
Parallel Auction Algorithm

Haolin Guo (hg2691), Yuanqing Lei (yl5457), Ava Penn (ap4315)

Dec. 16, 2024

1 Introduction

In this project, we implemented the sequential and parallel versions of an auction algorithm in Haskell. The
auction algorithm is an optimization technique used for solving linear assignment problems, where the goal is
to match agents to tasks in a way that minimizes or maximizes a total cost. The graph implementation of this
problem is given a bipartite graph G = (V,E) with bipartition (A,B) and weight function w : E → R, find a
matching of maximum weight, where the weight of a matching M is given by w(M) =

∑

e∈M w(e).
The sequential implementation of this algorithm is inspired by economic principles where agents bid for

items (similar to a second-price auction), leading to iterative improvements in the set of prices until the total
payoff is maximized. We chose to focus on this algorithm because it becomes computationally infeasible at a
large number of bidders and items, and because steps 2 and 3 as indicated below are suitable for running in
parallel–that is, they are mostly done independent of other tasks.

We focus on two approaches: the Jacobi implementation and the Guass-Seidel implementation, and compare
their runtime efficiencies. These approaches are adapted from Jin [1], which implements a similar algorithm in
C.

2 The Assignment Problem

Consider the following example. There are three bidders (B1, B2, B3) and three items (I1, I2, I3). The payoffs
of assigning each item to each bidders are represented in the following payoff matrix:

2 4 3
3 2 1
3 4 10

Here, the entry in row i and column j (e.g., 4 in the top left) represents the payoff of assigning item Ii
to bidder Jj . In the context of auctions, payoff is similar to utility, or the value that the bidder assigns to a
specific item (how much they are willing to pay).

The goal is to find an assignment where each item is assigned to exactly one unique bidder, such that the
total payoff is maximized.

To maximize the total payoff in the example above:

• Assign I1 to B2 (payoff 4),

• Assign I2 to B1 (payoff 3),

• Assign I3 to B3 (payoff 10).

The total payoff of this assignment is:
4 + 3 + 10 = 17

This optimal solution can be obtained using algorithms like the auction algorithm. This algorithmic ap-
proach has applications in many types of allocation/linear assignment problems.

1

3 The Auction Algorithm

3.1 Brute-force Implementation

Using a brute-force sequential approach involves generating all possible permutations of assignments and calcu-
lating the total pay-off for each permutation to identify the maximum. This approach is exponential in the size
of the input matrix, and is thus intractable. However, we used this brute-force approach to test the correctness
of our sequential implementation on small matrices. What follows is our implementation in Haskell.

1 optimalAssignment :: PayoffMatrix -> Assignment

2 optimalAssignment matrix = maximumBy (comparing totalPayoff) assignments

3 where

4 bidders = [0 .. length matrix - 1]

5 items = bidders -- assume square matrix

6 assignments = [Map.fromList (zip items perm) | perm <- permutations bidders]

7 totalPayoff assignment = sum [matrix !! b !! i | (i,b) <- Map.toList assignment

]

3.2 Algorithm

The auction algorithm is taken from Jin [1]. It is pseudo-polynomial in that it also depends on the largest
element of the payoff matrix. The worst-case performance is O(n3) or O(C ·n2), but on average, it is expected
to perform in O(n2 log n). The O(n3) Hungarian algorithm is more difficult to implement in parallel, however,
and it has been found in practice that the auction algorithm often outperforms the Hungarian algorithm.

1. Start with a set U of all bidders. U denotes the set of all unassigned bidders. Initialize a set of prices to
zero and any structure that stores the current tentative (partial) assignment.

1 initialUnassigned = [0 .. numBidders - 1]

2 initialPrices = Map.fromList [(j, 0) | j <- [0 .. numItems - 1]]

2. Pick any bidder i from U . Search for the item j that gives the highest net payoff Aij − pj , and also an
item k that gives the second highest net payoff.

1 -- calculate net payoffs for all items

2 netPayoffs = [(j, netPayoff i j prices) | j <- [0 .. numItems - 1]]

3

4 -- find the best and second -best items

5 (bestItem , maxPayoff) = maximumBy (comparing snd) netPayoffs

6 secondMaxPayoff = if length netPayoffs > 1

7 then maximum [p | (j,p) <- netPayoffs , j /= bestItem]

8 else maxPayoff - epsilon

3. Update the price pj of item j as:

pj ← pj + (Aij − pj − (Aik − pk)) . (1)

This update ensures that the updated prices satisfy Aij − pj = Aik − pk (it makes it so that the bidder
is indifferent to buying the two items).

1 -- update the price of the best item

2 newPrice = (prices Map.! bestItem) + (maxPayoff - secondMaxPayoff + epsilon)

3 updatedPrices = Map.insert bestItem newPrice prices

2

4. Assign item j to bidder i. If item j was previously assigned to another bidder s, remove that assignment
and add s back to U .

1 -- handle previous assignment of the item

2 (newAssignment , remainingUnassigned) =

3 case Map.lookup bestItem assignment of

4 Just prevBidder ->

5 -- since bestItem was assigned to prevBidder , remove that assignment and

add prevBidder back into U

6 let updatedAssignment = Map.insert bestItem i assignment -- reassign item

to current bidder i

7 updatedUnassigned = prevBidder : unassignedBidders

8 in (updatedAssignment , updatedUnassigned)

9 Nothing ->

10 (Map.insert bestItem i assignment , unassignedBidders)

11 in go remainingUnassigned updatedPrices newAssignment

5. If U becomes empty, the algorithm terminates; otherwise, return to Step 2.

4 Parallelization: Gauss-Seidel

The Gauss-Seidel version focuses on parallelizing step 2 of the auction algorithm, where each bidder searches
for the best and second-best items to bid on. This parallelization divides the items among p threads, allowing
each thread to search its partition independently.

This seems like the most obvious and intuitive way to implement parallelization, since the bid on an item i

does not affect the bid on an item j. However, there is a loss of efficiency to overhead for the following reasons:

• Synchronization Costs: After the individual searches, the results must be merged to determine the
overall best and second best items.

• Load Imbalance: If the item partitions are not evenly distributed, or if the complexity varies due to
the variation in item values, some threads may finish earlier, leaving others idle.

4.1 Parallelization Choices

We implemented the algorithm in parallel using Haskell’s Control.Parallel.Strategies library. Specifically,
the parMap function is used to divide the workload across multiple threads, with each thread independently
processing a partition of items.

• rpar sparks the evaluations in parallel. parMap starts the evaluation of each chunk in the list in parallel.

• chunkItems function: Items are split into p chunks, where each chunk is processed by a separate thread.
This distributes independent computations of selecting the best bidder per item.

Here is a snippet of code that uses parallelization. Please see the appendix for the entirety of the code:

1 -- parallelize the search for best and second -best items

2 partitions = chunkItems 1600 netPayoffs -- change this number iteratively to find

the best size chunk

3 -- for chunks: tested 2, 4, 8, 20, 100, 400, 1600, 6400, 10000, 20000

4 partialResults = parMap rpar findBestAndSecond partitions

5 (bestItem , maxPayoff , secondMaxPayoff) = mergeResults partialResults epsilon

We tested the code with varying numbers for p, seeing which number of chunks resulted in the best sparks
output (i.e. wanting to keep garbage collected and fizzled sparks low). We ended up choosing 1600 chunks
because we thought it offered a good balance between the number of threads and the number of work done
on each thread, like the painters on the wall analogy. Also observe that the total number of sparks doesn’t
increase after 1600–because of the problem size. Since we tested this first with matrices of 1000x1000 and
didn’t observe a great speedup, we didn’t try to optimize on larger problems and thus didn’t end up needing
to adjust this variable for larger problems. Here are the results of testing p chunks on four cores:

3

Number of Threads Total Sparks Converted Overflowed GC’d dud Fizzled

2 48305 5879 0 0 12468 29958
4 96611 15163 0 0 28712 52736
8 193203 42612 0 0 41620 108971
20 483003 100362 0 0 164934 217707
100 2415022 611727 0 0 1103680 699615
400 9660052 4538608 0 0 4081373 1040071
1600 24150254 24014601 0 0 2796 132857
6400 24150416 23863965 0 0 8463 277988
10000 24150184 24065539 0 0 3140 81505
20000 24150248 23986340 0 0 4805 159103

4.2 Gauss-Seidel Runtime/speedup analysis

We only tested this parallel approach on a 1000x1000 matrix (with randomly generated doubles between 0 and
100) due to realizing the Jacobi version offered more interesting results.

The following analysis shows that even though the GS version is simple, its merging overhead bottlenecks
the speed.

Number of Cores Runtime (s) Speedup

1 176.316 1.00×
2 256.689 0.69×
3 301.140 0.59×
4 298.948 0.59×
5 267.741 0.66×
6 298.785 0.59×
7 298.913 0.59×
8 196.961 0.90×

Table 1: Runtime and speedup across different numbers of cores.

Figure 1: Guass-Seidel speedup for 1000x1000 matrix

4

(a) 1 core: 176.316s (b) 2 cores: 256.689s

(c) 3 cores: 301.140s (d) 4 cores: 298.948s

(e) 5 cores: 267.741s (f) 6 cores: 298.785s

(g) 7 cores: 298.913s (h) 8 cores: 196.961s

Figure 2: Execution times and event logs for different core counts

5

5 Parallelization: Jacobi

The Jacobi version parallelizes step 3 of the algorithm. It allows multiple bidders to search for their bids
simultaneously. Through parallelization, each core handles a portion of the total bidders awaiting, reducing
the runtime. Each thread handles one bidder. It may happen that two or more bidders make bids for the same
item in parallel; in this case, we can only make one of them the tentative owner of the item. There is also one
synchronization stage at the end of every iteration: we have to make sure several bidders bidding for the same
item do not conflict, since the prices used to search for the best item may be outdated. It has been proven
though that even with outdated prices during the search, updating the price as long as the new price is higher
than the original (but latest) price is still correct.

By focusing on bidders rather than items, the Jacobi version avoids the merging overhead present in the
Gauss-Seidel version, offering more interesting results.

5.1 Parallelization Choices

We implemented the algorithm in parallel using Haskell’s Control.Parallel.Strategies library. Specifically,
the parMap function is used to divide the workload across multiple threads, with each thread independently
processing a partition of items.

Here is a snippet of code that uses parallelization. Please see the appendix for the entirety of the code:

1 synchronizedParallelBidding :: [Bidder] -> Prices -> [(Bidder , Item , Double)]

2 synchronizedParallelBidding bidders prices =

3 map (bestBid prices) bidders ‘using ‘ parList rdeepseq

• using applies the parallel evaluation strategy (parList rdeepseq) to a list of bidders.

• The parList strategy evaluates each element of a list in parallel.

• The rdeepseq strategy ensures that each element in the list is fully evaluated to normal form before
being returned–it’s used because the bid computation must be fully carried out before results can be
merged.

Essentially, what this does is it creates a spark for each element in the list returned by map (bestBid prices)
bidders. This is the same as each spark corresponding to finding the best item and bid price for a single bidder.
This level of granularity was chosen because it was just the first implementation we tried and it happened
to distribute the workload well. The total number of sparks however changes problem to problem, since the
number of bidders in the subset U at any given iteration is variable depending on the payoff matrix. It changes
even more drastically when the size of the matrix changes. For some measure of the problem size and how well
it parallelizes we include the sparks information for a 1000x1000 matrix and a 3000x3000 matrix:

Size of matrix Total sparks Converted Overflowed GC’d dud Fizzled

1000x1000 1411 1407 0 0 0 4
3000x3000 4324 0 0 0 0 0

5.2 Jacobi Runtime/speedup analysis (1000x1000)

The table below summarizes the runtime of the auction algorithm executed on different numbers of cores, for
a test case of 1000x1000.

6

Number of Cores Runtime (s/ms) Speedup

1 3.840 s 1.00×
2 3.709 s 1.04×
3 2.230 s 1.72×
4 2.351 s 1.63×
5 1.356 s 2.83×
6 1.292 s 2.97×
7 1.406 s 2.73×
8 969.87 ms 3.96×

Table 2: Runtime and speedup across different numbers of cores.

Figure 3: Actual speedup and ideal speedup

7

(a) -N1 eventlog (b) -N2 eventlog

(c) -N3 eventlog (d) -N4 eventlog

(e) -N5 eventlog (f) -N6 eventlog

(g) -N7 eventlog (h) -N8 eventlog

Figure 4: Jacobi Algorithm Eventlog for 1000 x 1000 matrix

As one can observe, the productivity measures for all numbers of cores are above 90%, signaling efficient
core usage. However, the speedup is not ideal, since the test dataset is not large enough. We will test a larger
use case of 3000 x 3000 to demonstrate the parallel algorithm’s speedup ability.

8

5.3 Jacobi Runtime/speedup analysis (3000x3000)

The table below shows the runtime and speedup of the auction algorithm for a larger test case with a 3000x3000
matrix.

As the matrix size becomes larger, the speedup is more apparent. In this test case of 3000x3000, where
runtime takes a measure of minutes, the speedup is closer to perfect.

Number of Cores Runtime (s/ms) Speedup

1 151.657 s 1.00×
2 82.560 s 1.83×
3 53.064 s 2.85×
4 40.421 s 3.75×
5 30.587 s 4.95×
6 27.942 s 5.42×
7 24.039 s 6.31×
8 21.226 s 7.14×

Table 3: Runtime and speedup across different numbers of cores for a 3000 x 3000 matrix.

As one observes, the speedup is more ideal as the matrix size gets larger. This is because as the matrix grows
larger, the computations become more significant than the spark overhead. The speedup diagram demonstrates
that we can achieve near-ideal speedup using the Jacobi algorithm.

Figure 5: Actual speedup and ideal speedup

9

(a) -N1 eventlog (b) -N2 eventlog

(c) -N3 eventlog (d) -N4 eventlog

(e) -N5 eventlog (f) -N6 eventlog

(g) -N7 eventlog (h) -N8 eventlog

Figure 6: Jacobi Algorithm Eventlog for 3000 x 3000 matrix

6 Conclusion

• The assignment problem becomes more computationally practical in parallel!

• The Gauss-Seidel implementation faces significant synchronization overhead and load imbalance issues,
resulting in substantially slower performance compared to the Jacobi version.

10

• As the data size increases, the Jacobi algorithm demonstrates near-ideal scalability, making it a highly
effective approach for parallelization.

Note about testing: Testing was initially done with seven small matrices (with dimensions less than 6x6)
to verify correctness. Once the algorithm was verified, random generation was introduced with the ability to
adjust the size of the matrix through a command-line argument. Please see the test file and README.md for
usage.

7 References

[1] Jin, J. (2016). Parallel Auction Algorithm for Linear Assignment Problem.

8 Appendix

gs auction.hs

1 module GSAuction (gsAuctionAlgorithm) where

2

3 import Control.Parallel.Strategies

4 import qualified Data.Map as Map

5 import Data.List

6 import Data.Maybe

7 import Data.Ord (comparing , Down (..))

8

9 type PayoffMatrix = [[Double]]

10 type Bidder = Int

11 type Item = Int

12 type Prices = Map.Map Item Double

13 type Assignment = Map.Map Bidder Item

14

15 gsAuctionAlgorithm :: Double -> PayoffMatrix -> (Assignment , Double)

16 gsAuctionAlgorithm epsilon inputMatrix = (finalAssignment , totalPayoff)

17 where

18 numItems = length (head inputMatrix)

19 initialUnassigned = [0 .. length inputMatrix - 1]

20 initialPrices = Map.fromList [(j, 0) | j <- [0 .. numItems - 1]]

21

22 -- get the resulting assignment and also the total payoff , to return

23 finalAssignment = go initialUnassigned initialPrices Map.empty

24 totalPayoff = sum [inputMatrix !! bidder !! item | (item , bidder) <- Map.toList

finalAssignment]

25

26 go :: [Bidder] -> Prices -> Assignment -> Assignment

27 go [] _ assignment = assignment

28 go (i : unassignedBidders) prices assignment =

29 let

30 -- calculate net payoffs for all items

31 netPayoffs = [(j, netPayoff i j prices) | j <- [0 .. numItems - 1]]

32

33 -- parallelize the search for best and second -best items

34 partitions = chunkItems 1600 netPayoffs -- change this number iteratively

to find the best size chunk

35 -- for chunks: tested 2, 4, 8, 20, 100, 400, 1600, 6400, 10000, 20000

36 partialResults = parMap rpar findBestAndSecond partitions

37 (bestItem , maxPayoff , secondMaxPayoff) = mergeResults partialResults

epsilon

38

39 -- update price according to the auction algorithm description

40 newPrice = (prices Map.! bestItem) + (maxPayoff - secondMaxPayoff + epsilon

)

41 updatedPrices = Map.insert bestItem newPrice prices

42

11

43 -- handle previous assignment of the item

44 (newAssignment , remainingUnassigned) =

45 case Map.lookup bestItem assignment of

46 Just prevBidder ->

47 let updatedAssignment = Map.insert bestItem i assignment

48 updatedUnassigned = prevBidder : unassignedBidders

49 in (updatedAssignment , updatedUnassigned)

50 Nothing ->

51 (Map.insert bestItem i assignment , unassignedBidders)

52 in go remainingUnassigned updatedPrices newAssignment

53

54 -- calculate net payoff for a bidder for a specific item

55 netPayoff :: Bidder -> Item -> Prices -> Double

56 netPayoff i j prices = inputMatrix !! i !! j - (prices Map.! j)

57

58 -- find the best and second -best items in a partition

59 findBestAndSecond :: [(Item , Double)] -> (Item , Double , Maybe Double)

60 findBestAndSecond payoffs =

61 let (bestItem , maxPayoff) = maximumBy (comparing snd) payoffs

62 secondMaxPayoff = if length payoffs > 1

63 then Just $ maximum $ map snd (filter ((/= bestItem) .

fst) payoffs)

64 else Nothing

65 in (bestItem , maxPayoff , secondMaxPayoff)

66

67 -- merge results from all partitions

68 mergeResults :: [(Item , Double , Maybe Double)] -> Double -> (Item , Double ,

Double)

69 mergeResults results epsilon =

70 let

71 allPayoffsWithItems = concatMap (\(item , p, ms) -> [(item , p), (item ,

fromMaybe (-1 / 0) ms)]) results

72 sortedPayoffsWithItems = sortBy (comparing (Down . snd))

allPayoffsWithItems

73 (bestItem , maxPayoff) = head sortedPayoffsWithItems

74 secondMaxPayoff = if length sortedPayoffsWithItems > 1

75 then snd (sortedPayoffsWithItems !! 1)

76 else maxPayoff - epsilon

77 in (bestItem , maxPayoff , secondMaxPayoff)

78

79 -- split items into equal -sized chunks for parallel processing

80 chunkItems :: Int -> [a] -> [[a]]

81 chunkItems n items = let (q, r) = length items ‘quotRem ‘ n

82 in goChunks q r items

83 where

84 goChunks _ 0 [] = []

85 goChunks q r xs = let (chunk , rest) = splitAt (q + if r > 0 then 1 else 0)

xs

86 in chunk : goChunks q (max 0 (r - 1)) rest

jacobi auction.hs

1 module JacobiAuction (jacobiAuctionAlgorithm) where

2

3 import Control.Parallel.Strategies (parList , rdeepseq , using)

4 import Data.List (maximumBy , foldl ’)

5 import Data.Ord (comparing)

6 import qualified Data.Map as Map

7

8 type Bidder = Int

9 type Item = Int

10 type Prices = Map.Map Item Double

11 type Assignment = Map.Map Item Bidder -- mapping from item to bidder (to correspond

to implementation in paper)

12 type PayoffMatrix = [[Double]]

12

13

14 jacobiAuctionAlgorithm :: Double -> PayoffMatrix -> (Assignment , Double)

15 jacobiAuctionAlgorithm epsilon inputMatrix = (finalAssignment , totalPayoff)

16 where

17 numItems = length (head inputMatrix)

18 initialUnassigned = [0 .. length inputMatrix - 1]

19 initialPrices = Map.fromList [(j, 0) | j <- [0 .. numItems - 1]]

20

21 -- get the resulting assignment and also the total payoff , to return

22 (finalAssignment , _) = runSynchronizedAuction initialUnassigned initialPrices

Map.empty

23 totalPayoff = sum [inputMatrix !! bidder !! item | (item , bidder) <- Map.toList

finalAssignment]

24

25 runSynchronizedAuction :: [Bidder] -> Prices -> Assignment -> (Assignment , [

Bidder])

26 runSynchronizedAuction [] _ assignment = (assignment , [])

27 runSynchronizedAuction unassignedBidders prices assignment =

28 let

29 bidResults = synchronizedParallelBidding unassignedBidders prices

30 updatedPrices = foldl ’ updatePrices prices bidResults

31 (newAssignment , newUnassigned) = resolveConflicts bidResults assignment

32 in

33 if null newUnassigned

34 then (newAssignment , newUnassigned)

35 else runSynchronizedAuction newUnassigned updatedPrices newAssignment

36

37 synchronizedParallelBidding :: [Bidder] -> Prices -> [(Bidder , Item , Double)]

38 synchronizedParallelBidding bidders prices =

39 map (bestBid prices) bidders ‘using ‘ parList rdeepseq

40

41 -- find the best item and second -best payoff for a bidder

42 bestBid :: Prices -> Bidder -> (Bidder , Item , Double)

43 bestBid prices i =

44 let

45 netPayoffs = [(j, netPayoff i j prices) | j <- [0 .. numItems - 1]]

46 (bestItem , maxPayoff) = maximumBy (comparing snd) netPayoffs

47 secondMaxPayoff = if length netPayoffs > 1

48 then maximum $ map snd (filter ((/= bestItem) . fst)

netPayoffs)

49 else maxPayoff - epsilon

50 bidPrice = (prices Map.! bestItem) + (maxPayoff - secondMaxPayoff + epsilon

)

51 in (i, bestItem , bidPrice)

52

53 -- resolve conflicts: only one bidder can win an item

54 -- paper states that this will still result in the optimal assignment , even if

prices are outdated

55 resolveConflicts :: [(Bidder , Item , Double)] -> Assignment -> (Assignment , [

Bidder])

56 resolveConflicts bids assignment =

57 let

58 groupedBids = Map.fromListWith (++) [(item , [(bidder , bidPrice)]) | (bidder

, item , bidPrice) <- bids]

59 resolvedAssignments =

60 Map.mapWithKey (_ bidders -> fst $ maximumBy (comparing snd) bidders)

groupedBids

61 newAssignment =

62 foldl ’ (\acc (item , bidder) -> Map.insert item bidder acc) assignment (

Map.toList resolvedAssignments)

63 unassignedBidders =

64 [bidder | (_, bidders) <- Map.toList groupedBids , (bidder , _) <- bidders ,

bidder ‘notElem ‘ Map.elems newAssignment]

65 in (newAssignment , unassignedBidders)

13

66

67 -- update prices for items based on the winning bids

68 updatePrices :: Prices -> (Bidder , Item , Double) -> Prices

69 updatePrices prices (_, item , bidPrice) =

70 let currentPrice = Map.findWithDefault 0 item prices

71 in Map.insert item (max currentPrice bidPrice) prices

72

73 -- calculate net payoff for a bidder for a specific item

74 netPayoff :: Bidder -> Item -> Prices -> Double

75 netPayoff i j prices = inputMatrix !! i !! j - (prices Map.! j)

sequential auction.hs

1 module SequentialAuction (auctionAlgorithm , optimalAssignment) where

2

3 import Data.List (maximumBy , permutations)

4 import Data.Ord (comparing)

5 import qualified Data.Map as Map

6

7 type Bidder = Int

8 type Item = Int

9 type Prices = Map.Map Item Double

10

11 -- item is the key , bidder is the value , for consistency with the algorithm from

the paper

12 type Assignment = Map.Map Item Bidder

13 type PayoffMatrix = [[Double]]

14

15

16 auctionAlgorithm :: Double -> PayoffMatrix -> (Assignment , Double)

17 auctionAlgorithm epsilon inputMatrix = (finalAssignment , totalPayoff)

18 where

19 numItems = length (head inputMatrix)

20 numBidders = length inputMatrix

21

22 initialUnassigned = [0 .. numBidders - 1]

23 initialPrices = Map.fromList [(j, 0) | j <- [0 .. numItems - 1]]

24

25 finalAssignment = go initialUnassigned initialPrices Map.empty

26 totalPayoff = sum [inputMatrix !! bidder !! item | (item , bidder) <- Map.toList

finalAssignment]

27

28 go :: [Bidder] -> Prices -> Assignment -> Assignment

29 go [] _ assignment = assignment

30 go (i : unassignedBidders) prices assignment =

31 let

32 -- calculate net payoffs for all items

33 netPayoffs = [(j, netPayoff i j prices) | j <- [0 .. numItems - 1]]

34

35 -- find the best and second -best items

36 (bestItem , maxPayoff) = maximumBy (comparing snd) netPayoffs

37 secondMaxPayoff = if length netPayoffs > 1

38 then maximum [p | (j,p) <- netPayoffs , j /= bestItem]

39 else maxPayoff - epsilon

40

41 -- update the price of the best item

42 newPrice = (prices Map.! bestItem) + (maxPayoff - secondMaxPayoff + epsilon

)

43 updatedPrices = Map.insert bestItem newPrice prices

44

45 -- handle previous assignment of the item

46 (newAssignment , remainingUnassigned) =

47 case Map.lookup bestItem assignment of

48 Just prevBidder ->

49 -- since bestItem was assigned to prevBidder , remove that assignment

14

and add prevBidder back into U

50 let updatedAssignment = Map.insert bestItem i assignment -- reassign

item to current bidder i

51 updatedUnassigned = prevBidder : unassignedBidders

52 in (updatedAssignment , updatedUnassigned)

53 Nothing ->

54 (Map.insert bestItem i assignment , unassignedBidders)

55 in go remainingUnassigned updatedPrices newAssignment

56

57 netPayoff :: Bidder -> Item -> Prices -> Double

58 netPayoff i j prices = inputMatrix !! i !! j - (prices Map.! j)

59

60 -- find the optimal assignment by brute force (adjusted to return item ->bidder)

61 optimalAssignment :: PayoffMatrix -> Assignment

62 optimalAssignment matrix = maximumBy (comparing totalPayoff) assignments

63 where

64 bidders = [0 .. length matrix - 1]

65 items = bidders -- assume square matrix

66 assignments = [Map.fromList (zip items perm) | perm <- permutations bidders]

67 totalPayoff assignment = sum [matrix !! b !! i | (i,b) <- Map.toList assignment

]

tests.hs

1 module Main (main) where

2

3 import SequentialAuction (auctionAlgorithm)

4 import JacobiAuction (jacobiAuctionAlgorithm)

5 import GSAuction (gsAuctionAlgorithm)

6 import qualified Data.Map as Map

7 import Control.Monad (unless)

8 import System.Random (mkStdGen , randomRs , StdGen , split)

9 import System.Environment (getArgs , getProgName)

10 import System.Exit (die)

11 import System.IO.Error (catchIOError)

12

13 type Bidder = Int

14 type Item = Int

15 type PayoffMatrix = [[Double]]

16 type Assignment = Map.Map Item Bidder

17

18 roundToTenths :: Double -> Double

19 roundToTenths x = fromIntegral (round (x * 10)) / 10

20

21 printMatrix :: PayoffMatrix -> IO ()

22 printMatrix m = do

23 putStrLn "Price␣matrix:"

24 mapM_ (putStrLn . formatRow . map roundToTenths) m

25 where

26 formatRow :: [Double] -> String

27 formatRow row = "[" ++ unwords (map show row) ++ "]"

28

29

30 printAuctionResults :: PayoffMatrix -> Assignment -> Double -> IO ()

31 printAuctionResults matrix assignment totalPayoff = do

32 putStrLn "\nAssignments␣and␣payoffs:"

33 let payoffBreakdown = [(item , bidder , matrix !! bidder !! item) | (item , bidder

) <- Map.toList assignment] -- !! is same as matrix[bidder][item]

34 mapM_ (\(i, b, p) -> putStrLn $ "Item␣" ++ show i ++ "␣->␣Bidder␣" ++ show b ++

":␣" ++ show (roundToTenths p)) payoffBreakdown

35 putStrLn $ "\nTotal␣payoff:␣" ++ show (roundToTenths totalPayoff)

36

37 runAlgorithm :: (Double -> PayoffMatrix -> (Assignment , Double)) -> PayoffMatrix ->

IO (Assignment , Double)

38 runAlgorithm algorithm matrix = do

15

39 let (assignment , totalPayoff) = algorithm 0.01 matrix -- always assume 0.01 is

sufficient for epsilon

40 return (assignment , totalPayoff)

41

42 main :: IO ()

43 main = runProgram ‘catchIOError ‘ _ ->

44 die "ERROR ,␣try␣making␣sure␣the␣command -line␣arguments␣are␣formatted␣correctly"

45

46 runProgram :: IO ()

47 runProgram = do

48 args <- getArgs

49 case args of

50 [sizeStr , algStr] -> do

51 let maybeSize = reads sizeStr :: [(Int , String)] -- read the input , and

cast as Int , String tuple

52 case maybeSize of

53 [(n, "")] -> do

54 algFunc <- case algStr of

55 "seq" -> return auctionAlgorithm

56 "gs" -> return gsAuctionAlgorithm

57 "jacobi" -> return jacobiAuctionAlgorithm

58 _ -> die "ERROR ,␣please␣enter␣’seq ’,␣’gs

’,␣or␣’jacobi ’"

59 let seed = 100 -- causes generated matrix to stay the same if

file isn ’t reloaded

60 gen = mkStdGen seed

61 (matrix , _) = generateMatrix gen n n

62 (assignment , totalPayoff) <- runAlgorithm algFunc matrix

63

64 -- show the results when the matrix is resonably small

65 -- assume that this case is used for testing correctness by

hand

66 if n < 6

67 then do

68 printMatrix matrix

69 printAuctionResults matrix assignment totalPayoff

70

71 -- assume that this case is used for testing runtime on

large matrices

72 else do

73 putStrLn $ "Total␣payoff:␣" ++ show (roundToTenths

totalPayoff)

74 _ -> do

75 pn <- getProgName

76 die $ "ERROR ,␣Invalid␣command␣line␣arguments.␣Usage:␣" ++ pn

77 _ -> do

78 pn <- getProgName

79 die $ "ERROR ,␣Usage:␣" ++ pn

80

81

82 generateMatrix :: StdGen -> Int -> Int -> (PayoffMatrix , StdGen)

83 generateMatrix gen rows cols = (matrix , finalGen)

84 where randomNumbers = take (rows * cols) $ randomRs (0.0, 100.0) gen

85 (finalGen , _) = split gen

86 matrix = chunksOf cols randomNumbers

87

88 -- splits the randomNumbers list into chunks of size cols

89 chunksOf :: Int -> [a] -> [[a]]

90 chunksOf _ [] = []

91 chunksOf n xs = let (ys, zs) = splitAt n xs in ys : chunksOf n zs

16

	Introduction
	The Assignment Problem
	The Auction Algorithm
	Brute-force Implementation
	Algorithm

	Parallelization: Gauss-Seidel
	Parallelization Choices
	Gauss-Seidel Runtime/speedup analysis

	Parallelization: Jacobi
	Parallelization Choices
	Jacobi Runtime/speedup analysis (1000x1000)
	Jacobi Runtime/speedup analysis (3000x3000)

	Conclusion
	References
	Appendix

