
A* Search for TSP
Adele Bai (ayb2121)

Vincent Mutolo (vm2724)

Traveling Salesman

● Given cities i and distances between them d(i,j)

○ Note: we do not assume a metric space

● Goal: find shortest tour through all the cities. I.e. find
a permutation of [0, n) representing the order of cities
visited that minimizes the total distance travelled

● TSP is NP-hard

○ No metric, so can’t even use 2-approximation

○ Naive solution requires O(n!) time because n!
permutations

○ Dynamic programming in general requires
O(n^2 x 2^n) time

i

j
d(i,j)

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Serial Solution: A*

A* state

A* overview

Parallelization approach

HEAD

1 - Pop next batch of nodes off the PQ

2 - Filter out already-visited nodes

3 - Generate successors of unseen nodes

4 - Merge successors back onto PQ

HEAD

General approach - process more items
from the queue in parallel.

In the diagram, step (2) and (3) can be
easily parallelized since they are
operations on lists.

Used the Control.Parallel.Strategies
library since it had convenient methods
like:

● ParListChunk
● rdeepseq

Parallelization approach (challenges and solutions)

1. Correctness - the visited states check
must now be a HashMap to store the best
cost equivalent states.

2. Forcing deepseq evaluation of lambdas
every iteration.

3. Control number of sparks (10k-20k) by
tuning batch size and list chunk size

a. Without heuristic 2400/200 split worked best
b. With heuristic 600/10 split worked best

4. Improving parallel GC throughput by using
-A32m flag (default is 4MB)

Before (4MB alloc)

After (32MB alloc)

Initial parallelization results

Verdict: It’s fine, could be better.

● Beats serial implementation by 25% at N=3
● Struggles to hit 2x scaling
● Bottlenecked by HashMap lookup (visited

states check)
● Sparse core utilization on threadscope

Cost Centers Profiling summary

Improvement idea: MST heuristic

● MST must be a lower bound for remaining
tour cost because it visits every node once,
but isn’t restricted in in/out degree

● If we use MST heuristic, every exploration
will begin by calculating MST of the
remaining nodes

○ This is relatively expensive, so it will
shift bottleneck to MST

○ Good because different MST
calculations are done in parallel

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Impact of adding Heuristic?

More work to generate successors, BUT:

● Better PQ ordering (less nodes
explored overall)

● HashMap.lookup no longer the
bottleneck

● Overall 2-4x execution speedup.

● Better scaling and core utilization (see
threadscope chart)

Cost Centers Profiling summary

Improvement: MST heuristic

● 4x speedup for serial

● Much better scaling

○ 0.5N for h=MST,
N=1..5

● “Saturation scale” is
better

○ 2.5x with MST

○ 1.2x w/o MST

Tried: Generating successors of depth k + heuristic added

With heuristic, we’re able to hit ~3.5x scaling.
With more depth, we get similar scaling but worse
performance than single-depth exploration.

Other approaches that didn’t work - Naive Sharding

Shard the problem at the top-level, depth=1:

● Small number of long-running sparks
generated

● Scaled well, but much slower than serial
execution

● Key issue: all sparks are ‘equal’ so
most of them are wasted.

HEAD

1 - Pop next batch of nodes off the PQ

2 - Filter out already-visited nodes

3 - Generate successors of unseen nodes

4 - Merge successors back onto PQ

HEAD

data Node = Node {
 city :: City,
 path :: [City],
 gCost :: Distance, -- Cost so far
 fCost :: Distance -- (gCost + heuristic)
} deriving (Show)

VisitedSet

Set{2,4} 1

Set{7,8} 3

Set{1,2,5} 8

