
Parallelizing Convex Hull

Claudia Cortell (ccc2223), Kyle Edwards (kje2115), and Avighna Suresh (as6469)

December 18, 2024

1 Introduction

Figure 1: An example of a 2D convex hull.

Given a set P of n points in a plane, the convex hull of P is the smallest convex polygon
containing the points and the largest convex polygon whose vertices are points in P .

Figure 2: An example of a 3D convex hull.

Convex hulls also naturally extend to three dimensions. Analogous to how a 2D convex
hull is the smallest convex polygon enclosing a set of all points in a plane, a 3D convex hull is
the smallest convex polyhedron that completely encloses a set of points in three-dimensional
space. The hull itself is made up of flat triangular faces that connect to form the surface of
the polyhedron. Every point in the original set either lies on the surface of this polyhedron
or inside it, and any line segment connecting any two points within the hull lies completely
inside the hull.

Due to the large number of use cases for convex hulls and the relative lack of already
existing parallel algorithms for the problem, our project aims to parallelize an existing convex
hull algorithm. Specifically, we aim to implement both sequential and parallel convex hull
algorithms in order to compare the increase in speed that parallelization would provide.

2 Algorithms

Graham Scan

The Graham Scan algorithm provides a simple yet effective approach to computing convex
hulls with consistent runtime behavior. The algorithm executes in two main phases: sorting
points based on their polar angles, and constructing the hull through point traversal. In
the sorting phase, using the point with the lowest y-coordinate as a reference point, the
algorithm computes angles between this point, the x-axis, and each remaining point. These
angles determine the counterclockwise ordering of points. The hull construction phase uses
a stack-based approach to identify hull points: for each point in the sorted sequence, the
algorithm removes points from the stack until three consecutive points (the current point
and top two stack points) form a counterclockwise turn, then pushes the current point onto
the stack. The stack’s remaining points form the convex hull once all points have been
processed.

The algorithm runs in O(n log n) time, as its time complexity is dominated by the initial
sorting phase.

QuickHull (2D)

Figure 3: A visual demonstration of the steps of QuickHull.

The 2D QuickHull algorithm implements a divide-and-conquer approach to constructing
convex hulls in 2D space. For point sets of size four or larger (as smaller sets are their own
convex hulls by default), the algorithm begins by identifying the points with minimum and
maximum x-coordinates, which are guaranteed to be part of the final hull. These points
create a line that partitions the remaining points into two sets - those above and below the
line.

The core recursive operation processes points relative to a line segment defined by two
points. For each recursive call, the algorithm computes cross products to determine which
points lie to the left of the oriented line. If fewer than two points remain on the left side, the
algorithm returns the first endpoint concatenated with these points. Otherwise, it identifies
the point that forms the largest area triangle with the current line segment and recursively
processes two new subproblems: points left of the line from the first endpoint to this maxi-
mum point, and points left of the line from this maximum point to the second endpoint.

The algorithm combines the results of processing points above and below the initial line
(from leftmost to rightmost point) to form the complete convex hull and is made more
efficient by eliminating points that lie inside triangles formed during the recursive process.
While the average-case time complexity is O(n log n), it can degrade to O(n2) when many
points lie on or near the hull.

QuickHull (3D)

The 3D QuickHull algorithm extends 2D QuickHull’s divide-and-conquer approach to con-
structing convex hulls in 3D space. Unlike 2D QuickHull, which works with lines and points
on either side, the 3D version works with triangular faces and points that lie above or below
them.

The algorithm begins with an initialization phase that establishes a foundational tetra-
hedron with four extreme non-coplanar points that will form the initial structure of the hull.
Once the initial tetrahedron is established, the algorithm creates four triangular faces, each
represented by three vertices. For each face, the algorithm determines its ”outside set” - the
collection of remaining points that lie above the face. Similar to 2D QuickHull, determining
which side a point lies on relative to a face is done using a cross product, in this case with
the vertex normal of the face. The main processing phase recursively refines the hull: for
each face that has points in its outside set, find the furthest point and use it to create new
faces to create what can be visualized as a cone – the furthest point is connected to each
edge of the original face, forming three new triangular faces. Each of these new faces then
inherits a subset of points from the original face’s outside set, specifically those points that
lie above it. The recursive process continues until all faces have empty outside sets, meaning
no remaining points lie outside the current hull structure. The final hull is then constructed
by collecting all the unique vertices from the faces that survived the refinement process.

While the worst-case time complexity remains O(n2) like in 2D, the algorithm often
performs much better in practice due to the efficient pruning of points and the fact that
most points are typically eliminated early in the process. Furthermore, the branching factor
for 3D QuickHull’s recursion is 3 rather than 2.

Chan’s Algorithm

Figure 4: A visual example of Chan’s algorithm. More specifically, a visual example of what
finding the rightmost point of each sub-hull would look like.

Chan’s algorithm is similar to QuickHull in that it employs a divide-and-conquer approach.
Points are first partitioned into K subsets, each subset containing m points. Then, the convex
hull of each subset is found using any O(n log n) convex hull algorithm, each sub-hull’s points
being ordered in a counter-clockwise order (in our case, we used QuickHull). Finally, the
convex hulls of each subset are merged into the final convex hull using a modified version of
another convex hull algorithm known as the gift-wrapping algorithm: starting from a point
known to be on the convex hull (e.g. any extreme point), iterate through each point to find
the point oriented the most to the right, add that point to the hull, move to that point, and
repeat until the initial point is reached. The trick that Chan’s algorithm employs relies on
the fact that each sub-hull’s points are ordered, meaning that finding the rightmost point of
a sub-hull can be done using a binary search.

Altogether, finding the convex hull of each sub-grouping of points takes O(n logm) time,
and merging the sub-hulls takes O(Kh logm) time. Assuming that m ≈ h, this results in a
total time complexity of O(n log h), making it theoretically the best of the three algorithms.

3 Parallelization

We decided to parallelize the divide-and-conquer algorithms by creating a new spark for each
recursive subproblem. In particular, each spark was evaluated using rdeepseq to reduce
the number of thunks, as due to the divide-and-conquer nature of each algorithm, points
discarded during each recursive subproblem are never used again, meaning it makes sense
to determine as soon as possible through reduction to normal form when a point can be
discarded in order to save memory. We did not parallelize Graham scan, as our intention
was to use it as a benchmark due to its simplicity.

QuickHull’s 2D implementation achieves parallelization by dividing the initial problem
into four distinct regions based on extremal points, creating a list of four line segments
that form a rough boundary of the point set, and processing each of the four recursive
sub-problems in parallel using parList:

let topLeft = (minXPoint, maxYPoint)

topRight = (maxYPoint, maxXPoint)

bottomRight = (maxXPoint, minYPoint)

bottomLeft = (minYPoint, minXPoint)

in

concat (map (_quickHull2Par 1 points) \

[topLeft, topRight, bottomRight, bottomLeft] \

`using` parList rdeepseq)

For each subsequent recursive sub-problem, we also use parList in order to evaluate the
two new recursive sub-problems, returning a concatenation of their results.

concat (map (_quickHull2Par (d + 1) onLeft) nextLines \

`using` parList rdeepseq)

The 3D implementation applies the same parallelization method, focusing instead on a
tetrahedron’s faces as the primary units of parallel computation. After constructing the
initial tetrahedron, the algorithm processes each face independently in parallel:

concat (map (processPointsParallel 0 epsilon points) initialFaces \

`using` parList rdeepseq)

For Chan’s algorithm, we employed parallelization for finding the convex hulls of each
sub-grouping of points. We also turn the resulting list into a vector.

map (V.force . V.fromList . quickHull2) subPoints \

`using` parBuffer 32 rdeepseq

We also decided to use parBuffer over parList, as the list of sub-groupings is quite
large. This greatly reduced the memory footprint, reducing the amount of space used from
∼1.5GB to only ∼50MB, which thus resulted in better performance. The value 32 was found
empirically.

4 Design Decisions

For generating points, we decided to use a random number generator at runtime rather
than a predetermined list of points read from a file. This was done after we observed that
the latter approach caused our program to be mostly I/O-bound. Furthermore, random
generation of points was not very time consuming. In practice it would probably make more
sense to read points from a file, but in our case we wanted to eliminate as many external
factors as possible from the total time of the program.

Instead of finding the number of input points at runtime, we decided to instead pass
it in as an argument. For Chan’s algorithm in particular, in order to optimally subdivide
the points into sub-groups, the length of the list has to be known. However, when we used
length ps to find this value, we found on Threadscope that almost half of the time was
spent iterating over the list of points just to calculate the length. As such, we decided to
just pass it in as an argument to the function, as we figured that the list passed in would
almost always be of finite length anyways.

For QuickHull, in order to prevent too many sparks from being created, we add a depth
limit, controlled by a maxDepth parameter. After experimenting with various depth limits,
we did not see a drastic difference in performance, so we picked a depth limit of 100 for 2D
and 50 for 3D. It’s likely that removing the depth limit altogether would not result in any
noticeable decrease in speed.

For Chan’s algorithm, rather than using the squaring method we spoke of in our proposal
to find a suitable value for m, we decided to instead calculate it simply as a function of n,
the number of input points. In particular, using the approximation that m ≈ h, we deduced
that a good approximation was m ≈ 3

√
n. This approximation was used due to the fact

that, for a circle of area A, the circumference with respect to A is equal to 2
√
A, and for

a square also of area A, the perimeter with respect to A is equal to 4
√
A, thus suggesting

that a good general guess for the perimeter of a polygon (analogous to h, which itself should
approximate m) given its area (analogous the the number of points) would be 3

√
A. We also

empirically found that this value performed the best by comparing runtimes.
We started out by creating our own Point class before quickly realizing that we could use

the Linear package’s V2 and V3 instead. This helped to reduce the amount of boilerplate
code we needed to create.

For the binary search for Chan’s algorithm, we used the vector library in order to have
lists that could be accessed at constant time. When combined with our choice of using
rdeepseq, this meant that each vector was immediately ready to be used.

Finally, we found that increasing the size of the nursery to 64MB drastically reduced
the time spent doing garbage collection. This was especially the case with Chan’s algorithm,
where performance nearly doubled. For those wishing to run our code, we suggest increasing
the nursery size.

Some routes that went down that were not successful included using REPA and forcing
point evaluation before passing it to the algorithm. In QuickHull, we tried to use REPA
to parallelize the calculation of the distance from each point to the line to speed up finding
the farthest point from the line. However, there were little performance benefits, since it
required converting to and from regular Haskell lists to use parallel strategies. Parallelizing
calculating the distances of each point using functions such as parList and parBuffer also

did not provide adequate results, as the number of points was very large, and the distance
calculation was simple enough that the overhead of creating sparks often outweighed any
performance benefits.

5 Findings & Results

For all graphs, blue will represent QuickHull in 2D, green will represent Chan’s algorithm,
and orange will represent QuickHull in 3D. Squares represent linear algorithms, and triangles
represent parallel algorithms.

219 220 221 222 223 224

20

21

22

23

24

of points (logarithmic)

E
la
p
se
d
ti
m
e
(E

T
)
(l
og
ar
it
h
m
ic
)

Elapsed time vs. # of points

quickHull2
quickHull2Par

chans2
chans2Par
quickHull3

quickHull3Par

Figure 5: Elapsed time as a function of the number of input points. quickHull3 and quick-
Hull3Par were not tested to their fullest due to time constraints.

The graph of elapsed time over the number of inputs is as we expect it, showcasing a roughly
linear correlation between the number of points and the total runtime. As expected by the
theoretical time complexity, Chan’s algorithm also performed better than QuickHull. It’s
worth noting however that we chose not to include Graham Scan due to the fact that,
on average, it performed around ten times worse. Upon further examination, we realized
that this was almost certainly due to the fact that we were sorting the Haskell list though
comparisons, which is a very slow process compared to what QuickHull and Chan’s do.
Overall, this graph mostly showcases that our algorithms are working correctly.

0 4 8 12 16 20 24
0

4

8

12

16

20

24

of cores

S
p
ee
d
u
p
(R

T
/
E
T
)

Speedup vs. # of cores (2M points)

quickHull2Par
chans2Par

chans2Par (-A64M)
Ideal

Figure 6: A graph of speedup (calculated with tReal/tElapsed) as a function of the # of cores.
We did not include quickHull3Par due it having almost identical performance to quickHull2.
The star is just there to make it easier to differentiate between the two Chan’s graphs; both
are parallel.

The graph of speedup as a function of the number of cores tells us that Chan’s algorithm
is much more parallelizable than QuickHull. This matches with what we expected, as the
parallelizable portion of Chan’s takes up a much larger percentage of overall time when
compared to the parallelizable portion of QuickHull.

The plateau of each graph tells us roughly the maximum speedup of each algorithm.
QuickHull plateaued at around 2.5x, Chan’s algorithm at around 8x, and Chan’s algorithm
with an increased nursery size did not plateau whatsoever. Using Amdahl’s law, we can thus
deduce that we parallelized roughly 60% of the runtime of QuickHull, and roughly 87.5% of
the total runtime of Chan’s algorithm.

Something we were not expecting was how effective increasing the size of the nursery
would be for Chan’s algorithm. In fact, it was so effective that even up to 22 cores we were
still observing a linear increase in speedup! This suggests that garbage collection takes up
a large portion of the remaining non-parallelizable portion of Chan’s algorithm, which is a
very good result.

For fun, we also decided to graph the speedup of the parallel functions as a function of
the # of points. Due to how m was calculated, we suspected that larger values of n may
result in higher overall speedup, a theory proven correct with this graph.

219 220 221 222 223 224
0

4

8

12

16

of points (logarithmic)

S
p
ee
d
u
p
(R

T
/
E
T
)

Speedup vs. # of points

quickHull2Par
chans2Par

Figure 7: A graph of speedup as a function of the # of points.

Figure 8: A Threadscope log of QuickHull, with 22 threads and 224 points.

The Threadscope log of QuickHull does not paint a pretty picture. For roughly two
thirds of the time, only four threads are in use, and the remaining third does not show much
parallel thread usage either. This result makes sense when considering that a very large
number of points are discarded during the first partitioning of points, which when combined
with the fact that each recursive sub-problem halves the number of points to process on
average, means that sequential operations take up a large portion of the total runtime.

Figure 9: A Threadscope log of Chan’s algorithm, with 22 threads and 224 points.

The threadscope log of Chan’s algorithm on the other hand showed much better results,
as all threads have a roughly equal workload for the vast majority of the time. Furthermore,
the log confirms our suspicion that the sequential portion of the algorithm (the joining of
the sub-hulls) takes up a very small amount of the total runtime. However, the amount of
garbage collection taking place along with the relatively low average activity is disappointing.

Figure 10: A Threadscope log of Chan’s algorithm, with 22 threads, 224 points, and a 64MB
nursery.

Luckily, the Threadscope log of Chan’s algorithm with an increased nursery size shows
that increasing the nursery size eliminates both the problem of low activity and the problem
of constant garbage collection. If it were not for the small sequential portion at the end, this
Threadscope log shows that Chan’s algorithm with an increased nursery size is an almost
perfectly parallelizable algorithm!

Code

Shared (Lib.hs)

1 isCCWTurn :: (Ord a, Num a) => V2 a -> V2 a -> V2 a -> Bool

2 isCCWTurn o p1 p2 = crossZ (p1 - o) (p2 - o) >= 0

3

4 squareDistance2 :: (Num a) => V2 a -> V2 a -> a

5 squareDistance2 (V2 x0 y0) (V2 x1 y1) = dx * dx + dy * dy

6 where

7 dx = x1 - x0

8 dy = y1 - y0

9

10 -- Calculate distance from line

11 distFromLine2 :: (Num a) => V2 a -> V2 a -> V2 a -> a

12 distFromLine2 p0 p1 = crossZ (p1 - p0) . subtract p0

13

14 -- GT = o -> p1 -> p2 is a counter-clockwise turn

15 -- LT = o -> p1 -> p2 is a clockwise turn

16 -- EQ = o, p1, and p2 are colinear, instead compare based on distance

17 orientation :: (Ord a, Num a) => V2 a -> V2 a -> V2 a -> Ordering

18 orientation p0 p1 p2 = compare (crossZ (p1 - p0) (p2 - p0)) 0 \

19 <> compare (squareDistance2 p0 p1) (squareDistance2 p0 p2)

20

21 -- Sort a list of points in counter-clockwise order starting from the point

22 -- with the lowest x value

23 sortPointsCW :: (Ord a, Num a) => [V2 a] -> [V2 a]

24 sortPointsCW [] = []

25 sortPointsCW points =

26 let o = minimum points -- o is the minimum with respect to x, then to y

27 in o : (sortBy (orientation o) . filter (/= o)) points

28

29 -- Sort a list of points in counter-clockwise order starting from the point

30 -- with the lowest x value

31 sortPointsCCW :: (Ord a, Num a) => [V2 a] -> [V2 a]

32 sortPointsCCW [] = []

33 sortPointsCCW points =

34 let o = minimum points -- o is the minimum with respect to x, then to y

35 in o : (sortBy (flip (orientation o)) . filter (/= o)) points

Graham Scan

1 angleToXAxis :: (RealFloat a) => V2 a -> V2 a -> a

2 angleToXAxis (V2 x0 y0) (V2 x y) = atan2 (y - y0) (x - x0)

3

4 sortPointsByAngle :: (RealFloat a) => V2 a -> ([V2 a] -> [V2 a])

5 sortPointsByAngle p0 = sortOn (angleToXAxis p0)

6

7 buildHull :: (RealFloat a) => [V2 a] -> [V2 a] -> [V2 a]

8 buildHull hull [] = hull -- base case: no more points

9 buildHull (p1 : p0 : hull) (p : points)

10 -- left turn or collinear: add p to the hull and continue

11 | isCCWTurn p0 p1 p = buildHull (p : p1 : p0 : hull) points

12 -- right turn: pop p1 from hull and continue

13 | otherwise = buildHull (p0 : hull) (p : points)

14 -- if there are less than 2 points, just push p onto hull and continue

15 buildHull hull (p : points) = buildHull (p : hull) points

16

17 grahamScan :: (RealFloat a) => [V2 a] -> [V2 a]

18 grahamScan [] = []

19 grahamScan p@[_] = p

20 grahamScan p@[_, _] = p

21 grahamScan p@[_, _, _] = p

22 grahamScan points =

23 let pYMin = minimumBy (\(V2 _ ay) (V2 _ by) -> compare ay by) points

24 sortedPoints = sortPointsByAngle pYMin points

25 convexHull = buildHull [] sortedPoints

26 in convexHull

QuickHull

1 quickHull2 :: (Ord a, Num a) => [V2 a] -> [V2 a]

2 quickHull2 points =

3 let

4 _quickHull2 :: (Num a, Ord a) => [V2 a] -> V2 a -> V2 a -> [V2 a]

5 _quickHull2 ps p0 p1

6 | null ps = [p1]

7 | otherwise = _quickHull2 onRight pm p1 ++ _quickHull2 onLeft p0 pm

8 where

9 pm = maximumBy (compare `on` distFromLine2 p0 p1) ps

10 (onLeft, maybeOnRight) = partition ((> 0) . distFromLine2 p0 pm) ps

11 onRight = filter ((> 0) . distFromLine2 pm p1) maybeOnRight

12

13 pXMin = minimumBy (compare `on` (^. _x)) points

14 pXMax = maximumBy (compare `on` (^. _x)) points

15

16 (topPoints, bottomPoints) = partition ((> 0) . distFromLine2 pXMin pXMax) points

17

18 in if (null . drop 3) points then points else _quickHull2 topPoints pXMin pXMax \

19 ++ _quickHull2 bottomPoints pXMax pXMin

20

21 quickHull2Par :: (Num a, Ord a, NFData a) => [V2 a] -> [V2 a]

22 quickHull2Par points =

23 let maxDepth = 100

24 _quickHull2Par :: (Num a, Ord a, NFData a) => Int -> [V2 a] -> (V2 a, V2 a) -> [V2 a]

25 _quickHull2Par d ps (p0, p1)

26 | null onLeft = [p0]

27 | d < maxDepth = concat (map (_quickHull2Par (d + 1) onLeft) nextLines \

28 `using` parList rdeepseq)

29 | otherwise = concatMap (_quickHull2Par (d + 1) onLeft) nextLines

30 where

31 onLeftDists = (filter ((> 0) . snd) . map (\p -> (p, distFromLine2 p0 p1 p))) ps

32 onLeft = map fst onLeftDists

33 pm = (fst . maximumBy (compare `on` snd)) onLeftDists

34 nextLines = [(p0, pm), (pm, p1)]

35

36 maxXPoint = maximumBy (compare `on` (^. _x)) points

37 minXPoint = minimumBy (compare `on` (^. _x)) points

38 maxYPoint = maximumBy (compare `on` (^. _y)) points

39 minYPoint = minimumBy (compare `on` (^. _y)) points

40 --

41 topLeft = (minXPoint, maxYPoint)

42 topRight = (maxYPoint, maxXPoint)

43 bottomRight = (maxXPoint, minYPoint)

44 bottomLeft = (minYPoint, minXPoint)

45

46 in if (null . drop 3) points then points else concat (map (_quickHull2Par 1 points) \

47 [topLeft, topRight, bottomRight, bottomLeft] `using` parList rdeepseq)

1 -- Face representation as described in Section 1: "We represent a convex hull

2 -- with a set of facets and a set of adjacency lists"

3 data Face a = Face {vertices :: (V3 a, V3 a, V3 a), \

4 outsideSet :: [(V3 a, a)], furthestPoint :: Maybe (V3 a, a)}

5

6 -- Based on geometric orientation test described in Section 2: Signed volume

7 -- calculation for determining if point is above face

8 signedVolume :: Floating a => V3 a -> V3 a -> V3 a -> V3 a -> a

9 signedVolume a b c = dot (cross (b - a) (c - a)) . subtract a

10

11 -- Find points above a plane with distance

12 findPointsAbove :: (Ord a, Floating a) => a -> V3 a -> V3 a -> V3 a -> [V3 a] -> [(V3 a, a)]

13 findPointsAbove epsilon p0 p1 p2 points = let volumes = [(p, vol) | p <- points, \

14 p /= p0 && p /= p1 && p /= p2, let vol = signedVolume p0 p1 p2 p, vol > epsilon] \

15 in volumes

16

17 -- Create initial faces of tetrahedron

18 createInitialFaces :: (Ord a, Floating a) => a -> [V3 a] -> V3 a -> V3 a -> V3 a -> V3 a -> [Face a]

19 createInitialFaces epsilon points p0 p1 p2 p3 =

20 let faces = [(p0, p1, p2), (p0, p2, p3), (p0, p3, p1), (p1, p3, p2)]

21 remainingPoints = filter (\p -> p /= p0 && p /= p1 && p/= p2 && p /= p3) points

22 createFace (v1, v2, v3) =

23 let outside = findPointsAbove epsilon v1 v2 v3 remainingPoints

24 furthest = if null outside then Nothing else Just $ maximumBy \

25 (compare `on` snd) outside

26 in Face (v1, v2, v3) outside furthest

27 in map createFace faces

28

29 -- Process a face using Beneath-Beyond method

30 processFace :: (Ord a, Floating a) => a -> Face a -> [(V3 a, V3 a, V3 a)]

31 processFace epsilon face =

32 case furthestPoint face of

33 Nothing -> [vertices face]

34 Just (p, _) ->

35 let (v1, v2, v3) = vertices face

36 -- Create cone of new faces (Section 1)

37 newFaces = [(v1, v2, p), (v2, v3, p), (v3, v1, p)]

38 remainingPoints = map fst $ filter ((/= p) . fst) $ outsideSet face

39 processNewFace (a, b, c) =

40 let outside = findPointsAbove epsilon a b c remainingPoints

41 in if null outside

42 then [(a, b, c)]

43 else let furthest = maximumBy (compare `on` snd) outside

44 in processNewFaceWithPoints epsilon outside furthest (a, b, c)

45 in concatMap processNewFace newFaces

46

47

48 -- Process new faces recursively with their outside sets

49 processNewFaceWithPoints :: (Ord a, Floating a) => a -> [(V3 a, a)] -> (V3 a, a) \

50 -> (V3 a, V3 a, V3 a) -> [(V3 a, V3 a, V3 a)]

51 processNewFaceWithPoints epsilon points furthest (a, b, c) =

52 let (fp, _) = furthest

53 remaining = map fst $ filter ((/= fp) . fst) points

54 in if null remaining

55 then [(a, b, c)]

56 else let newFaces = [(a, b, fp), (b, c, fp), (c, a, fp)]

57 processSubFace (v1, v2, v3) =

58 let above = findPointsAbove epsilon v1 v2 v3 remaining

59 in if null above

60 then [(v1, v2, v3)]

61 else let (p', _) = maximumBy (compare `on` snd) above

62 in processNewFaceWithPoints epsilon above \

63 (p', snd furthest) (v1, v2, v3)

64 in concatMap processSubFace newFaces

65

66 -- Sequential

67 quickHull3 :: (Ord a, Floating a) => [V3 a] -> [V3 a]

68 quickHull3 points

69 | length points < 4 = points

70 | otherwise =

71 let epsilon = 1e-8 -- Numerical tolerance from Section 4

72 -- Initial point selection as described in Section 2

73 p0 = minimumBy (compare `on` (^._x)) points

74 p1 = maximumBy (compare `on` distance p0) points

75 rest1 = filter (\p -> p /= p0 && p /= p1) points

76 p2 = maximumBy (compare `on` \p -> norm (cross (p1 - p0) (p - p0))) rest1

77 rest2 = filter (/= p2) rest1

78 p3 = maximumBy (compare `on` \p -> abs $ signedVolume p0 p1 p2 p) rest2

79 initialFaces = createInitialFaces epsilon points p0 p1 p2 p3

80 allTriangles = concatMap (processFace epsilon) initialFaces

81 in nub $ concatMap (\(a,b,c) -> [a,b,c]) allTriangles

82

83 -- Parallel face processing based on Section 3's discussion of algorithm variations

84 processPointsParallel :: (Ord a, Floating a, NFData a) => Int -> a -> [V3 a] -> \

85 Face a -> [(V3 a, V3 a, V3 a)]

86 processPointsParallel depth epsilon points face =

87 case furthestPoint face of

88 Nothing -> [vertices face]

89 Just (p, _) ->

90 let (v1, v2, v3) = vertices face

91 newFaces = [(v1, v2, p), (v2, v3, p), (v3, v1, p)]

92 remainingPoints = map fst $ filter ((/= p) . fst) $ outsideSet face

93 processNewFace (a, b, c) =

94 let outside = findPointsAbove epsilon a b c remainingPoints

95 newFace = Face (a,b,c) outside (if null outside

96 then Nothing

97 else Just $ maximumBy \

98 (compare `on` snd) outside)

99 in if depth < 64

100 then processPointsParallel (depth + 1) epsilon points newFace

101 else processFace epsilon newFace

102 in if depth < 2

103 then concat (map processNewFace newFaces `using` parList rdeepseq)

104 else concatMap processNewFace newFaces

105

106 -- Parallel

107 quickHull3Par :: (Ord a, Floating a, NFData a) => [V3 a] -> [V3 a]

108 quickHull3Par points

109 | length points < 4 = points

110 | otherwise =

111 let epsilon = 1e-8

112 p0 = minimumBy (compare `on` (^._x)) points

113 p1 = maximumBy (compare `on` distance p0) points

114 rest1 = filter (\p -> p /= p0 && p /= p1) points

115 p2 = maximumBy (compare `on` \p -> norm (cross (p1 - p0) (p - p0))) rest1

116 rest2 = filter (/= p2) rest1

117 p3 = maximumBy (compare `on` \p -> abs $ signedVolume p0 p1 p2 p) rest2

118 initialFaces = createInitialFaces epsilon points p0 p1 p2 p3

119 allTriangles = concat (map (processPointsParallel 0 epsilon points) \

120 initialFaces `using` parList rdeepseq)

121 in nub $ concatMap (\(a,b,c) -> [a,b,c]) allTriangles

Chan’s

1 chansJarvisMarch :: (Num a, Ord a) => [V.Vector (V2 a)] -> V2 a -> V2 a -> [V2 a]

2 chansJarvisMarch subHulls start p =

3 let next = maximumBy (orientation p) $ map (rightmostPoint p) subHulls

4 in if next == start then [p] else p : chansJarvisMarch subHulls start next

5

6 rightmostPoint :: (Ord a, Num a) => V2 a -> V.Vector (V2 a) -> V2 a

7 rightmostPoint o ps = ps V.! binarySearch 0 (V.length ps - 1) lPrevInit lNextInit

8 where

9 compareAdjacent i = (prev, next)

10 where

11 prev = orientation o (ps V.! i) (ps V.! ((i - 1) `mod` V.length ps))

12 next = orientation o (ps V.! i) (ps V.! ((i + 1) `mod` V.length ps))

13

14 -- We can save some computations here if we pass the orientations of the

15 -- leftmost node, since those only need to be recalculated when l changes

16 (lPrevInit, lNextInit) = compareAdjacent 0

17

18 binarySearch l r lPrevOri lNextOri

19 -- If we can't reach anymore points, we'll do l

20 | l >= r = l

21 -- If o->m->m-1 is not a CCW turn, and o->m->m+1 is not CCW turn, we are at

22 -- the rightmost point!

23 | mPrevOri /= LT && mNextOri /= LT = m

24 -- If o->l->m is a CCW turn and (o->l->l+1 is a CW turn or o->l->l-1 and

25 -- o->l->l+1 turn the same way), or o->l->m is a CW turn and o->m->m-1 is a

26 -- CW turn, then search to the right of m (from l to m)

27 | mLOri == GT && (lNextOri == LT || lPrevOri == lNextOri) \

28 || mLOri == LT && mPrevOri == LT = binarySearch l m lPrevOri lNextOri

29 -- Otherwise, search to the left of m (from m+1 to r) (new lPrev = -mNext,

30 -- new lNext needs to be set manually)

31 | otherwise = binarySearch (m + 1) r (compare EQ mNextOri) \

32 (orientation o (ps V.! (m + 1)) (ps V.! ((m + 2) `mod` V.length ps)))

33 where

34 m = (l + r) `div` 2

35 -- Which side is m on, relative to l?

36 mLOri = orientation o (ps V.! l) (ps V.! m)

37 -- What are the orientations of o->m->m-1 and o->m->m+1?

38 (mPrevOri, mNextOri) = compareAdjacent m

39

40 chans2 :: (Ord a, Num a) => Int -> [V2 a] -> [V2 a]

41 chans2 n ps = chansJarvisMarch subHulls start start

42 where

43 -- 3 * sqrt(A) is a good approximation of the perimeter of a polygon with

44 -- area A

45 m = 3 * (floor . sqrtDouble . fromIntegral) n

46 subPoints = chunksOf m ps

47 -- V.force lets us save on space (forces vector capacity == vector length)

48 subHulls = map (V.force . V.fromList . quickHull2) subPoints

49 start = minimumBy (compare `on` (^. _x)) $ map (V.minimumOn (^. _x)) subHulls

50

51 chans2Par :: (Ord a, Num a, NFData a) => Int -> [V2 a] -> [V2 a]

52 chans2Par n ps = chansJarvisMarch subHulls start start

53 where

54 m = 3 * (floor . sqrtDouble . fromIntegral) n

55 subPoints = chunksOf m ps

56 subHulls = map (V.force . V.fromList . quickHull2) subPoints \

57 `using` parBuffer 32 rdeepseq -- Here's the parallelization

58 start = minimumBy (compare `on` (^. _x)) $ map (V.minimumOn (^. _x)) subHulls

References

[1] R. L. Graham. “An Efficient Algorithm for Determining the Convex Hull of a Finite
Planar Set”. In: Information Processing Letters 1.4 (1972), pp. 132–133. doi: 10.1016/
0020-0190(72)90045-2.

[2] R. A. Jarvis. “On the identification of the convex hull of a finite set of points in the
plane”. In: Information Processing Letters 2 (1973), pp. 18–21. doi: 10.1016/0020-
0190(73)90020-3.

[3] Franco P. Preparata and S. J. Hong. “Convex Hulls of Finite Sets of Points in Two and
Three Dimensions”. In: Communications of the ACM 20.2 (1977), pp. 87–93.

[4] Bernard Chazelle and Jǐŕı Matoušek. “Derandomizing an output-sensitive convex hull
algorithm in three dimensions”. In: Computational Geometry 5 (1995), pp. 27–32. doi:
10.1016/0925-7721(94)00018-Q.

[5] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. “The quickhull algorithm
for convex hulls”. In: ACM Transactions on Mathematical Software 22.4 (Dec. 1996),
pp. 469–483. doi: 10.1145/235815.235821.

[6] Timothy M. Chan. “Optimal output-sensitive convex hull algorithms in two and three
dimensions”. In: Discrete & Computational Geometry 16.4 (1996), pp. 361–368. doi:
10.1007/BF02712873.

[7] Mark de Berg et al. Computational Geometry. 2nd revised. Springer-Verlag, 2000. isbn:
978-3-540-65620-3.

[8] Thomas H. Cormen et al. Introduction to Algorithms, Second Edition. Section 33.3:
Finding the convex hull, pp. 947–957. MIT Press and McGraw-Hill, 2001. isbn: 0-262-
03293-7.

