

ShockNet

Parallelizing Financial Contagion Modeling

By Nicholas Ching (nc2935), Erica Choi (eyc2130)

Table of Contents

1

An overview of our process

5

How we approached parallelism

Findings

Why Financial Contagion Modeling

The banking system is fundamentally linked. If one bank fails, what other banks will fail?

This problem is a graph problem

Given a seed set which neighbors will eventually fail?

The problem with stochasticity

- Need to use monte carlo simulations to model realistic spread
- When graphs become exponentially large, we are limited by computer / time

Parallelism is the answer

The Problem More Formally

Modeling financial shocks is an example of influence maximization. Our project focuses on the Independent Cascade Model (ICM)

Representing the network

Directed Graph: *G = (V, E)* where *V* denotes a set of entities and *E* denotes the set of relationships.

Each edge has an assigned weight $w(e) \in [0.1, 0.5]$ representing the probability of influence propagation

Objective

Given some seed set *S*, compute the expected number of "infected" nodes within the network

The Independent Cascade Model Algorithm

- 1. Mark the nodes in *S* as infected.
- 2. For each neighbor *e* of infected nodes, generate a random number $r \in [0, 1]$. If $r \leq w(e)$, e is added to the set of infected nodes.
- 3. Repeat step 2 until no new nodes are infected.
- 4. The output of the simulation is the size of the infected nodes.
- 5. Repeat steps 1~4 N times and take the average of the outputs

Approaching Monte Carlo

Parallelizing the ICM is about parallelizing Monte Carlo. Its instructive, but there are some tricks

Properties that make monte carlo parallelizable

- Simulations are encapsulated. There is minimal data exchange between each simulation
- Each trial is fundamentally independent.
- No global state

In theory, Monte Carlo is embarrassingly parallel

Techniques we used

- **Static Chunking**
- parMap & rdeepseq
- Split Random Generation (more on this later)

Should technically speed things up…

But…

ShockNet Presentation

An overview of our development

Theory can only take you so far…

Sequential Implementation

Compute Time: 7m 14s

- **Base implementation of** Graph Building
- Implementation of Independent Cascade Model
- First implementation of Monte Carlo Simulations

Unoptimized Parallelization **Development Contract Parallelization**

Compute Time: 13m 14s

- Utilize static chunking
- Utilize parMap and rdeepseq
- **Terrible execution time** because of **singular random number generator**

Compute Time: 1m 10s

- Utilize static chunking
- Utilize parMap and rdeepseq
- Utilize stdgen to split random number generator

Our First Implementation

On paper this works. We distribute workload across cores, but are facing a problem

Why our first iteration failed

All of these simulations are accessing a single random number generator (RandomRIO)

 Recall that each simulation makes calls to the RNG for each recursive propagation. Multiplied by thousands of simulations and you have **a HUGE bottleneck**

ShockNet Presentation

Optimized Version

Creating independent RNG's **solves the bottleneck** and gives us **statistical independence**.

What Haskell features did we use?

Haskell makes parallelization easier…

- Creates spark to be processed in parallel
- No need for low-level operations
-
- "Forces" the compiler to fully execute parallel work instead of returning thunks

From Haskell, we avoid the need to manually handle mutable data states, data races and synchronization primitives

Findings

Optimized Parallel ICM Threadscope Spark usage Parallel ICM scope

Questions?

ShockNet Presentation

Appendix: How are we building graphs?

What we are given

- Number of nodes our graph will have
- Number of edges we want
- An empty set

- Randomly pick a pair from the set of available nodes. Only keep unique pairs
- Randomly assign each pair a random weight between [0.1, 0.5]
- Take the list of weighted edges and create a graph data structure.
- $Gr()$ a b: A Gr is a parameterized graph type where:
	- a is the type of data stored at each node.
	- b is the type of data stored on each edge.
- The tree structure we are using is haskell's patriciaTree implementation
- Just searched online for tree structures to use.
- Its efficient, and has some abstractions that we take advantage (like lsuc which gets successor nodes)

Appendix: How does split work?

stdGen <- getStdGen let gens = take numSims \$ iterate (snd . split) stdGen

split :: $g \rightarrow (g, g)$

We are recursively splitting stdGen

stdGen.

 …]

snd (split stdGen),

 snd (split (snd (split stdGen))), snd (split (snd (split (snd (split stdGen))))), Split will take StdGen as input, and return two StdGen type classes

● We use this function to split StdGen into as many simulations as we want to run,

Appendix: Aggregating Results

let results = parMap rdeepseq (\genChunk -> sum [evalRand (simulateOnce graph seeds) gen | gen <- genChunk] chunks

$$
parMap :: Strategy b \rightarrow (a \rightarrow b) \rightarrow [a] \rightarrow [b]
$$

rdeepseq :: NFData a => Strategy a

rdeepsed fully evaluates its argument.

- In this case, each chunk gives us an intermediate result.
- These intermediate results are a part of the list [b], and are summed to get a final result
- We are doing most of the summing computations in parallel. (only chunk computations sequentially)
- This approach reduces the number of calculations for free