[Int]]

processPosition start = placeBlocks blockLengths start

--Helper to place blocks

placeBlocks :: [Int] -> Int -> [[Int]]

placeBlocks [] _ = [[]] -- No blocks left to place

placeBlocks (b:bs) start

| start + remainingLength > lineLength = []

| otherwise = do

pos <- [start .. lineLength - remainingLength]

rest <- placeBlocks bs (pos + b + 1)

return (pos : rest)

where

remainingLength = sum (b : bs) + length bs

generateBlocksSeq :: [[Int]] -> [Int] -> Int -> [[Int]]

generateBlocksSeq blockStarts blockSizes totalLength =

map (generateBinaryArray blockSizes totalLength) blockStarts

where

generateBinaryArray :: [Int] -> Int -> [Int] -> [Int]

generateBinaryArray sizes len starts = foldl placeBlock (replicate len 0) (zip

starts sizes)

placeBlock :: [Int] -> (Int, Int) -> [Int]

placeBlock arr (start, size) =

take start arr ++ replicate size 1 ++ drop (start + size) arr

-- Parallelized generateBlocks with chunking

generateBlocksPar :: [[Int]] -> [Int] -> Int -> [[Int]]

generateBlocksPar blockStarts blockSizes totalLength =

concat $ parMap rdeepseq processChunk (chunkList chunkSize blockStarts)

where

chunkSize = 10

-- Divide list into chunks

chunkList :: Int -> [a] -> [[a]]

chunkList _ [] = []

chunkList n xs = take n xs : chunkList n (drop n xs)

-- Process chunk of blockStarts

processChunk :: [[Int]] -> [[Int]]

processChunk chunk = map (generateBinaryArray blockSizes totalLength) chunk

-- Generate binary array for single starting configuration

generateBinaryArray :: [Int] -> Int -> [Int] -> [Int]

generateBinaryArray sizes len starts =

foldl' placeBlock (replicate len 0) (zip starts sizes)

-- Place single block in array

placeBlock :: [Int] -> (Int, Int) -> [Int]

placeBlock arr (start, size) =

take start arr ++ replicate size 1 ++ drop (start + size) arr

validGroups :: [Int] -> String -> Bool

validGroups expected line = groupLengths == expected

where

-- Filter out zeroes and compute lengths of groups of ones

groupLengths = map length . filter (all (== '1')) $ group line

--

--

type Constraint = [Int]

type PartialSolution = Array (Int, Int) Int

-- Helper function: Extract groups of 1s from a row/column as strings

extractGroupsAsString :: [Int] -> String

extractGroupsAsString = map toChar

where

toChar 1 = '1'

toChar 0 = '0'

toChar _ = '-'

-- Function to validate single row or column

validateLine :: [Int] -> Constraint -> Bool

validateLine line constraint

| all (== -1) line = True -- Skip untouched lines

| sum (filter (== 1) line) > sum constraint = False -- Exceeding constraints

| any (\x -> x == -1) line && sum (filter (== 1) line) <= sum constraint = True --

Partially solved line

| otherwise = validGroups constraint (extractGroupsAsString line)

-- Main validation function

valid :: [Constraint] -> [Constraint] -> PartialSolution -> Set.Set Int -> Set.Set Int

-> Bool

valid rowArgs colArgs partialSolution completedRows completedCols =

let

-- Get dimensions of grid

((r1, c1), (r2, c2)) = bounds partialSolution

-- Extract localRows and columns from partial solution

localRows = [[partialSolution ! (r, c) | c <- [c1..c2]] | r <- [r1..r2]]

cols = transpose localRows

-- Validate localRows

validRows = all (\(r, row) ->

let

constraint = rowArgs !! r

in

if r `Set.member` completedRows

then validGroups constraint (extractGroupsAsString row)

else validateLine row constraint

) $ zip [0..] localRows

-- Validate columns

validCols = all (\(c, col) ->

let

constraint = colArgs !! c

in

if c `Set.member` completedCols

then validGroups constraint (extractGroupsAsString col)

else validateLine col constraint

) $ zip [0..] cols

in

validRows && validCols

--

--

inferValuesSeq :: PartialSolution -> (Array Int (Set.Set [Int]), Array Int (Set.Set

[Int])) -> PartialSolution

inferValuesSeq partialSolution (rowPlacements, colPlacements) =

let ((r1, c1), (r2, c2)) = bounds partialSolution

numCols = c2 - c1 + 1

numRows = r2 - r1 + 1

-- Update localRows

updatedRows = partialSolution // concat (parMap rseq updateRow [r1..r2])

where

updateRow r =

let placements = Set.toList $ rowPlacements ! r

in if null placements

then [] -- If there are no placements, skip updates for this row

else

let rowOnes = foldl1 (zipWith (.&.)) placements

rowZeros = foldl1 (zipWith (.|.)) placements

inferredRow = inferRowOrCol rowOnes rowZeros

in [((r, c), inferredRow !! c) | c <- [0..numCols - 1],

partialSolution ! (r, c) == -1]

-- Update columns

updatedCols = updatedRows // concatMap updateCol [c1..c2]

where

updateCol c =

let placements = Set.toList $ colPlacements ! c

in if null placements

then [] -- If there are no placements, skip updates for this column

else

let colOnes = foldl1 (zipWith (.&.)) placements

colZeros = foldl1 (zipWith (.|.)) placements

inferredCol = inferRowOrCol colOnes colZeros

in [((r, c), inferredCol !! r) | r <- [0..numRows - 1],

updatedRows ! (r, c) == -1]

in updatedCols

inferValuesPar :: PartialSolution -> (Array Int (Set.Set [Int]), Array Int (Set.Set

[Int])) -> PartialSolution

inferValuesPar partialSolution (rowPlacements, colPlacements) =

let ((r1, c1), (r2, c2)) = bounds partialSolution

numCols = c2 - c1 + 1

-- Parallel update for localRows

updatedRows = partialSolution // concat (parMap rseq updateRow [r1..r2])

where

updateRow r =

let placements = Set.toList $ rowPlacements ! r

in if null placements

then [] -- If there are no placements, skip updates for this row

else

let rowOnes = foldl1 (zipWith (.&.)) placements

rowZeros = foldl1 (zipWith (.|.)) placements

inferredRow = inferRowOrCol rowOnes rowZeros

in [((r, c), inferredRow !! c) | c <- [0..numCols - 1],

partialSolution ! (r, c) == -1]

-- Sequential update for columns (after localRows are done)

numRows = r2 - r1 + 1

updatedCols = updatedRows // concatMap updateCol [c1..c2]

where

updateCol c =

let placements = Set.toList $ colPlacements ! c

in if null placements

then [] -- If there are no placements, skip updates for this column

else

let colOnes = foldl1 (zipWith (.&.)) placements

colZeros = foldl1 (zipWith (.|.)) placements

inferredCol = inferRowOrCol colOnes colZeros

in [((r, c), inferredCol !! r) | r <- [0..numRows - 1],

updatedRows ! (r, c) == -1]

in updatedCols

-- Infer result for row or column based on bitwise results

inferRowOrCol :: [Int] -> [Int] -> [Int]

inferRowOrCol ones zeros =

zipWith resolveCell ones zeros

where

resolveCell 0 1 = -1 -- unknown

resolveCell 1 1 = 1 -- filled (from ones)

resolveCell 0 0 = 0 -- empty (from zeros)

resolveCell _ _ = -1 -- unexpected

--

--

-- Determine completed localRows and columns in solution array

-- Input: 2D array representing current grid state

-- Output: A tuple of two sets. localRows/colCompleted: indices of localRows/cols that

are completed,

-- How: Iterate through localRows and columns, check if all cells are not -1.

updateCompletions :: Array (Int, Int) Int -> (Set Int, Set Int)

updateCompletions solutionArray =

let ((r1, c1), (r2, c2)) = bounds solutionArray

-- Extract localRows and check if all values in each row are not -1

rowsCompleted = Set.fromList [r | r <- [r1..r2], all (/= -1) [solutionArray !

(r, c) | c <- [c1..c2]]]

-- Extract columns and check if all values in each column are not -1

colsCompleted = Set.fromList [c | c <- [c1..c2], all (/= -1) [solutionArray !

(r, c) | r <- [r1..r2]]]

in (rowsCompleted, colsCompleted)

type Placement = [Int]

type PlacementsDict = (Array Int (Set.Set [Int]), Array Int (Set.Set [Int])) --

(rowPlacements, colPlacements)

-- Inputs: solutionArray, rowPlacements & colPlacements, completedRows & completedCols

-- Output: updated Bool (indicates whether it made any updates), PlacementsDict

(updated rowPlacements & colPlacements)

-- Calls: updateRow, isValidRow, updateCol, isValidCol

updatePlacements :: Array (Int, Int) Int -> PlacementsDict -> Set.Set Int -> Set.Set

Int -> (Bool, PlacementsDict)

updatePlacements solutionArray (rowPlacements, colPlacements) completedRows

completedCols =

let

-- Update localRows

(updatedRows, updatedRowPlacements) = processRows solutionArray rowPlacements

completedRows

-- Update columns

(updatedCols, updatedColPlacements) = processColumns solutionArray

colPlacements completedCols

-- Combine results

updated = updatedRows || updatedCols

in

(updated, (updatedRowPlacements, updatedColPlacements))

-- Process localRows: remove completed localRows and validate remaining placements

processRows :: Array (Int, Int) Int -> Array Int (Set.Set Placement) -> Set.Set Int ->

(Bool, Array Int (Set.Set Placement))

processRows solutionArray rowPlacements completedRows =

let

indexesForDeletion = [i | i <- indices rowPlacements, i `Set.member`

completedRows]

validatePlacement rowIdx placement = all isValidCell (zip [0..] placement)

where

isValidCell (cellIdx, value) =

(value /= 0 || solutionArray ! (rowIdx, cellIdx) /= 1) &&

(value /= 1 || solutionArray ! (rowIdx, cellIdx) /= 0)

processRow (rowUpdated, acc) rowIdx

| rowIdx `Set.member` completedRows = (rowUpdated, acc // [(rowIdx,

Set.empty)])

| otherwise =

let

validPlacements = Set.filter (validatePlacement rowIdx)

(rowPlacements ! rowIdx)

in

if validPlacements /= rowPlacements ! rowIdx

then (True, acc // [(rowIdx, validPlacements)]) -- make updates

to acc array

else (rowUpdated, acc)

(updated, newPlacements) = foldl' processRow (False, rowPlacements) (indices

rowPlacements)

in

(updated, newPlacements)

-- Process columns: remove completed columns and validate remaining placements

processColumns :: Array (Int, Int) Int -> Array Int (Set.Set Placement) -> Set.Set Int

-> (Bool, Array Int (Set.Set Placement))

processColumns solutionArray colPlacements completedCols =

let

indexesForDeletion = [i | i <- indices colPlacements, i `Set.member`

completedCols] -- create a list of indices to remove later

validatePlacement colIdx placement = all isValidCell (zip [0..] placement) --

colIdx is index of column being validated, placement is a candidate column placement

where -- iterates over each cell in placement to get row indx and value

isValidCell (cellIdx, value) =

(value /= 0 || solutionArray ! (cellIdx, colIdx) /= 1) &&

(value /= 1 || solutionArray ! (cellIdx, colIdx) /= 0)

processCol (colUpdated, acc) colIdx

| colIdx `Set.member` completedCols = (colUpdated, acc // [(colIdx,

Set.empty)]) -- mark column as empty if completed

| otherwise =

let

validPlacements = Set.filter (validatePlacement colIdx)

(colPlacements ! colIdx)

in

if validPlacements /= colPlacements ! colIdx

then (True, acc // [(colIdx, validPlacements)])

else (colUpdated, acc)

(updated, newPlacements) = foldl' processCol (False, colPlacements) (indices

colPlacements)

in

(updated, newPlacements)

--

--

-- Output: a list of PartialSolution(s)

backtrack :: PartialSolution

-> Array Int (Set [Int]) -- Row placements

-> [Constraint] -- Row constraints

-> [Constraint] -- Column constraints

-> Set Int -- Completed localRows

-> Set Int -- Completed columns

-> [PartialSolution] -- Accumulated solutions

-> [PartialSolution] -- Final list of valid solutions

backtrack solutionArray rowPlacements rowArgs colArgs completedRows completedCols

solutions

| Set.size completedRows == length rowArgs =

-- Base case: if all localRows are completed, add solution to list if unique

if not (any (== solutionArray) solutions)

then solutionArray : solutions

else solutions

| otherwise =

-- Iterate over localRows in rowPlacements

foldl tryPlacement solutions (assocs rowPlacements)

where

-- Try a placement for a given row

tryPlacement :: [PartialSolution] -> (Int, Set.Set [Int]) -> [PartialSolution]

tryPlacement solList (row, options) =

if Set.member row completedRows

then solList -- Skip completed localRows

else foldl (tryOption row) solList (Set.toList options)

-- Try an option for a specific row

tryOption :: Int -> [PartialSolution] -> [Int] -> [PartialSolution]

tryOption row solList option =

let

originalRow = [solutionArray ! (row, col) | col <- colIndices]

updatedSolution = solutionArray // [((row, col), option !! (col - c1)) |

col <- colIndices]

(completedRowsNext, completedColsNext) = updateCompletions updatedSolution

newRowPlacements = rowPlacements // [(row, Set.empty)]

in

if not (valid rowArgs colArgs updatedSolution completedRowsNext

completedColsNext)

then solList

else

-- Append solutions returned from recursive call to current list

backtrack updatedSolution newRowPlacements rowArgs colArgs

completedRowsNext completedColsNext solList

where

((_, c1), (_, c2)) = bounds solutionArray

colIndices = [c1..c2]

iterativeSolveSeq :: PartialSolution

-> PlacementsDict -- Row and column placements

-> [Constraint] -- Row constraints

-> [Constraint] -- Column constraints

-> Set Int -- Completed localRows

-> Set Int -- Completed columns

-> (PartialSolution, PlacementsDict, Set Int, Set Int)

iterativeSolveSeq solutionArray (rowPlacements, colPlacements) rowArgs colArgs

completedRows completedCols =

let

-- Infer values and update completions

inferredSolution = inferValuesSeq solutionArray (rowPlacements, colPlacements)

-- Update completions

(newCompletedRows, newCompletedCols) = updateCompletions inferredSolution

-- Update placements

(updatedFlag, newPlacements) = updatePlacements inferredSolution

(rowPlacements, colPlacements) newCompletedRows newCompletedCols

(newRowPlacements, newColPlacements) = newPlacements

in

if not updatedFlag

then (inferredSolution, (newRowPlacements, newColPlacements), newCompletedRows,

newCompletedCols)

else iterativeSolveSeq inferredSolution (newRowPlacements, newColPlacements)

rowArgs colArgs newCompletedRows newCompletedCols

iterativeSolvePar :: PartialSolution

-> PlacementsDict -- Row and column placements

-> [Constraint] -- Row constraints

-> [Constraint] -- Column constraints

-> Set Int -- Completed localRows

-> Set Int -- Completed columns

-> (PartialSolution, PlacementsDict, Set Int, Set Int)

iterativeSolvePar solutionArray (rowPlacements, colPlacements) rowArgs colArgs

completedRows completedCols =

let

-- Infer values and update completions

inferredSolution = inferValuesPar solutionArray (rowPlacements, colPlacements)

-- Update completions

(newCompletedRows, newCompletedCols) = updateCompletions inferredSolution

-- Update placements

(updatedFlag, newPlacements) = updatePlacements inferredSolution

(rowPlacements, colPlacements) newCompletedRows newCompletedCols

(newRowPlacements, newColPlacements) = newPlacements

in

if not updatedFlag

then (inferredSolution, (newRowPlacements, newColPlacements), newCompletedRows,

newCompletedCols)

else iterativeSolvePar inferredSolution (newRowPlacements, newColPlacements)

rowArgs colArgs newCompletedRows newCompletedCols

--

--

-- Helper to print a solution in a grid format

printSolution :: PartialSolution -> IO ()

printSolution solution = do

let ((r1, c1), (r2, c2)) = bounds solution

mapM_ (putStrLn . concatMap show) [[solution ! (r, c) | c <- [c1..c2]] | r <-

[r1..r2]]

putStrLn "" -- Add a blank line between solutions

-- Generalized solveNonogramFromFile function

solveNonogramFromFile :: (Int -> [Int] -> [[Int]]) -- computeBlocks

function

-> ([[Int]] -> [Int] -> Int -> [[Int]]) -- generateBlocks

function

-> (PartialSolution -> PlacementsDict -> [Constraint] ->

[Constraint] -> Set Int -> Set Int

-> (PartialSolution, PlacementsDict, Set Int, Set Int)) --

iterativeSolve function

-> FilePath -- File path to Nonogram

-> IO ()

solveNonogramFromFile computeBlocksFunc generateBlocksFunc iterativeSolveFunc filePath

= do

-- Parse Nonogram from provided file path

nonogram <- parseNonogram filePath

-- Extract row and column arguments

let rowArgs = rows nonogram

colArgs = columns nonogram

putStrLn $ "\nTitle: " ++ title nonogram

{- putStrLn $ "\nTitle: " ++ title nonogram

putStrLn "Row Hints (rowArgs):"

mapM_ print rowArgs

putStrLn "Column Hints (colArgs):"

mapM_ print colArgs -}

-- Compute row and column vector lengths

let rowVectorLen = length colArgs

let colVectorLen = length rowArgs

-- Compute placements using passed-in functions

let rowPlacements = listArray (0, length rowArgs - 1) $

map (\arg -> Set.fromList (generateBlocksFunc (computeBlocksFunc

rowVectorLen arg) arg rowVectorLen)) rowArgs

let colPlacements = listArray (0, length colArgs - 1) $

map (\arg -> Set.fromList (generateBlocksFunc (computeBlocksFunc

colVectorLen arg) arg colVectorLen)) colArgs

-- Initialize partial solution grid

let partialSolution = array ((0, 0), (length rowArgs - 1, length colArgs - 1))

[((r, c), -1) | r <- [0..length rowArgs - 1], c <- [0..length

colArgs - 1]]

let completedRows = Set.empty

let completedColumns = Set.empty

-- Step 1: Iterative solving

-- putStrLn "\nTesting iterativeSolve...\n"

let placementsDict = (rowPlacements, colPlacements)

let (finalSolution, _, _, _) =

iterativeSolveFunc partialSolution placementsDict rowArgs colArgs

completedRows completedColumns

-- putStrLn "\nFinal Solution:"

printSolution finalSolution

solveNonogramBacktrack :: (Int -> [Int] -> [[Int]]) -- computeBlocks

function

-> ([[Int]] -> [Int] -> Int -> [[Int]]) -- generateBlocks

function

-> (PartialSolution -> Array Int (Set [Int]) -> [Constraint] ->

[Constraint] -> Set Int -> Set Int

-> [PartialSolution] -> [PartialSolution]) -- backtrack

function

-> FilePath -- File path to the

Nonogram

-> IO ()

solveNonogramBacktrack computeBlocksFunc generateBlocksFunc backtrackFunc filePath =

do

-- Parse Nonogram from provided file path

nonogram <- parseNonogram filePath

-- Extract row and column arguments

let rowArgs = rows nonogram

colArgs = columns nonogram

putStrLn $ "\nTitle: " ++ title nonogram

{- putStrLn $ "\nTitle: " ++ title nonogram

putStrLn "Row Hints (rowArgs):"

mapM_ print rowArgs

putStrLn "Column Hints (colArgs):"

mapM_ print colArgs -}

-- Compute row and column vector lengths

let rowVectorLen = length colArgs

let colVectorLen = length rowArgs

-- Compute placements using passed-in functions

let rowPlacements = listArray (0, length rowArgs - 1) $

map (\arg -> Set.fromList (generateBlocksFunc (computeBlocksFunc

rowVectorLen arg) arg rowVectorLen)) rowArgs

let colPlacements = listArray (0, length colArgs - 1) $

map (\arg -> Set.fromList (generateBlocksFunc (computeBlocksFunc

colVectorLen arg) arg colVectorLen)) colArgs

-- Initialize partial solution grid

let partialSolution = array ((0, 0), (length rowArgs - 1, length colArgs - 1))

[((r, c), -1) | r <- [0..length rowArgs - 1], c <- [0..length

colArgs - 1]]

let completedRows = Set.empty

let completedColumns = Set.empty

putStrLn "Solving via backtracking..."

let solutions = backtrack partialSolution rowPlacements rowArgs colArgs

completedRows completedColumns []

putStrLn "Found solutions:"

mapM_ printSolution solutions

--

--

solveSequential :: FilePath -> IO ()

solveSequential = solveNonogramFromFile computeBlocksSeq generateBlocksSeq

iterativeSolveSeq

solveParallelComputeBlocks :: FilePath -> IO ()

solveParallelComputeBlocks = solveNonogramFromFile computeBlocksPar generateBlocksSeq

iterativeSolveSeq

solveParallelGenerateBlocks :: FilePath -> IO ()

solveParallelGenerateBlocks = solveNonogramFromFile computeBlocksSeq generateBlocksPar

iterativeSolveSeq

solveParallelComputeGenerate :: FilePath -> IO ()

solveParallelComputeGenerate = solveNonogramFromFile computeBlocksPar

generateBlocksPar iterativeSolveSeq

solveParallelIterativeSolve :: FilePath -> IO ()

solveParallelIterativeSolve = solveNonogramFromFile computeBlocksSeq generateBlocksSeq

iterativeSolvePar

solveFullyParallel :: FilePath -> IO ()

solveFullyParallel = solveNonogramFromFile computeBlocksPar generateBlocksPar

iterativeSolvePar

7.5 TestNonogramSolver.hs

module Main (main) where

import Test.HUnit

import NonogramSolverPar (solveSequential)

import NonogramTypes (Nonogram(..))

import Parser (parseNonogram)

import Data.Array (Array, bounds, (!))

import System.IO.Silently (capture)

-- test single puzzle

testPuzzle :: FilePath -> Test

testPuzzle puzzlePath = TestCase $ do

-- Parse the puzzle

nonogram <- parseNonogram puzzlePath

-- Check if a goal is provided

let expectedSolution = goal nonogram

if null expectedSolution

then assertFailure $ "No solution provided in puzzle file: " ++ puzzlePath

else do

-- Capture console output

(actualOutput, _) <- capture (solveSequential puzzlePath)

-- Clean and compare output

let actualSolution = cleanOutput actualOutput

assertEqual ("Mismatch for puzzle: " ++ puzzlePath) expectedSolution

actualSolution

-- Helper function to reformat captured output

cleanOutput :: String -> String

cleanOutput = concat . map (filter (`elem` "01")) . lines

-- test cases

tests :: Test

tests = TestList

[testPuzzle "test/test_cases/bloop.txt",

testPuzzle "test/test_cases/spade.txt"]

-- Run the tests

main :: IO ()

main = do

testResults <- runTestTT tests

print testResults

