
Parallel Functional Programming| COMS 4995 SEC 003

Parallel Auction Algorithm

by Haolin Guo (hg2691), Yuanqing Lei (yl5457), Ava Penn (ap4315)

12/18/2024

Parallel Functional Programming| COMS 4995 SEC 003

The Assignment Problem

The assignment problem is one of classic combinatorial optimization problems and is closely
related to a wide range of important problems, such as min-cost network flow, weighted
matching problem, and linear programming.

A simple example:

- 3 bidders (B1, B2, B3)
- 3 items (I1, I2, I3)
- 1 payoff matrix (each entry [i, j] represents the

payoff of assigning item Ii to bidder Bj):

The problem can be described as follows:

- Given n persons and n items
- Given a person-item payoff matrix

What is the optimal assignment in
which everyone gets exactly one
item?

Parallel Functional Programming| COMS 4995 SEC 003

The Assignment Problem

The graph implementation of this problem is: given a bipartite graph G = (V, E) with bipartition
(A, B) and weight function , find a matching of maximum weight, where the weight
of a matching M is given by .

B1

B2

B3

I1

I2

I3

2

4
3

3
2

1

3 4

10

Parallel Functional Programming| COMS 4995 SEC 003

The Assignment Problem

B1

B2

B3

I1

I2

I3

2

4
3

3
2

1

3 4

10

The graph implementation of this problem is: given a bipartite graph G = (V, E) with bipartition
(A, B) and weight function , find a matching of maximum weight, where the weight
of a matching M is given by .

Parallel Functional Programming| COMS 4995 SEC 003

The Assignment Problem

The assignment problem is one of classic combinatorial optimization problems and is closely
related to a wide range of important problems, such as min-cost network flow, weighted
matching problem, and linear programming.

A simple example:

- 3 bidders (B1, B2, B3)
- 3 items (I1, I2, I3)
- 1 payoff matrix (each entry [i, j] represents the

payoff of assigning item Ii to bidder Bj):

The problem can be described as follows:

- Given n persons and n items
- Given a person-item payoff matrix

What is the optimal assignment in
which everyone gets exactly one
item?

Parallel Functional Programming| COMS 4995 SEC 003

The Auction Algorithm

Brute-force Implementation:
- Generate all possible permutations of assignments
- Calculate the total pay-off for each permutation
- Identify the max total pay-off

Parallel Functional Programming| COMS 4995 SEC 003

The Auction Algorithm

Algorithm from Jin[1]:

- Initialize unassigned bidders set U to all bidders and prices to 0
- Pick any bidder i from U. Search for the item j that gives the highest net

payoff and second highest net payoff
- Update the price of item j as
- Assign item j to bidder i. If j was previously assigned to another bidder s,

remove the assignment and add s back to U
- If U becomes empty, the algorithm terminates. Otherwise, return to step 2

[1] https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/jin.pdf

Parallel Functional Programming| COMS 4995 SEC 003

Parallelization: Gauss-Seidel

The Gauss-Seidel version focuses on parallelizing step 2 of the auction
algorithm, where each bidder searches for the best and second-best items to
bid on. The parallelization part include the following steps:

- Divides the items among p threads
- Each thread search its partition independently
- Merge the searching result

Parallel Functional Programming| COMS 4995 SEC 003

Parallelization: Gauss-Seidel
This parallelization is intuitive. However, there is a loss of efficiency to
overhead for the following reasons

- Synchronization Costs: After the individual
searches, the results must be merged to
determine the overall best and second best
items.

- Load Imbalance: If the item partitions are
not evenly distributed, or if the complexity
varies due to the variation in item values,
some threads may finish earlier, leaving
others idle.

Parallel Functional Programming| COMS 4995 SEC 003

Parallelization: Jacobi

The Jacobi version parallelizes step 3 of the algorithm. Allows multiple bidders
to search for their bids simultaneously.

What if two or more bidders make bids for the same item on one iteration?
- A synchronization stage is needed to make sure this conflict does not

happen, since the prices used to search for the best item may be outdated
- Interestingly, it has been proven that even with outdated prices during the

search, updating the price as long as the new price is higher than the
original (but latest) price is still correct. Thus, the synchronization can be
avoided

Parallel Functional Programming| COMS 4995 SEC 003

Parallelization: Jacobi

Here is how we implement the asynchronous Jacobi version:

- using applies the parallel evaluation strategy (parList rdeepseq) to a list of
bidders.

- The parList strategy evaluates each element of a list in parallel.
- The rdeepseq strategy ensures that each element in the list is fully

evaluated to normal form before being returned–it’s used because the bid
computation must be fully carried out before results can be merged

Parallel Functional Programming| COMS 4995 SEC 003

Parallelization: Jacobi

Since the Jacobi version avoids the merging overhead present in the
Gauss-Seidel version, it offers more interesting results.
Here is the runtime/speedup of Jacobi implementation executed on different
number of cores, for a test case of 1000x1000 payoff matrix

Parallel Functional Programming| COMS 4995 SEC 003

Parallelization: Jacobi

- The productivity measures for all numbers of cores are above 90%,
signaling efficient core usage.

- However, the speedup is not ideal, since the test dataset is not large enough

Parallel Functional Programming| COMS 4995 SEC 003

Parallelization: Jacobi

To illustrate more of the benefit of this parallelization, we test it over a
3000x3000 test case (pseudo-random matrix generation with fixed seed).
Here is the runtime/speedup of it executed on different number of cores. As
the matrix size becomes larger, the speedup is more apparent

Parallel Functional Programming| COMS 4995 SEC 003

Conclusion

● The assignment problem becomes more computationally practical in
parallel!

● The Gauss-Seidel implementation faces significant synchronization
overhead and load imbalance issues, resulting in substantially slower
performance compared to the Jacobi version.

● As the data size increases, the Jacobi algorithm demonstrates near-ideal
scalability, making it a highly effective approach for parallelization.

Parallel Functional Programming| COMS 4995 SEC 003

Parallel Auction Algorithm

Thanks!

