
Parallel Function Programming
Final Project Word-Search-2

Team:
● Sean Zhang (srz2116)
● Keith Lo (kl3695)
● Ardrian Wong (aaw2179)

2

1. Problem statement
2. Sequential Algorithm
3. Proposed Methods of Parallelism
4. Technical Challenges
5. Algorithm Evaluation
6. Hardware Details
7. Benchmark Results
8. Conclusion & Future Work

Table of Contents

3

Problem Statement

Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words =
["oath","pea","eat","rain"]
Output: ["eat","oath"]

Given an m x n board of characters and a list of strings words, return all
words on the board.

4

Sequential Algorithm
1. Insert the target words in a Trie for efficient search

during DFS.
2. Initiate DFS for each cell (searchFromCell) in the

grid (this happens in findWords)
3. Check if the character in the current cell matches

the character in the trie.
a. If true, mark the current cell as visited and

continue DFS all directions. Add any words
found during DFS to the results

b. If false, don’t continue DFS from the current
cell

5

● ParallelWords: Parallelize the search for each target
word

● ParallelDepth: Parallelize recursive DFS calls up to a
configurable depth

● ParallelSubgrids: Divide the input grid into N2
subgrids and parallelize DFS from each of them

Proposed Methods of Parallelism

6

● Data Generation:
○ Leetcode test cases insufficient for testing
○ No online word search generator that generates snaking

target words
● Lazy Evaluation with par:

○ List of results was full of thunks. Resulted in timing in
problems timing the algorithm.

Technical Challenges

7

We benchmark performance on the following the
following three test cases:

● 100x100 grid with 10 target words
● 500x500 grid with 20 target words
● 1000x1000 grid with 30 target words

Algorithm Evaluation

We first parse the input from disk and then time the execution of the algorithm itself. This
approach ensures that we exclude I/O time from our benchmarks.

Note: Target word length ranges from 8-15 characters.

8

All testing was conducted on a 2022 Macbook Air:

Hardware

9
All parallel algorithms were run with 8 threads. ParallelDepth has depth 8 and ParallelSubgrids has 196 subgrids.

Overall Results

10

Sequential Results

11

ParallelWords Results

12

ParallelWords Results

13

ParallelWords Results

ParallelWords threadscope graph and spark stats for 1000x1000 board, -N8.

14

ParallelDepth Results

15

ParallelDepth Results

16

ParallelDepth Results

ParallelDepth threadscope graph and spark stats for 1000x1000 board, depth 8, -N8.

17

ParallelSubgrids Results

18

ParallelSubgrids Results

19

ParallelSubgrids Results

ParallelSubgrids threadscope graph and spark stats for 1000x1000 board, 196 subgrids, -N8.

20

● The Word-Search Sequential algorithm was a good
candidate for parallelization.

● ParallelWords is a poor method parallelism
● ParallelDepth and ParallelSubgrids show significant

performance increases

Conclusion

21

● Test performance on machine with high hardware
thread count

● Tune test cases to get more granular performance
results of our algorithms given our current
hardware setup

● Investigate if there are other algorithms that could
be used for more efficient parallelism

Future Work

