
ShockNet

By Nicholas Ching (nc2935), Erica Choi (eyc2130)

Parallelizing Financial Contagion Modeling

ShockNet Presentation

Table of Contents

1

2

3

4

5

Context for Financial Contagion Modeling

Problem Formalization

An overview of our process

How we approached parallelism

Findings

ShockNet Presentation

Why Financial Contagion Modeling

ShockNet Presentation

The banking system is fundamentally linked. If one bank fails, what other banks will fail?

This problem is a graph problem

Given a seed set which neighbors will eventually fail?

The problem with stochasticity

● Need to use monte carlo simulations to
model realistic spread

● When graphs become exponentially large,
we are limited by computer / time

Parallelism is the answer

The Problem More Formally

ShockNet Presentation

Modeling financial shocks is an example of influence maximization. Our project focuses on the
Independent Cascade Model (ICM)

Representing the network

Directed Graph: G = (V, E) where V denotes a set of
entities and E denotes the set of relationships.

Each edge has an assigned weight w(e) ∈ [0.1, 0.5]
representing the probability of influence propagation

Objective

Given some seed set S, compute the expected
number of “infected” nodes within the network

The Independent Cascade Model Algorithm

1. Mark the nodes in S as infected.
2. For each neighbor e of infected nodes, generate a

random number r ∈ [0, 1]. If r ≤ w(e), e is added to the
set of infected nodes.

3. Repeat step 2 until no new nodes are infected.
4. The output of the simulation is the size of the infected

nodes.
5. Repeat steps 1~4 N times and take the average of the

outputs

Approaching Monte Carlo

ShockNet Presentation

Parallelizing the ICM is about parallelizing Monte Carlo. Its instructive, but there are some tricks

● Simulations are encapsulated. There is minimal
data exchange between each simulation

● Each trial is fundamentally independent.

● No global state

Properties that make monte carlo parallelizable

In theory, Monte Carlo is embarrassingly parallel

Techniques we used

● Static Chunking

● parMap & rdeepseq

● Split Random Generation (more on this later)

Should technically speed things up…

But…

ShockNet Presentation

An overview of our development

ShockNet Presentation

Theory can only take you so far…

Sequential Implementation

Compute Time: 7m 14s

● Base implementation of
Graph Building

● Implementation of
Independent Cascade Model

● First implementation of Monte
Carlo Simulations

Unoptimized Parallelization Optimized Parallelization

Compute Time: 13m 14s

● Utilize static chunking

● Utilize parMap and rdeepseq

● Terrible execution time
because of singular random
number generator

Compute Time: 1m 10s

● Utilize static chunking

● Utilize parMap and rdeepseq

● Utilize stdgen to split random
number generator

Our First Implementation

ShockNet Presentation

Chunk 1

Chunk 2

Core 1

Core 2

Average
Influence

On paper this works. We distribute workload across cores, but are facing a problem

Why our first iteration failed

ShockNet Presentation

Chunk 1

Chunk 2

Core 1

Core 2

Average
Influence

All of these simulations are accessing a single random number generator (RandomRIO)

RNG

 Recall that each simulation makes calls to the RNG for each recursive propagation.
Multiplied by thousands of simulations and you have a HUGE bottleneck

Optimized Version

ShockNet Presentation

Chunk 1

Chunk 2

Core 1

Core 2

Average
Influence

Creating independent RNG’s solves the bottleneck and gives us statistical independence.

RNG 1

RNG 3

RNG 2

RNG 4

RNG 5 RNG 6

RNG 7 RNG 8

What Haskell features did we use?

ShockNet Presentation

Haskell makes parallelization easier…

parMap rdeepseq

● Abstract chunk distribution to
available cores

● Creates spark to be processed in
parallel

● No need for low-level operations

● Ensure each parallel chunk of work
is fully evaluated

● “Forces” the compiler to fully
execute parallel work instead of
returning thunks

From Haskell, we avoid the need to manually handle mutable data states, data races and synchronization primitives

Findings

ShockNet Presentation

Optimized Parallel ICM Threadscope Spark usage Parallel ICM scope

Questions?

ShockNet Presentation

Appendix: How are we building graphs?

ShockNet Presentation

● Randomly pick a pair from the set of
available nodes. Only keep unique pairs

● Randomly assign each pair a random
weight between [0.1, 0.5]

● Take the list of weighted edges and create
a graph data structure.

What we are given

● Number of nodes our graph will have
● Number of edges we want
● An empty set

● Gr() a b: A Gr is a parameterized graph type where:
○ a is the type of data stored at each node.
○ b is the type of data stored on each edge.

● The tree structure we are using is haskell’s patriciaTree
implementation

● Just searched online for tree structures to use.

● Its efficient, and has some abstractions that we take
advantage (like lsuc which gets successor nodes)

Appendix: How does split work?

ShockNet Presentation

We are recursively splitting stdGen

[stdGen,
 snd (split stdGen),
 snd (split (snd (split stdGen))),
 snd (split (snd (split (snd (split stdGen))))),
 …
]

● Split will take StdGen as input, and return
two StdGen type classes

● We use this function to split StdGen into as
many simulations as we want to run,

Appendix: Aggregating Results

ShockNet Presentation

● In this case, each chunk gives us an
intermediate result.

● These intermediate results are a part of the list
[b], and are summed to get a final result

● We are doing most of the summing
computations in parallel. (only chunk
computations sequentially)

● This approach reduces the number of
calculations for free

