
Project Report: Optimizing Financial
Contagion Modeling

Erica Choi (eyc2130), Nick Ching (nc2935)

November 17, 2024

View our GitHub repository

Abstract

The propagation of financial shocks across interconnected systems represents a crit-
ical challenge in understanding and managing systemic risk. Accordingly, Influence
Maximization (IM) problems offer a framework for modeling the diffusion of financial
shocks in a network. However, the computational expense of existing methods, often
reliant on sequential Monte Carlo simulations limit the scale and scope of IM models.
This report presents a parallelized implementation of the greedy algorithm for the In-
dependent Cascade Model (ICM). Utilizing Haskell, our results will demonstrate that
parallelization accomplishes significant reductions in computation time, enabling more
complex analysis of financial shock propagation. This work showcases the effectiveness
of parallelism in computational finance.

1

https://github.com/nick-ching23/ShockNet

1 Background

The study of cascading failures in networks, such as financial contagion, draws on models like
the Independent Cascade Model (ICM), a probabilistic framework widely used in influence
maximization and diffusion studies. In financial systems, entities can propagate shocks to
their neighbors, potentially leading to widespread failures. Identifying the degree of influence
propagation that certain institutions have is useful in systemic risk analysis.

The influence maximization problem, introduced by Domingos and Richardson [1], seeks
to identify a set of nodes in a network that maximizes the spread of influence under models
like ICM. While greedy algorithms have been proven to provide near-optimal solutions with
provable guarantees, their reliance on Monte Carlo simulations makes them computationally
expensive for large graphs.

Haskell, with its concurrency model and parallel computation features, offers a promising
platform for implementing scalable solutions. This project develops a scalable tool that,
given a set of institutions of interest as an input, metricizes the expected effect of financial
shock in the network.

2 Problem Formulation

The problem is formalized as follows: given a financial network represented as a directed
graph G = (V,E) where V denotes the set of entities (nodes) and E is the set of relationships
(edges), each edge e ∈ E is assigned a weight w(e) ∈ [0.1, 0.5] representing the probability
of influence propagation.
Given a seed set S ⊆ V , the Independent Cascade Model (ICM) simulates the probabilistic
diffusion of influence as follows:

1. Initially, all nodes in S are active, and all other nodes are inactive.

2. At each iteration, active nodes attempt to activate their inactive neighbors with a
probability defined by the edge weight.

3. The process continues until no new nodes are activated.

The objective is to compute the expected number of influenced nodes in V given a subset
(the seed set) S ⊆ V . In this report, we focus on the case when |S| = 1, which can be easily
generalized to the case where |S| > 1. Due to the stochastic nature of the ICM, Monte Carlo
simulations are typically used, which is computationally expensive.
This project thus focuses on optimizing the ICM’s computation using parallelism to improve
efficiency and scalability.

2

3 Methodology

Development of our program evolved over three phases, each building on insights from the
previous.

3.1 Phase 1: Sequential Greedy Implementation

As a baseline, we implemented a sequential greedy algorithm for the ICM. This version
iteratively computes the influence spread of a given seed set S using Monte Carlo simulations.
Each simulation follows the probabilistic activation rules of the ICM, with random number
generation driving the diffusion process. The sequential approach demonstrated significant
computational overhead, particularly for larger graphs and high numbers of simulations.

3.2 Phase 2: Näıve Parallelization

In the second phase, we attempted to parallelize the Monte Carlo simulations by dividing
the total number of simulations across multiple cores. While the algorithm successfully dis-
tributed the simulations, the implementation relied on a shared random number generator,
introducing catastrophic inefficiencies. As a result, the näıve parallelized version exhibited
slower performance than the sequential greedy implementation. This highlighted the impor-
tance of managing random number generation in parallelized stochastic simulations.

3.3 Phase 3: Fully Parallelized Implementation

In the final phase, we developed a fully parallelized version of the ICM that addressed the
inefficiencies in the random number generation. By utilizing getStdGen, which allows ran-
dom number generators to be split and assigned to each parallel thread, we ensured that
simulations ran concurrently without interference. This corrected implementation lever-
aged Haskell’s Control.Parallel.Strategies to divide simulations into chunks distributed
across multiple cores.

3.4 Benchmarking and Analysis

Each implementation was benchmarked on graphs with 30,000 nodes and 300,000 weighted
edges, running 1,000 Monte Carlo simulations for each graph. Performance metrics include:

• Execution Time: Measured for each implementation to evaluate computational effi-
ciency.

• Scalability: Assessed by running the algorithms on graphs of increasing size and
complexity.

• Correctness: Verified by comparing the influence spread results across all implemen-
tations.

3

4 Implementation

The following algorithms in pseudocode illustrate our implementation of parallelization
strategies for the Independent Cascade Model (ICM). This section focuses on the ICM execu-
tion rather than the preliminary steps required to construct the underlying graph structures.
For details regarding the general procedures used to build each graph, please refer to Ap-
pendix A.

Algorithm 1 Näıve ICM

Inputs: - Graph G = (V,E) with edge probabilities wuv, - Seed set S, - Number of simula-
tions numSim,

1: function IndependentCascade(G,S):
2: activated← S, current← S
3: while current ̸= ∅ do:
4: newlyActivated← ∅
5: for u ∈ current do:
6: for (v, w) ∈ neighbors(u,G) do:
7: if v /∈ activated and random(0, 1) ≤ w then:
8: newlyActivated← newlyActivated ∪ {v}
9: end if
10: end for
11: end for
12: activated← activated ∪ newlyActivated, current← newlyActivated
13: end while
14: return activated
15: end function
16: function MonteCarloSimulation(G,S, numSim):
17: return 1

numSim

∑numSim
i=1 |IndependentCascade(G,S)|

18: end function

4

Algorithm 2 Parallelized ICM

Inputs: - Graph G = (V,E) with edge probabilities wuv, - Seed set S, - Number of simula-
tions numSim, - Available cores: getNumCapabilities(),

1: function IndependentCascade(G,S):
2: activated← S, current← S
3: while current ̸= ∅ do:
4: newlyActivated← ∅
5: for u ∈ current do:
6: for (v, w) ∈ neighbors(u,G) do:
7: if v /∈ activated and random(0, 1) ≤ w then:
8: newlyActivated← newlyActivated ∪ {v}
9: end if
10: end for
11: end for
12: activated← activated ∪ newlyActivated, current← newlyActivated
13: end while
14: return |activated|
15: end function
16: function MonteCarloSimulation(G,S, numSim):
17: cores← getNumCapabilities()
18: gens← take(numSims, iterate(λg : snd(split(g)), stdGen))
19: chunkSize← ⌈numSim/cores⌉
20: chunks← chunkList([1, . . . , numSim], chunkSize)
21: partialResults← parMap(λc : simulateChunk(G,S, c), chunks)
22: return

∑
(partialResults)/numSim

23: end function
24: function simulateChunk(G,S, chunk):
25: result← 0
26: for i ∈ chunk do:
27: result← result+ IndependentCascade(G,S)
28: end for
29: return result
30: end function
31: function chunkList(list, size):
32: return Divide list into sublists of at most size elements
33: end function

5

5 Parallelization Techniques

Our project utilizes Haskell’s parallelization primitives to execute the ICM monte carlo
simulations across multiple cores. In doing so, we are able to accomplish significant speedup.

5.1 Chunking Simulations

Rather than sequentially executing each simulation, the monteCarloSimulation function
chunks the total number of simulations to be executed on separate CPU cores in parallel. The
getNumCapabilities function will return the number of cores available and, by extension,
how many chunks to make.

5.2 parMap and rdeepseq for Parallel Evaluation

Utilizing parMap and rdeepseq, we are able to evaluate each chunk in parallel. In particular,
parMap allows us to compute parallel functions over a set list, and rdeepseq ensures that
the computations are fully evaluated. This guarantees that we will not be considering lazy
thunks before aggregating the final result.
In particular, we do get a benefit to using parMap. In our case, parMap will return a list of
partial computations representing each chunk’s summation of propagation. Only after each
chunk has been computed do we sum the list of partial computations. This means that the
vast majority of additions are done in parallel, improving computation time.

5.3 Random number generation

An initial problem we faced with a näıve implementation of parallelization is the random
number generation. In our initial implementation that used randomRIO, the runtime of the
simulations actually proved to be significantly worse than the sequential implementation’s.

This slowdown resulted from multiple threads attempting to use a single global random
number generator that resulted in conflicts. We addressed this issue by obtaining the global
standard generator, StdGen, from getStdGen. Subsequently, using the split function to
create a list of independent random number generators.

Each simulation receives a distinct StdGen from the generated list of random number gen-
erators. This optimization kills two birds with one stone. It firstly avoids unnecessary
resource contention, but also ensures statistical independence for each simulation thereby
guaranteeing correctness

5.4 Impact of parallelization techniques

By chunking our simulations and simultaneously processing each chunk, idle CPU time is
significantly decreased. Given that each simulation is independent, and the independent
nature of Monte Carlo simulations, our code is able to effectively reduce computation time
with an increase in computing power.

6

6 Results

6.1 Summary

The following table represents the conclusions of our progressive parallelization of the ICM
model. At first glance, it becomes immediately apparent that the näıve parallel implemen-
tation of the ICM model showed significant slowdowns. This reflects the incorrect usage of
random number generators, which acted as a bottle-neck for each thread.

Method Time to Complete (s)
Sequential Implementation 434.379
Näıve Parallel ICM 803.318
Parallel ICM 70.726

Table 1: Comparison of three approaches to the ICM simulation.

However, after resolving the bottleneck our optimized solution accomplished a 6.14x speedup.
And optimized parallelization achieves an 11.36x speedup over the näıve parallel ICM im-
plementation.

6.2 Optimized Parallel ICM Sparks

This run utilized 12 capabilities, creating 12 sparks to parallelize the computations. Of these,
11 sparks converted into useful parallel tasks, while one fizzled (became unnecessary). Our
program still effectively parallelized the workload of multiple Monte Carlo simulations.

7

6.3 Optimized Parallel ICM Threadscope

From Threadscope, it becomes apparent that we are getting very consistent CPU usage,
indicating that the workload is well balanced amongst each of the available cores. This is a
further sign of the successful parallelization of the ICM model’s Monte Carlo simulations.

8

Appendix A: Graph Construction Details

Here we provide the details of the graph construction process used in our experiments. The
pseudocode and functions below complement the main text, offering a thorough explanation
of how the nodes and edges are generated.

Node and Edge Setup

We begin with N nodes, labeled from 0 to N − 1. The graph is constructed by generating
E unique directed edges. Each edge is assigned a probability weight chosen uniformly at
random within the range [0.1, 0.5].

Algorithm 3 Graph Construction Pseudocode

1: function generateUniqueEdges(n):
2: S ← ∅
3: while |S| < n do:
4: i← randomInt(0, N − 1)
5: j ← randomInt(0, N − 1)
6: if i ̸= j then:
7: S ← S ∪ {(i, j)}
8: end if
9: end while
10: return list(S)
11: end function
12: function generateWeightedEdges(n):
13: edges← generateUniqueEdges(n)
14: weightedEdges← []
15: for each (i, j) ∈ edges do:
16: w ← randomDouble(0.1, 0.5)
17: append (i, j, w) to weightedEdges
18: end for
19: return weightedEdges
20: end function
21: function buildGraph:
22: nodes← {(0, ()), (1, ()), . . . , (N − 1, ())}
23: edges← generateWeightedEdges(E)
24: graph← mkGraph(nodes, edges)
25: return graph
26: end function

This pseudocode ensures that the graph contains no self-loops and that all edges are unique.
The function buildGraph outputs a weighted directed graph suitable for subsequent Monte
Carlo simulations and Independent Cascade Model analyses discussed in the main text.

9

Appendix B: Näıve Parallel ICM

This is the output of running the näıve parallel ICM where we did not parallelize random
number generation.

10

Appendix C: Project Code

Sequential ICM

1 import Data.Graph.Inductive.PatriciaTree (Gr)

2 import Data.Graph.Inductive.Graph

3 import Data.Maybe (catMaybes)

4 import qualified Data.Set as Set

5 import System.Random

6 import Control.Monad

7 import Data.List (foldl ’)

8

9 type SimpleEdge = (Int , Int)

10

11

12 -- TESTING PARAMETERS --

13

14 nodesCount :: Int

15 nodesCount = 30000

16

17 edgesCount :: Int

18 edgesCount = 300000

19

20 numSimulations :: Int

21 numSimulations = 1000

22

23

24 -- MAIN METHOD --

25

26 {-|

27 Main method:

28 - builds the graph with specified nodesCount & edgesCount

29 - executes numSimulations number of monte carlo simulations of

the ICM using the seed

30 set (in this case node 0)

31 - displays resulting average influence

32 -}

33 main :: IO ()

34 main = do

35 putStrLn "Building graph ..."

36 graph <- buildGraph

37 putStrLn "Running Monte Carlo simulations ..."

38 let seedNodes = [0]

39 averageInfluence <- monteCarloSimulation graph seedNodes

numSimulations

40 putStrLn $ "Average Influence (Monte Carlo): " ++ show

averageInfluence

11

41

42

43 -- METHODS FOR BUILDING THE GRAPH --

44

45 {-|

46 Builds a list of unique edges (without repetition or

self -looping)

47 Basically , we pick any random two nodes , and if no edge exists

between them ,

48 we add the new edge to a set.

49 -}

50

51 generateUniqueEdges :: Int -> IO [SimpleEdge]

52 generateUniqueEdges n = do

53 let loop s

54 | Set.size s >= n = return (Set.toList s)

55 | otherwise = do

56 i <- randomRIO (0, nodesCount -1)

57 j <- randomRIO (0, nodesCount -1)

58 if i /= j then

59 let s’ = Set.insert (i,j) s

60 in loop s’

61 else loop s

62 loop Set.empty

63

64

65 {-|

66 This method assigns weights to each edge. We pick the weights

for each edge

67 picking a random float between [0.1, 0.5]

68 -}

69

70 generateWeightedEdges :: Int -> IO [LEdge Double]

71 generateWeightedEdges n = do

72 edges <- generateUniqueEdges n

73 forM edges $ \(i, j) -> do

74 weight <- randomRIO (0.1, 0.5)

75 return (i, j, weight)

76

77 {-|

78 Build a directed graph with a specified number of nodes and a

specified number

79 of randomly generated edges.

80 -}

81

82 buildGraph :: IO (Gr () Double)

83 buildGraph = do

12

84 let nodes = [(i, ()) | i <- [0.. nodesCount -1]]

85 edges <- generateWeightedEdges edgesCount

86 return $ mkGraph nodes edges

87

88

89 -- INDEPENDENT CASCADE AND MONTE CARLO SIMULATIONS

90

91 {-|

92 Perform one run of ICM given a graph and a set of initially

activated nodes (seeds).

93 Refer to the Problem formulation in our report for an explanation

of the ICM model

94 -}

95 -- note here we aren ’t using stdGen

96 independentCascade :: Gr () Double -> [Node] -> IO (Set.Set Node)

97 independentCascade graph seeds = go (Set.fromList seeds)

(Set.fromList seeds)

98 where

99 go :: Set.Set Node -> Set.Set Node -> IO (Set.Set Node)

100 go activatedNodes newlyActivated

101 | Set.null newlyActivated = return activatedNodes

102 | otherwise = do

103 nextActivatedList <- forM (Set.toList newlyActivated) $
\node -> do

104 let neighbors = lsuc graph node

105 activatedNeighbors <- forM neighbors $ \(neighbor ,

weight) -> do

106 if neighbor ‘Set.member ‘ activatedNodes

107 then return Nothing

108 else do

109 r <- randomRIO (0.0, 1.0 :: Double)

110 if r <= weight

111 then return $ Just neighbor

112 else return Nothing

113 return $ catMaybes activatedNeighbors

114 let nextActivated = Set.fromList $ concat

nextActivatedList

115 let activatedNodes ’ = Set.union activatedNodes

nextActivated

116 go activatedNodes ’ nextActivated

117

118

119 {-|

120 Perform a Monte Carlo simulations

121

122 The simulation repeats the Independent Cascade process a

specified number of times

13

123 (‘numSimulations ‘). This function returns the average influence

over each simulation.

124

125 This version uses replicateM to run the simulation multiple times

126 sequentially and accumulate the results.

127 -}

128 monteCarloSimulation :: Gr () Double -> [Node] -> Int -> IO Double

129 monteCarloSimulation graph seeds numSimulations = do

130 totalActivated <- replicateM numSimulations $ do

131 activatedNodes <- independentCascade graph seeds

132 return $ fromIntegral $ Set.size activatedNodes

133 let total = sum totalActivated

134 return $ total / fromIntegral numSimulations

14

Näıve Parallel ICM

1 import Data.Graph.Inductive.PatriciaTree (Gr)

2 import Data.Graph.Inductive.Graph

3 import Data.Maybe (catMaybes)

4 import qualified Data.Set as Set

5 import System.Random

6 import Control.Monad

7 import Data.List (foldl ’)

8 import Control.Parallel.Strategies

9 import GHC.Conc (getNumCapabilities)

10 import System.IO.Unsafe (unsafePerformIO)

11

12 type SimpleEdge = (Int , Int)

13

14 -- TESTING PARAMETERS --

15 nodesCount :: Int

16 nodesCount = 30000

17

18 edgesCount :: Int

19 edgesCount = 300000

20

21 numSimulations :: Int

22 numSimulations = 1000

23

24 {-|

25 Main method:

26 - builds the graph with specified nodesCount & edgesCount

27 - executes numSimulations number of monte carlo simulations of

the ICM using the seed

28 set (in this case node 0)

29 - displays resulting average influence

30 -}

31 main :: IO ()

32 main = do

33 putStrLn "Building graph ..."

34 graph <- buildGraph

35 putStrLn "Graph built. Running Monte Carlo simulations ..."

36 let seedNodes = [0]

37 averageInfluence <- monteCarloSimulation graph seedNodes

numSimulations

38 putStrLn $ "Average Influence (Monte Carlo): " ++ show

averageInfluence

39

40 -- METHODS FOR BUILDING THE GRAPH --

41

42 generateUniqueEdges :: Int -> IO [SimpleEdge]

43 generateUniqueEdges n = do

15

44 let loop s

45 | Set.size s >= n = return (Set.toList s)

46 | otherwise = do

47 i <- randomRIO (0, nodesCount -1)

48 j <- randomRIO (0, nodesCount -1)

49 if i /= j then

50 let s’ = Set.insert (i,j) s

51 in loop s’

52 else loop s

53 loop Set.empty

54

55

56 generateWeightedEdges :: Int -> IO [LEdge Double]

57 generateWeightedEdges n = do

58 edges <- generateUniqueEdges n

59 forM edges $ \(i, j) -> do

60 weight <- randomRIO (0.1, 0.5)

61 return (i, j, weight)

62

63

64 buildGraph :: IO (Gr () Double)

65 buildGraph = do

66 let nodes = [(i, ()) | i <- [0.. nodesCount -1]]

67 edges <- generateWeightedEdges edgesCount

68 return $ mkGraph nodes edges

69

70

71 {-| Actually executes the independent cascade model very

inefficiently by using IO-based randomization on every step. -}

72 independentCascade :: Gr () Double -> [Node] -> IO (Set.Set Node)

73 independentCascade graph seeds = go (Set.fromList seeds)

(Set.fromList seeds)

74 where

75 go :: Set.Set Node -> Set.Set Node -> IO (Set.Set Node)

76 go activatedNodes newlyActivated

77 | Set.null newlyActivated = return activatedNodes

78 | otherwise = do

79 nextActivatedList <- forM (Set.toList newlyActivated) $
\node -> do

80 let neighbors = lsuc graph node

81 activatedNeighbors <- forM neighbors $ \(neighbor ,

weight) -> do

82 if neighbor ‘Set.member ‘ activatedNodes

83 then return Nothing

84 else do

85 r <- randomRIO (0.0, 1.0 :: Double)

86 if r <= weight

16

87 then return $ Just neighbor

88 else return Nothing

89 return $ catMaybes activatedNeighbors

90 let nextActivated = Set.fromList $ concat

nextActivatedList

91 let activatedNodes ’ = Set.union activatedNodes

nextActivated

92 go activatedNodes ’ nextActivated

93

94 simulateOnce :: Gr () Double -> [Node] -> Double

95 simulateOnce g s = unsafePerformIO $ do

96 activatedNodes <- independentCascade g s

97 return $ fromIntegral $ Set.size activatedNodes

98

99 monteCarloSimulation :: Gr () Double -> [Node] -> Int -> IO Double

100 monteCarloSimulation graph seeds numSims = do

101 numCapabilities <- getNumCapabilities

102 let chunkSize = (numSims + numCapabilities - 1) ‘div ‘

numCapabilities

103 let workChunks = replicate numCapabilities (replicate chunkSize

())

104

105 let results = parMap rdeepseq (\ chunk ->

106 sum [simulateOnce graph seeds | _ <- chunk]

107) workChunks

108

109 let totalActivated = sum results

110 let averageInfluence = totalActivated / fromIntegral numSims

111 return averageInfluence

112

113 chunkList :: Int -> [a] -> [[a]]

114 chunkList _ [] = []

115 chunkList n xs = take n xs : chunkList n (drop n xs)

17

Parallel ICM

1 import Data.Graph.Inductive.PatriciaTree (Gr)

2 import Data.Graph.Inductive.Graph

3 import Data.Maybe (catMaybes)

4 import qualified Data.Set as Set

5 import System.Random

6 import Control.Monad

7 import Control.Monad.Random

8 import Data.List (foldl ’)

9 import Control.Parallel.Strategies

10 import GHC.Conc (getNumCapabilities)

11

12 type SimpleEdge = (Int , Int)

13

14

15 -- TESTING PARAMETERS --

16

17 nodesCount :: Int

18 nodesCount = 30000

19

20 edgesCount :: Int

21 edgesCount = 300000

22

23 numSimulations :: Int

24 numSimulations = 1000

25

26 -- MAIN METHOD --

27

28 {-|

29 Main method:

30 - builds the graph with specified nodesCount & edgesCount

31 - executes numSimulations number of monte carlo simulations of

the ICM using the seed

32 set (in this case node 0)

33 - displays resulting average influence

34 -}

35 main :: IO ()

36 main = do

37 putStrLn "Building graph ..."

38 graph <- buildGraph

39 putStrLn "Graph built. Running Monte Carlo simulations ..."

40 let seedNodes = [0]

41 averageInfluence <- monteCarloSimulation graph seedNodes

numSimulations

42 putStrLn $ "Average Influence (Monte Carlo): " ++ show

averageInfluence

43

18

44

45 -- METHODS FOR BUILDING THE GRAPH --

46

47 {-|

48 Builds a list of unique edges (without repittion or

self -looping)

49 Basically , we pick any random two nodes , and if no edge exists

between them ,

50 we add the new edge to a set.

51 -}

52

53 generateUniqueEdges :: Int -> IO [SimpleEdge]

54 generateUniqueEdges n = do

55 let loop s

56 | Set.size s >= n = return (Set.toList s)

57 | otherwise = do

58 i <- randomRIO (0, nodesCount -1)

59 j <- randomRIO (0, nodesCount -1)

60 if i /= j then

61 let s’ = Set.insert (i,j) s

62 in loop s’

63 else loop s

64 loop Set.empty

65

66

67 {-|

68 This method assigns weights to each edge. We pick the weights

for each edge

69 picking a random float between [0.1, 0.5]

70 -}

71

72 generateWeightedEdges :: Int -> IO [LEdge Double]

73 generateWeightedEdges n = do

74 edges <- generateUniqueEdges n

75 forM edges $ \(i, j) -> do

76 weight <- randomRIO (0.1, 0.5)

77 return (i, j, weight)

78

79 {-|

80 Build a directed graph with a specified number of nodes and a

specified number

81 of randomly generated edges.

82 -}

83

84 buildGraph :: IO (Gr () Double)

85 buildGraph = do

86 let nodes = [(i, ()) | i <- [0.. nodesCount -1]]

19

87 edges <- generateWeightedEdges edgesCount

88 return $ mkGraph nodes edges

89

90

91 -- INDEPENDENT CASCADE AND MONTE CARLO SIMULATIONS

92

93 {-|

94 Perform one run of ICM given a graph and a set of initially

activated nodes (seeds).

95 Refer to the Problem formulation in our report for an explanation

of the ICM model

96 -}

97 -- note here we are using stdGen

98 independentCascade :: Gr () Double -> [Node] -> Rand StdGen

(Set.Set Node)

99 independentCascade graph seeds = go (Set.fromList seeds)

(Set.fromList seeds)

100 where

101 go :: Set.Set Node -> Set.Set Node -> Rand StdGen (Set.Set Node)

102 go activatedNodes newlyActivated

103 | Set.null newlyActivated = return activatedNodes

104 | otherwise = do

105 nextActivatedList <- forM (Set.toList newlyActivated) $
\node -> do

106 let neighbors = lsuc graph node

107 activatedNeighbors <- forM neighbors $ \(neighbor ,

weight) -> do

108 if neighbor ‘Set.member ‘ activatedNodes

109 then return Nothing

110 else do

111 r <- getRandomR (0.0, 1.0 :: Double)

112 if r <= weight

113 then return $ Just neighbor

114 else return Nothing

115 return $ catMaybes activatedNeighbors

116 let nextActivated = Set.fromList $ concat

nextActivatedList

117 let activatedNodes ’ = Set.union activatedNodes

nextActivated

118 go activatedNodes ’ nextActivated

119

120

121 {-|

122 Perform a Monte Carlo simulation of the Independent Cascade model:

123 - given a graph and seed nodes , run the ICM multiple times

124 - calculate the average influence of the seed set over the

number of simulations.

20

125

126 Parallelization:

127 The simulation uses parallel strategies to partition the runs

among available

128 CPU cores. It splits random number generators per core and

utilizes static chunking.

129

130 returns the average number of "infected" nodes

131 -}

132

133 monteCarloSimulation :: Gr () Double -> [Node] -> Int -> IO Double

134 monteCarloSimulation graph seeds numSims = do

135 numCapabilities <- getNumCapabilities

136 stdGen <- getStdGen

137 let gens = take numSims $ iterate (snd . split) stdGen

138 let chunkSize = (numSims + numCapabilities - 1) ‘div ‘

numCapabilities

139 let chunks = chunkList chunkSize gens

140 let results = parMap rdeepseq (\ genChunk ->

141 sum [evalRand (simulateOnce graph seeds) gen |

gen <- genChunk]

142) chunks

143

144 let totalActivated = sum results

145 let averageInfluence = totalActivated / fromIntegral numSims

146 return averageInfluence

147

148 where

149 -- actually executes the independent cascade model once

150 simulateOnce :: Gr () Double -> [Node] -> Rand StdGen Double

151 simulateOnce g s = do

152 activatedNodes <- independentCascade g s

153 return $ fromIntegral $ Set.size activatedNodes

154

155 -- splits workload into chunks

156 chunkList :: Int -> [a] -> [[a]]

157 chunkList _ [] = []

158 chunkList n xs = take n xs : chunkList n (drop n xs)

21

References

[1] Pedro Domingos and Matt Richardson. “Mining the network value of customers”. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. ACM, 2001, pp. 57–66.

22

	Background
	Problem Formulation
	Methodology
	Phase 1: Sequential Greedy Implementation
	Phase 2: Naïve Parallelization
	Phase 3: Fully Parallelized Implementation
	Benchmarking and Analysis

	Implementation
	Parallelization Techniques
	Chunking Simulations
	parMap and rdeepseq for Parallel Evaluation
	Random number generation
	Impact of parallelization techniques

	Results
	Summary
	Optimized Parallel ICM Sparks
	Optimized Parallel ICM Threadscope

