
Search by Similarity
Finding the best passage given a query

Introduction

Consider the problem of fetching the most relevant passage from a corpus of
text given a query.

This problem is generally solved by representing both passages and queries as
a vector of double values (Embeddings). Similar text have closer embeddings.

This process consists of two stages.

1. Embedding Creation
2. Embedding Search

We explore parallelization of these two stages.

Overview

An Embedding can be created by different techniques

● Tf-Idf
● Embedding from a neural network

Embedding Search, ie to find the closer embedding

● Optimal Search using Manhattan Distance
● Cosine Similarity
● Sub-optimal Search using Approximate techniques (eg: faiss)

Dataset used. A subset of MS-Marco dataset, Real-World Bing Search Queries.

20k queries, 200k passages

Embedding Creation using TF-IDF

What is TF-IDF?

● A statistical measure used to evaluate the importance of a word in a
document relative to a corpus (set of documents).

● TF-IDF is widely used in text mining and information retrieval.
● Helps in weighting words in documents for tasks like text classification,

clustering, and search engines.

Algorithm

Step 1: Calculate IDF for all the words present in the Documents.

Step 2: Calculate TF vector for each document.

Step 3: Combine them.

Parallelization

Approach 1: Brute Force parallelization

Creating a new spark for every passage in our dataset (~200k). When we tried this, as expected it
was not efficient and majority of the sparks never converted.

Approach 2: Chunking and MapReduce

Splitting our input into smaller chunk and ran the algorithm on smaller chunks and combined the
output appropriately. i.e.: adding the maps for idf and just concatenation for TF.

Speed up vs Number of Cores

Embedding Search

Closest Embedding
Search

Given a query embedding vector and a
large list of text embeddings. Output
the text embedding closest to the
query.

Embedding Distance: Cosine Similarity

Parallelization Strategies

Basic Strategy vs Chunk based Strategy

Basic Strategy: Spark Creation for passage similarity calculation

Chunk Based Strategy: Spark Creation for chunk processing

Sparks Data Comparison

Basic Strategy

Chunk based Strategy

Chunk Size Comparison

Different Search Load, ie number of queries

Number of Passages

