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Background

e Othello is two players placing
different colors of tiles on a board
o More tiles of your color = more points
e Starting code had minmax search
tree for an Al option to play moves
o Had a full GUI to allow player vs

computer
o No alpha beta pruning




Initial Steps |

e Disable GUI

e Read position from file
o  Adjust inputs and create sample game
states

e Add alpha beta pruning
e Allow setting depth of search tree
e Print resulting game board and move
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Initial parallelization

e Used parMap
e Multiple issues
o  Many Sparks fizzling/GC’ing
m  Due to nested/recursive
parallelization calls
o  Dependency issues
m  Only 1 thread running at a time
m Threads waiting on each other for
alpha beta values
m Need to use rdeepseq to force
parallel evaluation
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Parallelization theories

e Top down idea
o Parallelize top rows as much as possible
m Everything below top rows are just fully run in parallel
m |dea - parallelize within a ‘parallelized subtree’

e Side side

o Parallelize every child of every node at one row
o After each node, move on to next one
o Lose less alpha beta knowledge than when silo’d like top down

e Recursive parallelization is wasteful

o Leads to fizzling/GC’ing as duplicate sparks are made
o Go with Side Side ideas
o Add input of parallelDepth for what row to parallelize on in search tree



Our Improvements Over Time...
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Improvement Attempts
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o  If anything, negative effect
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o  Balanced search tree, so just adds
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Time Heap GC| Sparkstats |Sparksizes Processinfo Raw events
HEC Total Converted Overflowed Dud GCed Fizzled

Total 948 540 0 0 292 116

HECO 0 139 0 0 0 23
HEC1 0 155 0 0 0 1
HEC2 503 126 0 0 177 43




Improvement Attempts cont.

2Q
e Attempted to allow threads which R o e e B e o R e
finish early to move on to next node W
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o Relatively low idleness anyways
e Abandoned effort e R e T
o Difficulty getting a working version i arsns

roductivity: 97.0% of mutator vs total

o  Overhead from communication almost
certain to outweigh benefits



Final improvement attempts

Timeline

e Start using parBuffer in case threads need s wm 0w om ox  om ox  om 0w 0w on o o
work to do
o  Changed distribution of results, but not m
necessarily positive

o  Competitive as a final version Heco OO 0 AN O N A
e Attempted to use parListChunk to try to
see if worked better with chunksOf
o  Error - forgot to change function call - only

noticed when preparing report LINTELLECLT TR T LT LI L LT LT LT LD
Actually was doing basic parMap
Appeared to end up being best version
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A |0t Of tlme Spent tlnkerlng Time |Heap GC Sparkstats Sparksizes Processinfo Raw events
“: » . Total time: 636.737ms
m  Apparent “improvements” on this Mutator time: 617.062ms
. . GCtime: 19.675ms
JUSt due to noise Productivity: 96.9% of mutator vs total

o  Tried intended version - disappointing
results
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Runtime (seconds)

parBuffer-based and parMap-based Parallelization

Performance of Decision-Making Process vs Threads Given Decision-Making Process Performance Gains
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All data collected while running at depth = 5, parallelDepth =4, starting board = custom_game_2



Timeline

Activity
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Reflection on process/Conclusion

e Obvious mistake not updating function call
e Turning off alpha beta low effect on relative speedup
o Suggests losing info from there not main issue holding back results

e Final code implied code a bit over 25% parallelizable
o Consistent across sizes of search tree

e Most sparks still converted

Theory - main cause of sequentialism was due S = : -
to adaptation from codebase (1-P)+y
P 1
Maybe a background function slowing things y P=351
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