Parallel Auction Algorithm

Haolin Guo (hg2691), Yuanqging Lei (y15457), Ava Penn (ap4315)

Dec. 16, 2024

1 Introduction

In this project, we implemented the sequential and parallel versions of an auction algorithm in Haskell. The
auction algorithm is an optimization technique used for solving linear assignment problems, where the goal is
to match agents to tasks in a way that minimizes or maximizes a total cost. The graph implementation of this
problem is given a bipartite graph G = (V, E) with bipartition (A, B) and weight function w : E — R, find a
matching of maximum weight, where the weight of a matching M is given by w(M) = > .5, w(e).

The sequential implementation of this algorithm is inspired by economic principles where agents bid for
items (similar to a second-price auction), leading to iterative improvements in the set of prices until the total
payoff is maximized. We chose to focus on this algorithm because it becomes computationally infeasible at a
large number of bidders and items, and because steps 2 and 3 as indicated below are suitable for running in
parallel-that is, they are mostly done independent of other tasks.

We focus on two approaches: the Jacobi implementation and the Guass-Seidel implementation, and compare
their runtime efficiencies. These approaches are adapted from Jin [1], which implements a similar algorithm in

C.

2 The Assignment Problem

Consider the following example. There are three bidders (By, B2, B3) and three items (I3, I2, I3). The payoffs
of assigning each item to each bidders are represented in the following payoff matrix:

2 3
3 1
3

ISR
[a—
o

Here, the entry in row ¢ and column j (e.g., 4 in the top left) represents the payoff of assigning item I;
to bidder J;. In the context of auctions, payoff is similar to utility, or the value that the bidder assigns to a
specific item (how much they are willing to pay).

The goal is to find an assignment where each item is assigned to exactly one unique bidder, such that the
total payoff is maximized.

To maximize the total payoff in the example above:

e Assign I; to By (payoff 4),
e Assign Iy to B; (payoff 3),

o Assign I3 to Bs (payoft 10).

The total payoff of this assignment is:
44+3410=17

This optimal solution can be obtained using algorithms like the auction algorithm. This algorithmic ap-
proach has applications in many types of allocation/linear assignment problems.

N g s W N =

3 The Auction Algorithm

3.1 Brute-force Implementation

Using a brute-force sequential approach involves generating all possible permutations of assignments and calcu-
lating the total pay-off for each permutation to identify the maximum. This approach is exponential in the size
of the input matrix, and is thus intractable. However, we used this brute-force approach to test the correctness
of our sequential implementation on small matrices. What follows is our implementation in Haskell.

optimalAssignment :: PayoffMatrix -> Assignment
optimalAssignment matrix = maximumBy (comparing totalPayoff) assignments
where
bidders = [0 .. length matrix - 1]
items = bidders -- assume square matrix
assignments = [Map.fromList (zip items perm) | perm <- permutations bidders]
totalPayoff assignment = sum [matrix !! b !! i | (i,b) <- Map.tolist assignment
]

3.2 Algorithm

The auction algorithm is taken from Jin [1]. It is pseudo-polynomial in that it also depends on the largest
element of the payoff matrix. The worst-case performance is O(n?) or O(C - n?), but on average, it is expected
to perform in O(n?logn). The O(n?) Hungarian algorithm is more difficult to implement in parallel, however,
and it has been found in practice that the auction algorithm often outperforms the Hungarian algorithm.

1. Start with a set U of all bidders. U denotes the set of all unassigned bidders. Initialize a set of prices to
zero and any structure that stores the current tentative (partial) assignment.

1 |initialUnassigned = [0 .. numBidders - 1]
2 |initialPrices = Map.fromList [(j, 0) | j <- [0 .. numItems - 1]]

2. Pick any bidder ¢ from U. Search for the item j that gives the highest net payoff A;; — p;, and also an
item k that gives the second highest net payoff.

-- calculate net payoffs for all items
netPayoffs = [(j, netPayoff i j prices) | j <- [0 .. numItems - 1]]

-- find the best and second-best items
(bestItem, maxPayoff) = maximumBy (comparing snd) netPayoffs
secondMaxPayoff = if length netPayoffs > 1
then maximum [p | (j,p) <- netPayoffs, j /= bestItem]
else maxPayoff - epsilon

0 N O Uk W N

3. Update the price p; of item j as:

pj < pj + (Aij —pj — (A — pr)) - (1)

This update ensures that the updated prices satisfy A;; — p; = Ajx — pr (it makes it so that the bidder
is indifferent to buying the two items).

1 |-— update the price of the best item
2 |newPrice = (prices Map.! bestItem) + (maxPayoff - secondMaxPayoff + epsilon)
3 |updatedPrices = Map.insert bestItem newPrice prices

4. Assign item j to bidder i. If item j was previously assigned to another bidder s, remove that assignment
and add s back to U.

1 |-— handle previous assignment of the item

2 | (newAssignment , remainingUnassigned) =

3 case Map.lookup bestItem assignment of

4 Just prevBidder ->

5 -- since bestlItem was assigned to prevBidder, remove that assignment and
add prevBidder back into U

6 let updatedAssignment = Map.insert bestItem i assignment -- reassign item

to current bidder i

7 updatedUnassigned = prevBidder : unassignedBidders

8 in (updatedAssignment, updatedUnassigned)

9 Nothing ->

10 (Map.insert bestItem i assignment, unassignedBidders)

11 |in go remainingUnassigned updatedPrices newAssignment

5. If U becomes empty, the algorithm terminates; otherwise, return to Step 2.

4 Parallelization: Gauss-Seidel

The Gauss-Seidel version focuses on parallelizing step 2 of the auction algorithm, where each bidder searches
for the best and second-best items to bid on. This parallelization divides the items among p threads, allowing
each thread to search its partition independently.

This seems like the most obvious and intuitive way to implement parallelization, since the bid on an item ¢
does not affect the bid on an item j. However, there is a loss of efficiency to overhead for the following reasons:

e Synchronization Costs: After the individual searches, the results must be merged to determine the
overall best and second best items.

e Load Imbalance: If the item partitions are not evenly distributed, or if the complexity varies due to
the variation in item values, some threads may finish earlier, leaving others idle.
4.1 Parallelization Choices

We implemented the algorithm in parallel using Haskell’s Control.Parallel.Strategies library. Specifically,
the parMap function is used to divide the workload across multiple threads, with each thread independently
processing a partition of items.

e rpar sparks the evaluations in parallel. parMap starts the evaluation of each chunk in the list in parallel.

e chunkItems function: Items are split into p chunks, where each chunk is processed by a separate thread.
This distributes independent computations of selecting the best bidder per item.

Here is a snippet of code that uses parallelization. Please see the appendix for the entirety of the code:

-- parallelize the search for best and second-best items

partitions = chunkItems 1600 netPayoffs -- change this number iteratively to find
the best size chunk

-—- for chunks: tested 2, 4, 8, 20, 100, 400, 1600, 6400, 10000, 20000

partialResults = parMap rpar findBestAndSecond partitions

(bestItem, maxPayoff, secondMaxPayoff) = mergeResults partialResults epsilon

We tested the code with varying numbers for p, seeing which number of chunks resulted in the best sparks
output (i.e. wanting to keep garbage collected and fizzled sparks low). We ended up choosing 1600 chunks
because we thought it offered a good balance between the number of threads and the number of work done
on each thread, like the painters on the wall analogy. Also observe that the total number of sparks doesn’t
increase after 1600-because of the problem size. Since we tested this first with matrices of 1000x1000 and
didn’t observe a great speedup, we didn’t try to optimize on larger problems and thus didn’t end up needing
to adjust this variable for larger problems. Here are the results of testing p chunks on four cores:

Number of Threads Total Sparks Converted Overflowed GC’d dud Fizzled

2 48305 5879 0 0 12468 29958

4 96611 15163 0 0 28712 52736

8 193203 42612 0 0 41620 108971
20 483003 100362 0 0 164934 217707
100 2415022 611727 0 0 1103680 699615
400 9660052 4538608 0 0 4081373 1040071
1600 24150254 24014601 0 0 2796 132857
6400 24150416 23863965 0 0 8463 277988
10000 24150184 24065539 0 0 3140 81505

20000 24150248 23986340 0 0 4805 159103

4.2 Gauss-Seidel Runtime/speedup analysis

We only tested this parallel approach on a 1000x1000 matrix (with randomly generated doubles between 0 and
100) due to realizing the Jacobi version offered more interesting results.

The following analysis shows that even though the GS version is simple, its merging overhead bottlenecks
the speed.

Number of Cores Runtime (s) Speedup

1 176.316 1.00x
2 256.689 0.69x
3 301.140 0.59x
4 298.948 0.59x
5 267.741 0.66x
6 298.785 0.59x
7 298.913 0.59x
8 196.961 0.90x

Table 1: Runtime and speedup across different numbers of cores.

Speedup vs. Threads

84 —®— Actual Speedup e
-#- |deal Speedup
7 "
6 i
5 Y
o
=)
e
U
2 4-]
wn
34 i
29 =
14 - /
& * @ &
1 2 3 4 5 6 7 8

Threads

Figure 1: Guass-Seidel speedup for 1000x1000 matrix

% CAUsers\avape\Paralel-Auction-Algorithm\tests eventiog - ThreadScope. - b X

Fle View Move Help

“Asersiavape\Parall-Auction-Algorithmtests eventog - ThreadScope - o x

Ele View Move Help

kasi aaq Bk @aaa
Key Traces Bookmarks Timeline Key Traces Bookmarks TVimeline
—rning 0 505 1005 1505 2005 2505 w08 L —rnning 0 50 1005 1505 2005 A
— i 1 L 1 I I — e | 1 1 I 1 L
| cromethend —
| oo ——
| rigmetwed | migmetwas
| thresdokesp | €O | thesdwakeup | FEC0
-~ -
H— —
[oomiin | ot
- i ——_
| adl crestesparc . |kl crestespark .
|k dwspet | € , ok adwat |0 ,
| all overflowedspa Time Hesp GC Sparkstats Sparksizes Processinfo Raw events | sl overflowedspa Time Hesp GC Sparkstats Spark sizes Processinfo Raw events
TR e [T e
| ol fizted spark | mutstortime: 3040615 |l fiedspark | wputatortime: 2307472
|k coetsprk | Gtme t63as |k cosospak || Getme tases

(a) 1 core: 176.316s (b) 2 cores: 256.689s
—— o e
Blkadlaaa BRkpYlaaa
e S o
—uning o 505 1005 505 2005 2505 > —unning 0 s0e 005 1505 2005 2508 &
S h I . | h I —c | L ! . | A
s [s S

| cosethosd | et
| e | e
|| o | rigwathoms
[[t NS T
I | o
— —
| petcoume | petcome
| gerviceone [
|k comespuc | P22 lak cemespur || P22
ol dudsparc ¢ > ol dudsparc ¢ >
[P oo e e 1okl ovetovesoo] oo [meR e e e e e e e P e
[l ot oo D v
| all fizted spark | Mtator time: 2852985 |l fimtedspork | Mtator time: 2806475
[| e |

5 303375%)

989485

(c) 3 cores: 301.140s

(d) 4 cores: 298.948s

4 CaUsers\avapeParale-Auction-Algoithmests ventiog - TreadsScope - o x W
Ee Yiew Move Help

Blleas aaa

Key Tace: Bookmarke Timeline

—uning 0s 505 1005 1505 2008 2505
— G 1

GCwaiting | Acty

crestethread

seaGCreq
parcCreq

migratethresd
thresd wakeup | HECO
shutdown

wsermessage | ey

pert courter
[[JE——
Jlakl! cestemmt
ol dudsparc ¢ >
|l oveflwdspel] Tme o] 6] Spark] Spm s Frpcessiato e vt
| ol fmedspork | ptatorime: 2506036
| ol ocespar | Gotme 173

Productiviy: - 53.6% of mutator vstotal

rec2

events, 267.7415)

P e —————— ~ o x
Ble View Move Hep

BlkadQaa

Key Traces Bookmarks Timeline

—rving
fe—

Gcwitng || sy

| coetvent
watcrg

porccren

migrstethresd
thread wakeup | FECO
shutdown

wermessage | ey

potcountas
[—
| ok crestespark
|l ot ,
| el oveflonedzps Time Heap GC Sparkstats Sparksizes Processnfe Row evnts
[k oot [
| ol fetedspok | wotatortime 2811125
|k costspuc || Getime 176Te

Productivy.94.1% of mutator s ot

(e) b cores: 267.741s

(f) 6 cores: 298.785s

4 CAUsers\avape\Paralel-Auction-Algorithmtests eventiog - ThreadScope.
Fle View Move Help
Blead aaa

Key Tisces Bookmarks Timeline

—runing 05 505 1005 1505 2005 2505
—cc T L 1 L i

Gewsing | Aty
crestethread

seqGCreq
parGCreg

migratethresd

thresd wakeup | HECO

wermessage | gc

|
|
I
| shutdoun
|
.
R ——
|kl cestespark
|l dwdspo ¢ .
|l ovelowedzpn Time Hesp GC Spukstats Sprksies Processnfo Rawevets
|k wnspok [Torome
| ol fedsprk | ptatorime: 2812056
|l ccedspar | ccume 1nes

Productity: 94.1%of mutator s ot

rec2

2569130

52 CaUsers\avape\Paralel-Aucton- Algorithmtests eventiog - Threadscope - o x

Ele View Move Help

Bkl @aa
Key Taces Sookmrks Timeline
—rrning 3 505 To0s 1505 o
— i 1 I
Gewating | vy
T~
sea6Cren
| woce
[
| thesdwakeup | HEC0
R —
| wermesmge | ey
|| oot
[——
|l crestespsrc | =2
ok sdwet | € >
[l ovtowssspal] Toon || Syt it Spok s roces ot i vkt
(I

| ol ftedspark | ptator e 1638025
|l ccedspa | Gcume 1atens
Productiy:$5.%of muttor e ol

196.3615)

() 7 cores: 298.913s

(h) 8 cores: 196.961s

Figure 2: Execution times and event logs for different core counts

5 Parallelization: Jacobi

The Jacobi version parallelizes step 3 of the algorithm. It allows multiple bidders to search for their bids
simultaneously. Through parallelization, each core handles a portion of the total bidders awaiting, reducing
the runtime. Each thread handles one bidder. It may happen that two or more bidders make bids for the same
item in parallel; in this case, we can only make one of them the tentative owner of the item. There is also one
synchronization stage at the end of every iteration: we have to make sure several bidders bidding for the same
item do not conflict, since the prices used to search for the best item may be outdated. It has been proven
though that even with outdated prices during the search, updating the price as long as the new price is higher
than the original (but latest) price is still correct.

By focusing on bidders rather than items, the Jacobi version avoids the merging overhead present in the
Gauss-Seidel version, offering more interesting results.

5.1 Parallelization Choices

We implemented the algorithm in parallel using Haskell’s Control.Parallel.Strategies library. Specifically,
the parMap function is used to divide the workload across multiple threads, with each thread independently
processing a partition of items.

Here is a snippet of code that uses parallelization. Please see the appendix for the entirety of the code:

synchronizedParallelBidding :: [Bidder] -> Prices -> [(Bidder, Item, Double)]
synchronizedParallelBidding bidders prices =
map (bestBid prices) bidders ‘using‘ parlist rdeepseq

e using applies the parallel evaluation strategy (parList rdeepseq) to a list of bidders.
e The parList strategy evaluates each element of a list in parallel.

e The rdeepseq strategy ensures that each element in the list is fully evaluated to normal form before
being returned—it’s used because the bid computation must be fully carried out before results can be
merged.

Essentially, what this does is it creates a spark for each element in the list returned by map (bestBid prices)
bidders. This is the same as each spark corresponding to finding the best item and bid price for a single bidder.
This level of granularity was chosen because it was just the first implementation we tried and it happened
to distribute the workload well. The total number of sparks however changes problem to problem, since the
number of bidders in the subset U at any given iteration is variable depending on the payoff matrix. It changes
even more drastically when the size of the matrix changes. For some measure of the problem size and how well
it parallelizes we include the sparks information for a 1000x1000 matrix and a 3000x3000 matrix:

Size of matrix Total sparks Converted Overflowed GC’d dud Fizzled

1000x1000 1411 1407 0 0 0 4
3000x3000 4324 0 0 0 0 0

5.2 Jacobi Runtime/speedup analysis (1000x1000)

The table below summarizes the runtime of the auction algorithm executed on different numbers of cores, for
a test case of 1000x1000.

Number of Cores Runtime (s/ms) Speedup

1 3.840 s 1.00x
2 3.709 s 1.04 x
3 2.230 s 1.72x
4 2.351 s 1.63x
5 1.356 s 2.83x
6 1.292 s 2.97x
7 1.406 s 2.73x%
8 969.87 ms 3.96 x

Table 2: Runtime and speedup across different numbers of cores.

Speedup vs. Threads

4 —®— Actual Speedup ! I L | I =

~®- Ideal Speedup "

Threads

Figure 3: Actual speedup and ideal speedup

Flo View Move Holp

Flo_ View Movo Holp

Blleeslaaq

ko aaa

Key| I | Timeline a Koy [Traces | Bookmarks | Timeline
- running 0s 05s 1s 15s 25 25s 35 358 H — running
— GC | L | L | L L L = 0
Gowang || o covarg || ane
| ceaetreas croate thread
wacCreq wacGma
| parcora | pwcowa
| migrate toaa | miorate tveas
| OO 0 0 O AR (ol
| shudown .l. | shusown
| jsor message | vsermossage |
| pertcounter | pertoouner
| pertracepoint | pertracepoint
| all croate spark | all create spark
|l dudsparc i} | ok cudspark
lak — = = : : = [e - :]
| all wnspark “Tmo [N | o rmspark |Feso]: |

Totalime: 38408
Mutalor ime: 37405
GCime: 100.466r
Productviy: 87.4% of mutatorvs otal

|l fmodspark
| ol GCedspark

(a) -N1 eventlog

Flo_View Move Holp

Tota tme: 37095
Mutator tme: 3614s

GCtme: 95.555ms

Productity: 97.4% of mutator vs otal

|l tozieasparc
| ol GCedspark

a 2]
[Sucton. testevention (6358 everts, 3 700

(b) -N2 eventlog

File View Move Help

ksl Qaa

or [Tracos| | Timeiine
—runing
—
cowaitng || s
coats read
s0qGCreg

parGCroq
migrato troad
throadwakeup || veco

usermessage [

|
|
|
|
| shudomn
|
|
|

perf counter e
petvacepoet
|k comosmarc || e
ok somarc |}
lad [| | | |
Jal ronsparkc | B | | I |

fazlod spark Total tme: 2.2308
! Mutatortme: 2.141s

|l coedsa || GCume: soze5me

Producivi: 96.0% of mutator v total

1 M—
‘SUCon Testeventiog (6222 events, 22305]

(c) -N3 eventlog

.o

Flo. View Movo_ Help
sl QaQQ

P [Tl

—unning o 05 A

— e 1 |

GG waiting =~
croate thread

seaGC req

parGCreq

migratehea
CENCONCONTT) BNl

auction_test.eventlog - ThreadScope

read wakeup || reco

|

I

I

! I

| shudown .
I |

| petcouner i ORI 10 1 O 8. T 10 O O W 1 O N 1 CIN 1! E DI
| peteacopont

| all croato spark s I

|l cud spark

~ OOO0oooonasionoioCoiaoiioIoaion INEENEEINEIEE NN
]

L | |6¢ | spark: | 1 | |
|l o spark [Heap | | |

Totaltme:1.3568
Mutatormo: 12695

|l tzzedspark
| oL GCodspark
Productvly: 92.6% of mutator va ol

I —
m fon-tostovort ovorts. 13569

(e) -N5 eventlog

Flo_View Movo Help

Blleesdaaaq

Yo s [Timeine

GG waiing sy
| cmatesa

seqGCroq

parGCreq

P 1 S N 1 N N R R

roadwakowp || seco
shudown

usor message

pertcounter f] ** I TN N D R N NOOE [OODCOODCE O
e

Lol comesmm || e I XN CNIN X -]
| ol dudspark ; — 4
< I

o overtowed sare| = - - - R
|l ronsparc

|l szl spark

|l GCodspark

Total tme: 1.406s
Mutator me: 13295

GCtme: 77207ms

Productlty: 94.5% of muator vs total

i —
\2UcHon_testeventiog (5354 events. 1 406)

Koy |]
— running
— cC

GC waiting

create tread

50qGCreq
parGCreq o

(NI ONUNEDANIENN 0 O G (RNEON ERURERNNRN (XENINE TANURIRNNN (NONNRRURRURNUNNNE O CON (NI

migrate thread
tread wakeup

|
|
!
| s - LLLLLL L Reielela e ioLELLLIEELDILIL LD LTIEL IR DL L [1) R
|

I .
usermessage

[TN A N CON O C A N AN NRRAR TN AN [N O |
pervacepoint — U

|l costosparc
e R IEE MEE T RN SRR NN BN R IEREE DI NIEN AN .. |
e |

i — | | | |

U ronspark IHeap| |
Totltme: 23515

Mutator me: 22385

GCtme: 113730ms.

Productity: 95.2% of mutator vs fotal

|k Gosdspare

) P——
‘uGion testeventio (5240 everts. 23515)

(d) -N4 eventlog

Flo_View Move Holp

ool ®aa

Koy [Traces [Bookmarks | Timelne

shutdown Wi u

IR | -
S

mrmET -
| al croato spark ez
| ol cudspark —
ok

| ek nspark 1
|l tezod spark
| L GCedspark

-!-HIH:,

Productiy: 91.6% of mutator vs toal

(Sucton.estoventog (6454 everts 12925)

(f) -N6 eventlog

Filo View Move Help

= M | Timeiine

— running o5 018 02 03s 04s 08s 08 o7 08s 5
— cC L

GG waitng o
create tread

seqGCreq

parGC roq

migrate thread B

11810181 BB CONETHN NN NN CONNRCTNCT INNNNECON (N NN | N

throadwakewp || weco

user message

|

|

|

| shuoun
|

| pertcouner |
|

= WL D =]

pert tracepoint £
|ak cooatospark | e |
| el duasparc
I o i |)

|k s
|l o sparc

| ol coodsmuk || Goame: 76421ms
Productity: 92:1% of mutator vs otal

Kl
o= TaTon

[T Y A

(g) -N7 eventlog

(h) -N8 eventlog

Figure 4: Jacobi Algorithm Eventlog for 1000 x 1000 matrix

As one can observe, the productivity measures for all numbers of cores are above 90%, signaling efficient
core usage. However, the speedup is not ideal, since the test dataset is not large enough. We will test a larger
use case of 3000 x 3000 to demonstrate the parallel algorithm’s speedup ability.

5.3 Jacobi Runtime/speedup analysis (3000x3000)

The table below shows the runtime and speedup of the auction algorithm for a larger test case with a 3000x3000

matrix.
As the matrix size becomes larger, the speedup is more apparent. In this test case of 3000x3000, where
runtime takes a measure of minutes, the speedup is closer to perfect.

Number of Cores Runtime (s/ms) Speedup

1 151.657 s 1.00x
2 82.560 s 1.83x
3 53.064 s 2.85%
4 40.421 s 3.75%
) 30.587 s 4.95x
6 27.942 s 5.42x
7 24.039 s 6.31x
8 21.226 s 7.14%

Table 3: Runtime and speedup across different numbers of cores for a 3000 x 3000 matrix.

As one observes, the speedup is more ideal as the matrix size gets larger. This is because as the matrix grows
larger, the computations become more significant than the spark overhead. The speedup diagram demonstrates
that we can achieve near-ideal speedup using the Jacobi algorithm.

Speedup vs. Threads

g1 —®— Actual Speedup _u
~®- |deal Speedup i

1 2 3 4 5 6 7 8
Threads

Figure 5: Actual speedup and ideal speedup

auction_test.eventiog - ThreadScope

| cud sparc =
ok T — =
150 | o e 0 s sp s e v vene
|l tezessparc | [Tomtime: 1557 [
|70 conpan || Muortme: 150000 | ol GCoaspur || Maortmo: 81487
Productivity: 99.2% of mutator vs total Produckvy: | 907 of mufskor ve ol
: :
E E e
(a) -N1 eventlog (b) -N2 eventlog
BlkEe% QA IR
| Timeline - iTavetia)
0s 55 10s 158 208 255 308 355 405 458 505 H 0s. 5s 10s. 158 205 258 308 368 =
I 1 1 1 1 1 1 1 1 1 | 1 | I I 1 | 1
2 _ M
il J A P O R RO M DR - AT O R R A g
‘
= L O R Y DO A A U NI = L O A L N N T O D
‘ |
“ | N RN O
. v =
o -

Totaltme: 530645, Toultme: 40421
Mutator ime: 52.104 Mutator ime: 39.532
GCtme: 960.306ms GCtme: 888.547ms
Productiy: 98.2% of mutator vs otal Productviy: 97.8% of mutatorvs otal
T E— [E—
ucton_testeventog (63423 ovorts, 53,0645 Bucion_testeventiog (63239 event, 40.4215)

(c) -N3 eventlog (d) -N4 eventlog

T
e aaa

| Timeline

oy

Towaltme: 279425

Mutator ime: 27.091s

| ol ocodspuk || Goume: os1.026ms

Productity: 97.0% of mutator vs otal

Totalime:

30587

1 —
[Sucion-tostovontog (64544 sverts. 27542

(f) -N6 eventlog

Flo_View Movo Holp

BlEeNA]R IR

| Timeline

Tomtne: 240008 | oL tedoasounc | [Tomiume: 212200
Muaorme: 202085 -
GCtme: 830781ms | ol ooedspak || Goyme: e2aco7ms
Produciy: 96.5% of mutaorve ot Prodcty: 9615 of v ol
i 0
b e

(g) -N7 eventlog (h) -N8 eventlog

Figure 6: Jacobi Algorithm Eventlog for 3000 x 3000 matrix

6 Conclusion

e The assignment problem becomes more computationally practical in parallel!

e The Gauss-Seidel implementation faces significant synchronization overhead and load imbalance issues,
resulting in substantially slower performance compared to the Jacobi version.

10

© 0w N O U R W N

-
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

35
36
37

38
39
40

41
42

e As the data size increases, the Jacobi algorithm demonstrates near-ideal scalability, making it a highly
effective approach for parallelization.

Note about testing: Testing was initially done with seven small matrices (with dimensions less than 6x6)
to verify correctness. Once the algorithm was verified, random generation was introduced with the ability to
adjust the size of the matrix through a command-line argument. Please see the test file and README.md for
usage.

7 References

[1] Jin, J. (2016). Parallel Auction Algorithm for Linear Assignment Problem.

8 Appendix

gs_auction.hs

module GSAuction (gsAuctionAlgorithm) where

import Control.Parallel.Strategies
import qualified Data.Map as Map
import Data.List

import Data.Maybe

import Data.Ord (comparing, Down(..))

type PayoffMatrix = [[Double]]

type Bidder = Int

type Item = Int

type Prices = Map.Map Item Double
type Assignment = Map.Map Bidder Item

gsAuctionAlgorithm :: Double -> PayoffMatrix -> (Assignment, Double)
gsAuctionAlgorithm epsilon inputMatrix = (finalAssignment, totalPayoff)
where
numItems = length (head inputMatrix)
initialUnassigned = [0 .. length inputMatrix - 1]
initialPrices = Map.fromList [(j, 0) | j <- [0 .. numItems - 1]]

-- get the resulting assignment and also the total payoff, to return

finalAssignment = go initialUnassigned initialPrices Map.empty

totalPayoff = sum [inputMatrix !! bidder !! item | (item, bidder) <- Map.tolist
finalAssignment]

go :: [Bidder] -> Prices -> Assignment -> Assignment
go [] _ assignment = assignment
go (i : unassignedBidders) prices assignment =

let

-- calculate net payoffs for all items
netPayoffs = [(j, netPayoff i j prices) | j <- [0 .. numItems - 1]]

-- parallelize the search for best and second-best items

partitions = chunkItems 1600 netPayoffs -- change this number iteratively
to find the best size chunk

-- for chunks: tested 2, 4, 8, 20, 100, 400, 1600, 6400, 10000, 20000

partialResults = parMap rpar findBestAndSecond partitions

(bestItem, maxPayoff, secondMaxPayoff) = mergeResults partialResults
epsilon

-- update price according to the auction algorithm description

newPrice = (prices Map.! bestItem) + (maxPayoff - secondMaxPayoff + epsilon
)
updatedPrices = Map.insert bestlItem newPrice prices

11

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68

69
70
71

72

73
74
75
76
7
78
79
80
81
82
83
84
85

86

© 0w N O U R W N

— e
=)

12

-- handle previous assignment of the item
(newAssignment , remainingUnassigned) =
case Map.lookup bestlItem assignment of
Just prevBidder ->
let updatedAssignment Map.insert bestItem 1 assignment
updatedUnassigned prevBidder : unassignedBidders
in (updatedAssignment, updatedUnassigned)
Nothing ->
(Map.insert bestItem i assignment, unassignedBidders)
in go remainingUnassigned updatedPrices newAssignment

-- calculate net payoff for a bidder for a specific item
netPayoff :: Bidder -> Item -> Prices -> Double
netPayoff i j prices = inputMatrix !! i !! j - (prices Map.! j)

-- find the best and second-best items in a partition
findBestAndSecond :: [(Item, Double)] -> (Item, Double, Maybe Double)
findBestAndSecond payoffs =
let (bestItem, maxPayoff) = maximumBy (comparing snd) payoffs
secondMaxPayoff = if length payoffs > 1
then Just $ maximum $ map snd (filter ((/= bestItem)
fst) payoffs)
else Nothing
in (bestItem, maxPayoff, secondMaxPayoff)

-- merge results from all partitions

mergeResults :: [(Item, Double, Maybe Double)] -> Double -> (Item, Double,
Double)
mergeResults results epsilon =
let

allPayoffsWithItems = concatMap (\(item, p, ms) -> [(item, p), (item,
fromMaybe (-1 / 0) ms)]) results
sortedPayoffsWithItems = sortBy (comparing (Down . snd))
allPayoffsWithItems
(bestItem, maxPayoff) = head sortedPayoffsWithItems
secondMaxPayoff = if length sortedPayoffsWithItems > 1
then snd (sortedPayoffsWithItems !! 1)
else maxPayoff - epsilon
in (bestItem, maxPayoff, secondMaxPayoff)

-- split items into equal-sized chunks for parallel processing

chunkItems :: Int -> [a] -> [[all]
chunkItems n items = let (q, r) = length items ‘quotRem‘ n
in goChunks q r items
where
goChunks _ 0 [] = []
goChunks q r xs = let (chunk, rest) = splitAt (q + if r > O then 1 else 0)
Xs

in chunk : goChunks q (max O (r - 1)) rest

jacobi_auction.hs

module JacobiAuction (jacobiAuctionAlgorithm) where

impo
impo
impo
impo

type
type
type
type

type

rt Control.Parallel.Strategies (parlList, rdeepseq, using)
rt Data.List (maximumBy, foldl’)

rt Data.0Ord (comparing)

rt qualified Data.Map as Map

Bidder = Int

Item = Int

Prices = Map.Map Item Double

Assignment = Map.Map Item Bidder -- mapping from item to bidder (to correspond
to implementation in paper)

PayoffMatrix = [[Doublel]

12

13
14
15
16
17
18
19
20
21
22

23

24
25

26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48

49

51

52

53

54

55

56

57

58

59
60

61
62

63
64

65

jacobiAuctionAlgorithm :: Double -> PayoffMatrix -> (Assignment, Double)
jacobiAuctionAlgorithm epsilon inputMatrix = (finalAssignment, totalPayoff)
where
numItems = length (head inputMatrix)
initialUnassigned = [0 .. length inputMatrix - 1]
initialPrices = Map.fromList [(j, 0) | j <- [0 .. numItems - 1]]

-- get the resulting assignment and also the total payoff, to return

(finalAssignment, _) = runSynchronizedAuction initialUnassigned initialPrices
Map.empty
totalPayoff = sum [inputMatrix !! bidder !! item | (item, bidder) <- Map.tolist

finalAssignment]

runSynchronizedAuction :: [Bidder] -> Prices -> Assignment -> (Assignment, [
Bidder])
runSynchronizedAuction [] _ assignment = (assignment, [])
runSynchronizedAuction unassignedBidders prices assignment =
let
bidResults = synchronizedParallelBidding unassignedBidders prices
updatedPrices = foldl’ updatePrices prices bidResults
(newAssignment , newUnassigned) = resolveConflicts bidResults assignment
in

if null newUnassigned
then (newAssignment, newUnassigned)
else runSynchronizedAuction newUnassigned updatedPrices newAssignment

synchronizedParallelBidding :: [Bidder] -> Prices -> [(Bidder, Item, Double)]
synchronizedParallelBidding bidders prices =

map (bestBid prices) bidders ‘using‘ parList rdeepseq

-- find the best item and second-best payoff for a bidder

bestBid :: Prices -> Bidder -> (Bidder, Item, Double)
bestBid prices i =
let
netPayoffs = [(j, netPayoff i j prices) | j <- [0 .. numItems - 1]]
(bestItem, maxPayoff) = maximumBy (comparing snd) netPayoffs
secondMaxPayoff = if length netPayoffs > 1
then maximum $ map snd (filter ((/= bestItem) . fst)
netPayoffs)
else maxPayoff - epsilon
bidPrice = (prices Map.! bestItem) + (maxPayoff - secondMaxPayoff + epsilon
)

in (i, bestItem, bidPrice)

-- resolve conflicts: only one bidder can win an item
-- paper states that this will still result in the optimal assignment, even if
prices are outdated

resolveConflicts :: [(Bidder, Item, Double)] -> Assignment -> (Assignment, [
Bidder])
resolveConflicts bids assignment =
let

groupedBids = Map.fromListWith (++) [(item, [(bidder, bidPrice)]) | (bidder
, item, bidPrice) <- bids]
resolvedAssignments =
Map.mapWithKey (_ bidders -> fst $ maximumBy (comparing snd) bidders)
groupedBids
newAssignment =
foldl’ (\acc (item, bidder) -> Map.insert item bidder acc) assignment (
Map.tolist resolvedAssignments)
unassignedBidders =
[bidder | (_, bidders) <- Map.tolist groupedBids, (bidder, _) <- bidders,
bidder ‘notElem‘ Map.elems newAssignment]
in (newAssignment, unassignedBidders)

13

66
67
68
69
70
71
72
73
74

© 0w N O U Rk W N

==
—= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49

-- update prices for items based on the winning bids
updatePrices :: Prices -> (Bidder, Item, Double) -> Prices
updatePrices prices (_, item, bidPrice) =

let currentPrice = Map.findWithDefault O item prices

in Map.insert item (max currentPrice bidPrice) prices

-- calculate net payoff for a bidder for a specific item
netPayoff :: Bidder -> Item -> Prices -> Double
netPayoff i j prices = inputMatrix !! i !! j - (prices Map.! j)

sequential_auction.hs

module SequentialAuction (auctionAlgorithm, optimalAssignment) where

import Data.List (maximumBy, permutations)
import Data.Ord (comparing)
import qualified Data.Map as Map

type Bidder = Int
type Item = Int
type Prices = Map.Map Item Double

-- item is the key, bidder is the value, for consistency with the algorithm from
the paper

type Assignment = Map.Map Item Bidder

type PayoffMatrix = [[Double]]

auctionAlgorithm :: Double -> PayoffMatrix -> (Assignment, Double)
auctionAlgorithm epsilon inputMatrix = (finalAssignment, totalPayoff)
where

numItems = length (head inputMatrix)
numBidders = length inputMatrix
initialUnassigned = [0 .. numBidders - 1]
initialPrices = Map.fromList [(j, O0) | j <- [0 .. numItems - 1]]
finalAssignment = go initialUnassigned initialPrices Map.empty
totalPayoff = sum [inputMatrix !! bidder !! item | (item, bidder) <- Map.tolist

finalAssignment]

go :: [Bidder] -> Prices -> Assignment -> Assignment
go [] _ assignment = assignment
go (i : unassignedBidders) prices assignment =

let

-- calculate net payoffs for all items
netPayoffs = [(j, netPayoff i j prices) | j <- [0 .. numItems - 1]]

-- find the best and second-best items
(bestItem, maxPayoff) = maximumBy (comparing snd) netPayoffs
secondMaxPayoff = if length netPayoffs > 1
then maximum [p | (j,p) <- netPayoffs, j /= bestlItem]
else maxPayoff - epsilon

-- update the price of the best item

newPrice = (prices Map.! bestItem) + (maxPayoff - secondMaxPayoff + epsilon
)
updatedPrices = Map.insert bestlItem newPrice prices

-- handle previous assignment of the item
(newAssignment , remainingUnassigned) =
case Map.lookup bestlItem assignment of
Just prevBidder ->
-- since bestlItem was assigned to prevBidder , remove that assignment

14

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

© 0w N O U R W N

— =
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35

36

37

38

and add prevBidder back into U

let updatedAssignment = Map.insert bestItem i assignment -- reassign
item to current bidder i
updatedUnassigned = prevBidder : unassignedBidders

in (updatedAssignment, updatedUnassigned)
Nothing ->
(Map.insert bestItem i assignment, unassignedBidders)
in go remainingUnassigned updatedPrices newAssignment

netPayoff :: Bidder -> Item -> Prices -> Double
netPayoff i j prices = inputMatrix !! i !! j - (prices Map.! j)

-- find the optimal assignment by brute force (adjusted to return item->bidder)

optimalAssignment :: PayoffMatrix -> Assignment
optimalAssignment matrix = maximumBy (comparing totalPayoff) assignments
where
bidders = [0 .. length matrix - 1]
items = bidders -- assume square matrix
assignments = [Map.fromList (zip items perm) | perm <- permutations bidders]
totalPayoff assignment = sum [matrix !! b !! i | (i,b) <- Map.tolist assignment
]
tests.hs

module Main (main) where

import SequentialAuction (auctionAlgorithm)

import JacobiAuction (jacobiAuctionAlgorithm)

import GSAuction (gsAuctionAlgorithm)

import qualified Data.Map as Map

import Control.Monad (unless)

import System.Random (mkStdGen, randomRs, StdGen, split)
import System.Environment (getArgs, getProgName)

import System.Exit (die)

import System.IO.Error (catchIOError)

type Bidder = Int

type Item = Int

type PayoffMatrix = [[Double]l]

type Assignment = Map.Map Item Bidder

roundToTenths :: Double -> Double
roundToTenths x = fromIntegral (round (x * 10)) / 10

printMatrix :: PayoffMatrix -> IO ()
printMatrix m = do
putStrLln "Priceymatrix:"
mapM_ (putStrLn . formatRow . map roundToTenths) m

where
formatRow :: [Double] -> String
formatRow row = "[" ++ unwords (map show row) ++ "]"
printAuctionResults :: PayoffMatrix -> Assignment -> Double -> IO ()
printAuctionResults matrix assignment totalPayoff = do
putStrLn "\nAssignments,and payoffs:"
let payoffBreakdown = [(item, bidder, matrix !! bidder !! item) | (item, bidder
) <- Map.tolist assignment] -- !! is same as matrix[bidder][item]

mapM_ (\(i, b, p) -> putStrLn $ "Item," ++ show i ++ " -> Bidder " ++ show b ++
":4" ++ show (roundToTenths p)) payoffBreakdown
putStrln $ "\nTotalpayoff: " ++ show (roundToTenths totalPayoff)

runAlgorithm :: (Double -> PayoffMatrix -> (Assignment, Double)) -> PayoffMatrix ->
I0 (Assignment, Double)
runAlgorithm algorithm matrix = do

15

39

40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58

59

60
61
62
63
64
65

66
67
68
69
70
71

72
73

74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

let (assignment, totalPayoff) = algorithm 0.01 matrix -- always assume 0.01 is
sufficient for epsilon
return (assignment, totalPayoff)

main :: I0 ()
main = runProgram ‘catchIOError ‘¢ _ ->
die "ERROR,_ tryymaking,sure, the ,command-linejarguments are formatted correctly"

runProgram :: I0 ()
runProgram = do
args <- getArgs
case args of
[sizeStr, algStr] -> do
let maybeSize = reads sizeStr :: [(Int, String)] -- read the input, and
cast as Int, String tuple
case maybeSize of

[(n, "")] -> do
algFunc <- case algStr of
"seq" -> return auctionAlgorithm
"gs" -> return gsAuctionAlgorithm
"jacobi" -> return jacobiAuctionAlgorithm

-> die "ERROR,_ pleaseenter, ’seq’,’gs
’,uo0ry’ jacobi’"
let seed = 100 -- causes generated matrix to stay the same if
file isn’t reloaded
gen = mkStdGen seed
(matrix, _) = generateMatrix gen n n
(assignment, totalPayoff) <- runAlgorithm algFunc matrix

-—- show the results when the matrix is resonably small
-—- assume that this case is used for testing correctness by
hand
if n < 6
then do
printMatrix matrix
printAuctionResults matrix assignment totalPayoff

-- assume that this case is used for testing runtime on
large matrices
else do
putStrln $ "Total, payoff:, " ++ show (roundToTenths
totalPayoff)
-> do
pn <- getProgName
die $ "ERROR,_,Invalid, command line arguments._ Usage: " ++ pn
-> do
pn <- getProgName
die $ "ERROR,_ Usage:_ " ++ pn

generateMatrix :: StdGen -> Int -> Int -> (PayoffMatrix, StdGen)
generateMatrix gen rows cols = (matrix, finalGen)
where randomNumbers = take (rows * cols) $ randomRs (0.0, 100.0) gen
(finalGen, _) = split gen
matrix = chunksOf cols randomNumbers

-- splits the randomNumbers list into chunks of size cols
chunks0f :: Int -> [al] -> [[a]l
chunks0f _ [] (]

let (ys, zs) = splitAt n xs in ys : chunksOf n zs

chunks0f n xs

16

	Introduction
	The Assignment Problem
	The Auction Algorithm
	Brute-force Implementation
	Algorithm

	Parallelization: Gauss-Seidel
	Parallelization Choices
	Gauss-Seidel Runtime/speedup analysis

	Parallelization: Jacobi
	Parallelization Choices
	Jacobi Runtime/speedup analysis (1000x1000)
	Jacobi Runtime/speedup analysis (3000x3000)

	Conclusion
	References
	Appendix

