Parallel Functional
Programming Final Project

Othello
Noam Hirschorn Dan Ilvanovich

Background

e Othello is two players placing
different colors of tiles on a board
o More tiles of your color = more points
e Starting code had minmax search
tree for an Al option to play moves
o Had a full GUI to allow player vs

computer
o No alpha beta pruning

Initial Steps |

e Disable GUI

e Read position from file
o Adjust inputs and create sample game
states

e Add alpha beta pruning
e Allow setting depth of search tree
e Print resulting game board and move

Tumn for Red

Initial parallelization

e Used parMap
e Multiple issues
o Many Sparks fizzling/GC’ing
m Due to nested/recursive
parallelization calls
o Dependency issues
m Only 1 thread running at a time
m Threads waiting on each other for
alpha beta values
m Need to use rdeepseq to force
parallel evaluation

HECO

HEC1

HEC2

HEC3

U.39s U.390S5 v.45 U.4UDS v.41s v.aL

i T B O 7 O [O A A
| | | | I | | I | I | | I I =

Parallelization theories

e Top down idea
o Parallelize top rows as much as possible
m Everything below top rows are just fully run in parallel
m |dea - parallelize within a ‘parallelized subtree’

e Side side

o Parallelize every child of every node at one row
o After each node, move on to next one
o Lose less alpha beta knowledge than when silo’d like top down

e Recursive parallelization is wasteful

o Leads to fizzling/GC’ing as duplicate sparks are made
o Go with Side Side ideas
o Add input of parallelDepth for what row to parallelize on in search tree

Our Improvements Over Time...

Percent Speedup (Over 1 Thread)

Parallelization Comparison for all Approaches

50
e —————
0 il
—
-50
-100

2 4 6 8

Number of Threads

parBuffer-based
Parallelization

parMap-based
Parallelization

Original Code
Main_side_side
Main_top_down
side_side_3
side_side_4
side_side 5

side_side_6

Improvement Attempts

1imeune

® I ntrod uce eXpI ICIt Ch u n kl ng based On (50ms 0.1s 10.,15,5, 0]25‘ . I0,255) l0..35l 0.35s 0.4s 0.45s 0.5s 0.55s 0.6s 0.65s

number of threads
o If anything, negative effect

LR (O QOO YT TRl R L T T T R O
e Use chunksOf
o Theory - divide moves left by number of CINL (O QCTIT LT T AT N T (T T
threads (L D T T R R T T
o Balanced search tree, so just adds

(W VR0 0O 0D 0N 0 1) A 0 0 AR
overhead

Time Heap GC| Sparkstats |Sparksizes Processinfo Raw events
HEC Total Converted Overflowed Dud GCed Fizzled

Total 948 540 0 0 292 116

HECO 0 139 0 0 0 23
HEC1 0 155 0 0 0 1
HEC2 503 126 0 0 177 43

Improvement Attempts cont.

2Q
e Attempted to allow threads which R o e e B e o R e
finish early to move on to next node W
o Require excess thread communication INNN WNRAN/NRARUN) NRUNEN| ANNNRNRIRY UNANRN NAUNAARN NANUN WRNEN NUNRNMNARUR (AN |
about current alpha beta values A —— __., —
o Difficult stopping thread once on path B i e e e e
now pruned _ NARRNN NRRUN NEIREN RNNEAR ANRERUN| (UNRRRE (NURRNIL (WO RUNN WARAE RANNI) DREE |
o Relatively low idleness anyways
e Abandoned effort e R e T
o Difficulty getting a working version i arsns

roductivity: 97.0% of mutator vs total

o Overhead from communication almost
certain to outweigh benefits

Final improvement attempts

Timeline

e Start using parBuffer in case threads need s wm 0w om ox om ox om 0w 0w on o o
work to do
o Changed distribution of results, but not m
necessarily positive

o Competitive as a final version Heco OO 0 AN O N A
e Attempted to use parListChunk to try to
see if worked better with chunksOf
o Error - forgot to change function call - only

noticed when preparing report LINTELLECLT TR T LT LI L LT LT LT LD
Actually was doing basic parMap
Appeared to end up being best version

Hect NUERANNNNNN W A N NN NN |

e | T A R W R NN R B B R I NN N IR NN NN TN

A |0t Of tlme Spent tlnkerlng Time |Heap GC Sparkstats Sparksizes Processinfo Raw events
“: » . Total time: 636.737ms
m Apparent “improvements” on this Mutator time: 617.062ms
. . GCtime: 19.675ms
JUSt due to noise Productivity: 96.9% of mutator vs total

o Tried intended version - disappointing
results

1ts. 0.637s)

Runtime (seconds)

parBuffer-based and parMap-based Parallelization

Performance of Decision-Making Process vs Threads Given Decision-Making Process Performance Gains
== QOriginal Code == parBuffer-based Parallelization == parMap-based Parallelization == parBuffer-based Parallelization == parMap-based Parallelization
125 Amdahl's Law with 25% Parallelization
40

g

1.00 0
= 30 /_____
E =

0.75 O
= 20
=
o
3

0.50 & 10
€
g
[

0.25 o 0

2 4 6 8 2 4 6 8
Number of Threads Number of Threads

All data collected while running at depth = 5, parallelDepth =4, starting board = custom_game_2

Timeline

Activity

HEC 0

HEC 1

HEC2

HEC3

parBuffer-based and parMap-based Parallelization

0s 50ms 0.1s 0.15s 0.2s 0.25s 03s 0.35s 0.4s 0.45s 0.5s 0.55s 0.6s

coea e bty by vy bty by v ety e by s by

Time |Heap GC Sparkstats Sparksizes Processinfo Raw events

Total time:

636.737ms

Mutator time: 617.062ms

GCtime:
Productivity:

1ts. 0.637s)

19.675ms
96.9% of mutator vs total

parBuffer-based

aQ

neline
0s 50ms 0.1s 0.15s 0.2s 0.25s 03s 035s 0.4s 0.45s 05s 0.55s 0.65 0.655
ritrenind nrirend Bt inorenund ndndnenll Bt Enensrind enendrrd Bnindni it Bnensrond Bnondnnsd Brentrond e nsnind Erend
tivity
= TNNNNN (RN NSNNUN NNONNN| ANSNNANEN ONANEN NRUNENEN ENRN AN NN | . |
£ UMY NUNNNNNINEN NNONNN]ANNNNOND (NANEND NNONEND 0 NNE0D ENNNE) NONENI (NENINN N
<2 | ENNNTICHN [OOMNT (AR (AR M (NATAMNN NNIANON RN (N AN INNARIN AN
2 AR (MU (WSNWAN OSN) ENNRTN | NHNANN (NWUNNE W WA |0 D TMATINN | | NN
me |Heap GC Sparkstats Sparksizes Processinfo Raw events
otal time: 680.896ms
futator time: 660.752ms
iCtime: 20.144ms
roductivity: 97.0% of mutator vs total

parMap-based

Reflection on process/Conclusion

e Obvious mistake not updating function call
e Turning off alpha beta low effect on relative speedup
o Suggests losing info from there not main issue holding back results

e Final code implied code a bit over 25% parallelizable
o Consistent across sizes of search tree

e Most sparks still converted

Theory - main cause of sequentialism was due S = : -
to adaptation from codebase (1-P)+y
P 1
Maybe a background function slowing things y P=351
2 1 N N
down” 5 3—1=§—N N—§
1-N N-1

