
Parallel Functional 
Programming Final Project

Othello
Noam Hirschorn Dan Ivanovich



Background

● Othello is two players placing 
different colors of tiles on a board

○ More tiles of your color = more points
● Starting code had minmax search 

tree for an AI option to play moves
○ Had a full GUI to allow player vs 

computer
○ No alpha beta pruning



Initial Steps

● Disable GUI
● Read position from file

○ Adjust inputs and create sample game 
states

● Add alpha beta pruning
● Allow setting depth of search tree
● Print resulting game board and move



Initial parallelization

● Used parMap
● Multiple issues

○ Many Sparks fizzling/GC’ing
■ Due to nested/recursive 

parallelization calls
○ Dependency issues

■ Only 1 thread running at a time
■ Threads waiting on each other for 

alpha beta values
■ Need to use rdeepseq to force 

parallel evaluation



Parallelization theories

● Top down idea
○ Parallelize top rows as much as possible

■ Everything below top rows are just fully run in parallel
■ Idea - parallelize within a ‘parallelized subtree’

● Side side
○ Parallelize every child of every node at one row
○ After each node, move on to next one
○ Lose less alpha beta knowledge than when silo’d like top down

● Recursive parallelization is wasteful
○ Leads to fizzling/GC’ing as duplicate sparks are made
○ Go with Side Side ideas
○ Add input of parallelDepth for what row to parallelize on in search tree



Our Improvements Over Time…



Improvement Attempts

● Introduce explicit chunking based on 
number of threads

○ If anything, negative effect
● Use chunksOf

○ Theory - divide moves left by number of 
threads

○ Balanced search tree, so just adds 
overhead



Improvement Attempts cont.

● Attempted to allow threads which 
finish early to move on to next node

○ Require excess thread communication 
about current alpha beta values

○ Difficult stopping thread once on path 
now pruned

○ Relatively low idleness anyways
● Abandoned effort

○ Difficulty getting a working version
○ Overhead from communication almost 

certain to outweigh benefits



Final improvement attempts

● Start using parBuffer in case threads need 
work to do

○ Changed distribution of results, but not 
necessarily positive

○ Competitive as a final version
● Attempted to use parListChunk to try to 

see if worked better with chunksOf
○ Error - forgot to change function call - only 

noticed when preparing report
○ Actually was doing basic parMap
○ Appeared to end up being best version
○ A lot of time spent tinkering

■ Apparent “improvements” on this 
just due to noise

○ Tried intended version - disappointing 
results



parBuffer-based and parMap-based Parallelization

All data collected while running at depth = 5, parallelDepth =4, starting board = custom_game_2



parBuffer-based and parMap-based Parallelization

parMap-basedparBuffer-based



Reflection on process/Conclusion

● Obvious mistake not updating function call
● Turning off alpha beta low effect on relative speedup

○ Suggests losing info from there not main issue holding back results
● Final code implied code a bit over 25% parallelizable

○ Consistent across sizes of search tree
● Most sparks still converted

Theory - main cause of sequentialism was due 
to adaptation from codebase

Maybe a background function slowing things 
down?


