
Optimizing Halma: Parallel Minimax and
Alpha-Beta Pruning in Haskell

Catherine Lyu (hl3553), Luana Liao (ll3637)

December 2024

1 Introduction

Halma is a strategic board game played on a checkerboard. Unlike the more well-known
Chinese Checkers (Figure 1a), which can be played on a hexagonal board with up to
six players, Halma is a two-player precursor invented in the 1800s, which uses square
tiles. The goal of each player is to move all their pieces from their starting corner to
the opponent’s corner (Figure 1b).

Players take turns moving one piece per turn across the grid, either to an adjacent
empty square or by jumping over an adjacent piece. Multiple consecutive jumps over
other pieces are allowed in a single turn if the piece can land in an open space.

(a) A Chinese Checkers board.
(b) Example starting setup for 2-player

Halma.

Figure 1: Game layout examples.

1.1 Movement Rules

To elaborate, there are two ways to move in Halma:

• Single Move: A piece moves to an adjacent unoccupied square. This ends the
player’s turn.

1

• Jump: A piece jumps over an adjacent piece (either the player’s own or the
opponent’s) to land in a blank square on the other side. Consecutive jumps are
allowed in a single turn, but they are optional. Players can stop jumping even if
more jumps are available.

Pieces are never ”captured” or removed from the board, even when jumped. Addi-
tionally, jumping is always optional and not enforced by the rules.

The rules and examples of movement mechanics were adapted from Pocket Monkey’s
Halma Guide [1]. This website also provided visual examples used in Figure 2.

(a) A piece making a single move.

(b) A piece making two jumps and stopping.

Figure 2: Examples of movement mechanics in Halma.

2 Project Overview

The Halma game presents an intriguing computational challenge due to its complex
decision space and unique gameplay mechanics. The high branching factor of the game,
especially with the possibility of multiple jumps in a single turn, makes it an ideal
problem to study algorithms such as Minimax and optimizations such as parallelization.
Beyond its gameplay, Halma offers an excellent opportunity to explore computational
techniques and evaluate their performance in a real-world scenario.

In this project, our objective was to tackle the problem of efficiently solving Halma
using Minimax, a classic algorithm for two-player games that evaluates potential moves
by simulating decision making for both players. By combining Minimax with paral-
lelization, we aimed to accelerate the search process, leveraging Haskell’s functional
programming paradigm and robust concurrency features. Our approach also incorpo-
rated alpha-beta pruning, a technique that reduces the search space by eliminating
unproductive branches, further improving the efficiency of the algorithm.

The way an AI for Halma works is by representing the board as a game state and
potential moves as transitions between states. The objective of such algorithms is to
determine the optimal sequence of moves that would lead to victory, transferring all
pieces from a starting camp to the opponent’s camp.

The challenge lies in the exponential growth of the search space. The game’s branch-
ing factor is high, especially due to its allowance for multiple jumps in a single turn.

2

http://www.pocket-monkey.com/help-halma.jsp
http://www.pocket-monkey.com/help-halma.jsp

If the algorithm is too slow or resource-intensive, it becomes impractical as a real-time
adversary. By integrating parallelization, we aim to distribute computations across
multiple cores, enhancing performance.

To address these challenges, we explored optimizations for the Minimax algorithm,
a staple in two-player game AI. Specifically, our project goals included:

1. Implement a sequential version of Minimax to serve as a baseline.

2. Parallelization of the algorithm to distribute computational workload across mul-
tiple cores, reducing runtime.

3. Enhance the algorithm with alpha-beta pruning to cut off unproductive branches
of the search tree.

4. Evaluate the effectiveness of these approaches by measuring runtime improve-
ments and decision quality.

In this work, we designed a Halma-specific game state graph where nodes rep-
resent board configurations and edges represent possible moves. Using Haskell, we
implemented these algorithms to test and optimize performance. Our solution lever-
ages Haskell’s powerful concurrency features, including the Par monad and Strategies
library, to parallelize computations effectively.

We found that each optimization layer—from alpha-beta pruning to parallelized
computation—yielded significant improvements in runtime while maintaining the qual-
ity of decisions. However, the project also revealed areas for further exploration, such
as dynamic workload balancing and hybrid strategies.

In the following sections, we discuss the design and implementation of our algo-
rithms, analyze their performance, and reflect on the challenges and future directions
for Halma AI development.

2.1 Minimax Algorithm for Game Agents

The minimax algorithm is a fundamental approach for creating game-playing agents.
It simulates all possible moves and counter-moves in a game, constructing a tree of
game states. Each node in the tree represents a possible configuration of the game, and
the edges represent the moves taken to reach those states. The goal is to identify the
optimal move by evaluating the terminal states using a heuristic function.

2.1.1 Game State Representation

In our Halma AI implementation, we use a GameState class to store properties like the
board configuration, current player, and move history. Here is a snippet from our code:

1 data Color = Black | White deriving (Eq , Show)

2

3 type Position = (Int , Int)

4

5 data Piece = Piece {

6 position :: Position , -- (x,y) coord of piece

7 color :: Color -- which player ’s piece

3

8 } deriving (Eq, Show)

9

10 type Board = [[Maybe Piece]]

11

12 data GameState = GameState {

13 board :: Board

14 currentPlayer :: Color

15 } deriving (Show)

To determine the best move, the Minimax algorithm explores all possible future
game states, constructing a decision tree. At each level of the tree, it alternates between
maximizing and minimizing the potential outcomes. The ”minimax” value of a position
represents the best achievable score if both players make the best possible moves.

The algorithm evaluates which moves lead to the best outcomes for each player
using some sort of heuristic function.

Figure 3: Minimax Example for TicTacToe

2.2 Heuristic Function

Since Halma has a large state space and may not be solved exhaustively within reason-
able time limits, we rely on heuristic evaluations. One such heuristic is the Manhattan
distance of pieces to their target zone. Specifically, we used the following evaluating
function:

1 evaluateBoard :: Board -> Int evaluateBoard b = let whiteScore = sum [

distance (position p) (0,0) | ...] blackScore = sum [distance (

position p) (7,7) | ...] in blackScore - whiteScore

This calculate the difference between the sum of black pieces’ Manhattan distances
from the bottom right corner and the sum of white pieces’ Manhattan distances from
the top left corner. The higher score means a bigger total distance for the black player
or a smaller total distance for a white player, so a higher score favors white.

4

3 Sequential Solution

Starting board:

Figure 4: Starting Board

Figure 5: Mid Game Board

Initially, we implemented a basic minimax algorithm with alpha-beta pruning. The
algorithm evaluates the board state and prunes branches that do not influence the
final decision. This serves as the baseline for performance comparisons. The following
describes in high level how the algorithm works:

• Enumerates all possible moves for the current player.

• Recursively applies Minimax to the resulting states.

• Uses alpha and beta bounds to prune unpromising branches.

4 Parallel Solutions

While alpha-beta pruning improved performance significantly, we wanted to further
reduce the runtime by exploiting parallelism. Parallelization is natural here because
evaluating different moves (child states) at a given level is often independent. Haskell’s
parallel constructs make it straightforward to spawn computations in parallel and com-
bine results.

We explored two main parallelization strategies:

5

4.1 Top-Level Parallelism

In the top-level parallelism approach, we evaluate all immediate child states of the root
node in parallel. The steps are:

1. At the root state, generate all possible moves for the current player.

2. Use parMap and rpar to run minimax on each child state concurrently.

3. Gather their evaluations and pick the best move.

This strategy can deliver substantial speedups if the branching factor at the root is
large. However, top-level parallelism alone does not help once we move deeper into the
tree, as later levels are evaluated sequentially (or less parallelized) once we commit to
a branch. For our test configuration, we used a depth of 3 and ran on a machine with
12 or 8 cores.

Top-level parallelism is simple to implement and reason about. It reduces latency
for one move decision if the root has many possible moves.

On the flip side, its benefits diminish if the number of top-level moves is small or
if alpha-beta pruning quickly eliminates most moves, since this parallelism does not
exploit deeper parallelism.

4.2 Chunked Parallelism

The chunked parallelism ideas are summarized as follows:

1. Split the top-level moves into chunks (e.g., groups of total number of possible
moves / maximum core number each).

2. Evaluate one chunk in parallel, update global alpha-beta bounds, and potentially
prune future chunks if the pruning condition is met.

3. Proceed to the next chunk only if necessary, using updated alpha and beta values.

This approach tries to combine parallelism with more effective pruning. By chunking,
we do not waste resources evaluating all moves if a strong pruning opportunity arises
early. We can stop processing remaining chunks once a prune condition (beta ≤ alpha)
is reached, saving time.

A chunk size of number of all possible moves divided by 12 or 8 was used in our
experiments depending on the maximum of cores of the machine. On a mid-state
board with close to 500 possible moves at the top level, chunked parallelism allowed
early pruning after evaluating the first few chunks, potentially speeding up the decision.

Chunked parallelism retains the benefit of parallelism while not committing to eval-
uating all moves upfront. It potentially reduces wasted computations by applying
alpha-beta updates incrementally.

However, it is more complex to implement and requires careful tuning of chunk size.
Too large a chunk behaves like the naive top-level parallelism and too small leads to
overhead and less parallel efficiency.

6

4.3 Implementation Details

Both parallel approaches rely on similar code structures to the sequential version with
parallel combinators used in the respective Minimax functions to make the computa-
tions parallel. The key difference is how the results are combined and how alpha-beta
bounds are updated.

In top-level parallelism, we compute all moves at once and pick the best:

1 alphaBeta :: [GameState] -> (Int , GameState) -> Int -> Int -> Bool ->

Int -> (Int , GameState)

2 alphaBeta [] bestEval _ _ _ _ = bestEval

3 alphaBeta gameStates (bestVal , bestState) alpha beta maximizingPlayer

depth =

4 let results = parMap rpar (\ childState -> minimax childState (

depth - 1) alpha beta (not maximizingPlayer)) gameStates

5 evals = map fst results

6 bestIndex = if maximizingPlayer

7 then snd $ maximumBy (\(v1,_) (v2,_) -> compare v1

v2) (zip evals [0..])

8 else snd $ minimumBy (\(v1,_) (v2,_) -> compare v1

v2) (zip evals [0..])

9 bestEval = evals !! bestIndex

10 chosenChild = gameStates !! bestIndex

11 finalVal = if maximizingPlayer then max bestVal bestEval else

min bestVal bestEval

12 finalSt = if (maximizingPlayer && bestEval > bestVal) || (not

maximizingPlayer && bestEval < bestVal)

13 then chosenChild else bestState

14 in (finalVal , finalSt)

In chunked parallelism, we compute in batches, updating alpha and beta after each
batch before deciding to continue:

1 alphaBetaChunked :: Int -> [GameState] -> (Int , GameState) -> Int ->

Int -> Bool -> Int -> (Int , GameState)

2 alphaBetaChunked _ [] bestEval _ _ _ _ = bestEval

3 alphaBetaChunked cSize gs (bestVal , bestState) alpha beta

maximizingPlayer depth =

4 let chunks = chunkList cSize gs

5 in processChunks chunks (bestVal , bestState) alpha beta

6 where

7 processChunks [] (curVal , curSt) _ _ = (curVal , curSt)

8 processChunks (chunk:rest) (curVal , curSt) curA curB

9 | curB <= curA = (curVal , curSt)

10 | otherwise =

11 let results = parMap rpar (\ childState -> minimax

childState (depth - 1) curA curB (not maximizingPlayer)) chunk

12 evals = map fst results

13 -- Pick best immediate childState from ’chunk ’, not

from deeper states:

14 bestIndex = if maximizingPlayer

15 then snd $ maximumBy (\(v1,_) (v2,_) ->

compare v1 v2) (zip evals [0..])

16 else snd $ minimumBy (\(v1,_) (v2,_) ->

compare v1 v2) (zip evals [0..])

17 bestEval = evals !! bestIndex

18 chosenChild = chunk !! bestIndex

7

19 finalVal = if maximizingPlayer then max curVal

bestEval else min curVal bestEval

20 finalSt = if (maximizingPlayer && bestEval > curVal)

|| (not maximizingPlayer && bestEval < curVal)

21 then chosenChild else curSt

22 newA = if maximizingPlayer then max curA finalVal else

curA

23 newB = if not maximizingPlayer then min curB finalVal

else curB

24 in processChunks rest (finalVal , finalSt) newA newB

5 Performance Evaluation

We evaluated the two parallel solutions: top-level parallel, and chunked parallel across
a variety of test states, and compared them to the sequential solution. We specifically
focused on a generated mid-state test case. Our metrics include execution time for one
move at a fixed depth (e.g., depth = 3) and speedup as we increase the number of cores.

(a) Top-level Parallelism Speedup (b) Chunked Parallelism Speedup

Figure 6: Speedup of (a) Top-level Parallelism and (b) Chunked Parallelism vs. Number
of Cores

Figure 7: Tables of Total Run Time of (a) Top-level Parallelism and (b) Chunked
Parallelism vs. Number of Cores

As shown in Figure 6, while our parallel solutions do not achieve perfect linear
scaling, the speedup continues to improve as we increase the number of cores, even
beyond 12. This happens for both top-level and chunked parallelism, where top-level

8

parallelism achieves a closer to ideal speedup curve. This suggests that, for a complex
mid-state Halma board with a chaotic set of moves, the parallelization strategies can
continue to leverage additional computational resources. This trend indicates that
with further tuning or more substantial computational resources, the performance gains
could become even better.

Figure 8: Threadscope of top-level parallelism on 12 cores

Figure 8 depicts a Threadscope visualization of top-level parallelism running on a
12-core machine. We see that all twelve cores remain busy for a significant portion of
the runtime. Some cores start a bit earlier, likely due to initial task allocation, and
one core eventually becomes responsible for aggregating and returning the results at the
end. The relatively solid and continuous workload across all cores suggests that top-level
parallelism effectively distributes initial moves at the root, allowing the system to exploit
available parallel capacity. This distribution helps shorten the decision time, though
some slight idle periods and synchronization points are visible as the computation nears
completion.

9

Figure 9: Threadscope of chunked parallelism on 12 cores

Figure 9 shows the Threadscope output for chunked parallelism using 12 cores. In
this scenario, we observe more frequent transitions between active and idle phases on
each core. This pattern aligns with the chunked parallel approach, where computations
are done in batches. After each batch, alpha-beta global bounds are updated before
proceeding to the next chunk. While the workload is still reasonably well spread out and
cores remain active most of the time, these incremental synchronization steps lead to
more intermittent workload patterns. Despite the pauses, the cores still do a balanced
amount of work, and pruning between chunks can significantly cut down on unnecessary
computations. Thus, chunked parallelism has shown to ubstantial speed improvements,
especially if pruning occurs effectively.

10

Figure 10: Time comparison between the different methods

In Figure 10, we see a direct runtime comparison of the different methods. The
sequential Minimax approach without alpha-beta pruning is very slow, and adding
alpha-beta pruning drastically reduces execution time. Introducing parallelism at the
top level further cuts the runtime, and chunked parallelism with global alpha-beta
updating yields even better performance. The table highlights how each layer of opti-
mization, including alpha-beta pruning, parallelism, and chunking, contributes to speed
improvements. The final chunked approach runs substantially faster than the original
sequential baseline, demonstrating the effectiveness of combining pruning with smartly
managed parallel workloads.

6 Discussion and Further Considerations

6.1 Alpha-Beta Pruning

Alpha-beta pruning remains critical in reducing the search space. With parallelizing
the top level of the search space, pruning the following layers remain important because
it saves time by skipping obviously inferior moves. Therefore, with pruning, parallelism
is more efficient since we evaluate fewer states overall.

6.2 Parallelism Trade-offs

While parallelization clearly improves performance, it brings the challenge to chunked
parallelism because the algorithm requires iterative synchronization to update alpha-
beta bounds.

7 Conclusion

We explored Minimax and alpha-beta pruning for the game Halma, and evaluated both
sequential and parallel solutions. Parallel strategies, particularly top-level parallelism
and chunked parallelism, showed promising runtime improvements over a pure sequen-
tial approach. While chunked parallelism adds complexity, it can yield better pruning
effectiveness, reducing wasted work.

11

Overall, our results suggest that parallelization is a valuable tool for complex board
games like Halma, but fitting alpha-beta pruning to the parallelized structures is also
very important in reducing the size of the overall search space.

Appendix

Code Listing

Because our codes are lengthy with the game settings, we only included the code from
halma gameplay ai vs input.hs, and the rest of the code can be found in our submission
.tar.gz file.

1 import System.IO

2

3 -- Data Types and Constants

4 data Color = Black | White deriving (Eq , Show)

5

6 type Position = (Int , Int)

7

8 data Piece = Piece {

9 position :: Position ,

10 color :: Color

11 } deriving (Eq, Show)

12

13 type Board = [[Maybe Piece]]

14

15 data GameState = GameState {

16 board :: Board ,

17 currentPlayer :: Color

18 } deriving (Show)

19

20 rows , cols :: Int

21 rows = 8

22 cols = 8

23

24 blackStart , whiteStart :: [Position]

25 blackStart = [(0, 0), (0, 1), (0, 2), (0, 3),

26 (1, 0), (1, 1), (1, 2),

27 (2, 0), (2, 1),

28 (3, 0)]

29

30 whiteStart = [(4, 7),

31 (5, 6), (5, 7),

32 (6, 5), (6, 6), (6, 7),

33 (7, 4), (7, 5), (7, 6), (7, 7)]

34

35 -- Initialize Board

36 initializeBoard :: Board

37 initializeBoard = [[initialPieceAt (r, c) | c <- [0..cols -1]] | r

<- [0..rows -1]]

38

39 initialPieceAt :: Position -> Maybe Piece

40 initialPieceAt pos

41 | pos ‘elem ‘ blackStart = Just (Piece pos Black)

12

42 | pos ‘elem ‘ whiteStart = Just (Piece pos White)

43 | otherwise = Nothing

44

45 -- Access Board Elements

46 getPiece :: Board -> Position -> Maybe Piece

47 getPiece b (r, c) =

48 if inBounds (r, c) then (b !! r) !! c else Nothing

49

50 inBounds :: Position -> Bool

51 inBounds (r, c) = r >= 0 && r < rows && c >= 0 && c < cols

52

53 -- Move Pieces

54 movePiece :: Board -> Position -> Position -> Board

55 movePiece b from to =

56 let piece = getPiece b from

57 updatedPiece = fmap (\p -> p { position = to }) piece

58 b1 = updateBoard b from Nothing

59 b2 = updateBoard b1 to updatedPiece

60 in b2

61

62 updateBoard :: Board -> Position -> Maybe Piece -> Board

63 updateBoard b (r, c) val =

64 take r b ++

65 [take c (b !! r) ++ [val] ++ drop (c + 1) (b !! r)] ++

66 drop (r + 1) b

67

68 -- Generate Valid Moves

69 directions :: [Position]

70 directions = [(dr, dc) | dr <- [-1,0,1], dc <- [-1,0,1], (dr, dc) /=

(0, 0)]

71

72 getValidMoves :: Board -> Piece -> [Position]

73 getValidMoves b p =

74 let singleMoves = getSingleMoves b p

75 jumpMoves = getJumpMoves b (position p) []

76 in singleMoves ++ jumpMoves

77

78 getSingleMoves :: Board -> Piece -> [Position]

79 getSingleMoves b p =

80 [(r, c)

81 | (dr, dc) <- directions

82 , let (r, c) = addPos (position p) (dr , dc)

83 , inBounds (r, c)

84 , isEmpty b (r, c)

85]

86

87 addPos :: Position -> Position -> Position

88 addPos (r1 , c1) (r2 , c2) = (r1 + r2 , c1 + c2)

89

90 isEmpty :: Board -> Position -> Bool

91 isEmpty b pos = getPiece b pos == Nothing

92

93 getJumpMoves :: Board -> Position -> [Position] -> [Position]

94 getJumpMoves b pos visited =

95 concatMap (\dir -> jumpInDirection b pos dir (pos : visited))

directions

13

96

97 jumpInDirection :: Board -> Position -> Position -> [Position] -> [

Position]

98 jumpInDirection b (r, c) (dr, dc) visited =

99 let midPos = (r + dr , c + dc)

100 landingPos = (r + 2*dr, c + 2*dc)

101 in if inBounds landingPos &&

102 not (landingPos ‘elem ‘ visited) &&

103 not (isEmpty b midPos) &&

104 isEmpty b landingPos

105 then

106 let newVisited = landingPos : visited

107 furtherJumps = getJumpMoves b landingPos newVisited

108 in landingPos : furtherJumps

109 else []

110

111 -- Check for Game Over

112 isGameOver :: Board -> Maybe Color

113 isGameOver b

114 | allPiecesInZone b White blackStart = Just White

115 | allPiecesInZone b Black whiteStart = Just Black

116 | otherwise = Nothing

117

118 allPiecesInZone :: Board -> Color -> [Position] -> Bool

119 allPiecesInZone b colorPiece zone =

120 let pieces = [p | row <- b, Just p <- row , color p == colorPiece

]

121 in not (null pieces) && all (\p -> position p ‘elem ‘ zone) pieces

122

123 -- Evaluate Board

124 evaluateBoard :: Board -> Int

125 evaluateBoard b =

126 let whiteScore = sum [manhattanDistance (position p) (0, 0) | row

<- b, Just p <- row , color p == White]

127 blackScore = sum [manhattanDistance (position p) (7, 7) | row

<- b, Just p <- row , color p == Black]

128 in blackScore - whiteScore -- Lower score favors White

129

130 manhattanDistance :: Position -> Position -> Int

131 manhattanDistance (r1, c1) (r2, c2) = abs (r1 - r2) + abs (c1 - c2)

132

133 -- Minimax Algorithm with Alpha -Beta Pruning

134 minimax :: GameState -> Int -> Int -> Int -> Bool -> (Int , GameState)

135 minimax gameState depth alpha beta maximizingPlayer =

136 let b = board gameState

137 in case isGameOver b of

138 Just winner -> if winner == White then (10000 , gameState) else

(-10000, gameState)

139 Nothing ->

140 if depth == 0

141 then (evaluateBoard b, gameState)

142 else

143 let moves = getAllMoves gameState

144 initialEval = if maximizingPlayer then (minBound ,

gameState) else (maxBound , gameState)

14

145 in alphaBeta moves initialEval alpha beta

maximizingPlayer depth

146

147 alphaBeta :: [GameState] -> (Int , GameState) -> Int -> Int -> Bool ->

Int -> (Int , GameState)

148 alphaBeta [] bestEval _ _ _ _ = bestEval

149 alphaBeta (gameState:rest) (bestVal , bestState) alpha beta

maximizingPlayer depth =

150 let (eval , _) = minimax gameState (depth - 1) alpha beta (not

maximizingPlayer)

151 (newBestVal , newBestState) =

152 if maximizingPlayer

153 then if eval > bestVal then (eval , gameState) else (

bestVal , bestState)

154 else if eval < bestVal then (eval , gameState) else (

bestVal , bestState)

155 newAlpha = if maximizingPlayer then max alpha eval else alpha

156 newBeta = if not maximizingPlayer then min beta eval else

beta

157 in if newBeta <= newAlpha

158 then (newBestVal , newBestState) -- Prune remaining moves

159 else alphaBeta rest (newBestVal , newBestState) newAlpha newBeta

maximizingPlayer depth

160

161 getAllMoves :: GameState -> [GameState]

162 getAllMoves gameState =

163 let b = board gameState

164 colorPiece = currentPlayer gameState

165 pieces = [p | row <- b, Just p <- row , color p == colorPiece

]

166 moves = [(p, dest) | p <- pieces , dest <- getValidMoves b p]

167 nextPlayer = switchPlayer colorPiece

168 gameStates = [GameState (movePiece b (position p) dest)

nextPlayer | (p, dest) <- moves]

169 in gameStates

170

171 switchPlayer :: Color -> Color

172 switchPlayer Black = White

173 switchPlayer White = Black

174

175 -- Command -Line Interface

176 displayBoard :: Board -> IO ()

177 displayBoard b = do

178 putStrLn " 0 1 2 3 4 5 6 7"

179 mapM_ displayRow (zip [0..] b)

180

181 displayRow :: (Int , [Maybe Piece]) -> IO ()

182 displayRow (i, row) = do

183 putStr (show i ++ " ")

184 putStrLn $ concatMap displayCell row

185

186 displayCell :: Maybe Piece -> String

187 displayCell Nothing = ". "

188 displayCell (Just (Piece _ Black)) = "B "

189 displayCell (Just (Piece _ White)) = "W "

190

15

191 -- Main Game Loop

192 main :: IO ()

193 main = do

194 hSetBuffering stdout NoBuffering

195 let initialState = GameState initializeBoard Black

196 gameLoop initialState

197

198 gameLoop :: GameState -> IO ()

199 gameLoop gameState = do

200 displayBoard (board gameState)

201 case isGameOver (board gameState) of

202 Just winner -> putStrLn $ show winner ++ " wins!"

203 Nothing -> do

204 if currentPlayer gameState == Black

205 then playerTurn gameState

206 else aiTurn gameState

207

208 playerTurn :: GameState -> IO ()

209 playerTurn gameState = do

210 putStrLn "Your turn. Enter move as ’row col newRow newCol ’:"

211 input <- getLine

212 let inputs = words input

213 if length inputs == 4

214 then case map read inputs :: [Int] of

215 [row , col , newRow , newCol] ->

216 let piece = getPiece (board gameState) (row , col)

217 in case piece of

218 Just p -> do

219 let validMoves = getValidMoves (board gameState) p

220 if (newRow , newCol) ‘elem ‘ validMoves

221 then do

222 let newBoard = movePiece (board gameState) (

row , col) (newRow , newCol)

223 newGameState = GameState newBoard White

224 gameLoop newGameState

225 else do

226 putStrLn "Invalid move. Try again."

227 playerTurn gameState

228 Nothing -> do

229 putStrLn "No piece at that position. Try again."

230 playerTurn gameState

231 _ -> do

232 putStrLn "Invalid input format. Try again."

233 playerTurn gameState

234 else do

235 putStrLn "Invalid input format. Try again."

236 playerTurn gameState

237

238 aiTurn :: GameState -> IO ()

239 aiTurn gameState = do

240 putStrLn "AI is thinking ..."

241 let (eval , newGameState) = minimax gameState 2 (minBound :: Int) (

maxBound :: Int) True

242 putStrLn $ "AI evaluated the board with a score of: " ++ show eval

243 gameLoop newGameState

16

References

[1] Pocket Monkey. Help: Halma. Available at: http://www.pocket-monkey.com/

help-halma.jsp

[2] Nuevo Foundation. TicTacToe Minimax. https://workshops.nuevofoundation.
org/java-tictactoe/activity-5/

[3] Cameron Chafin. HalmaGame. GitHub Repository. Available at: https://github.
com/cameronchafin/HalmaGame

17

http://www.pocket-monkey.com/help-halma.jsp
http://www.pocket-monkey.com/help-halma.jsp
https://workshops.nuevofoundation.org/java-tictactoe/activity-5/
https://workshops.nuevofoundation.org/java-tictactoe/activity-5/
https://github.com/cameronchafin/HalmaGame
https://github.com/cameronchafin/HalmaGame

	Introduction
	Movement Rules

	Project Overview
	Minimax Algorithm for Game Agents
	Game State Representation

	Heuristic Function

	Sequential Solution
	Parallel Solutions
	Top-Level Parallelism
	Chunked Parallelism
	Implementation Details

	Performance Evaluation
	Discussion and Further Considerations
	Alpha-Beta Pruning
	Parallelism Trade-offs

	Conclusion

