
Parallel Maze Solver
Solving mazes in parallel with A*

Mohsin Rizvi
COMS 4995 Parallel Functional Programming

The problem

● Given a grid-based maze, find the shortest path

from a known start to a known goal

● Mazes are represented as a series of tiles, where

some tiles are impassable (“walls”)

● Each maze tile is identifiable by its coordinates

● A path is a list of tiles to move to, from the start tile

to the goal tile

The A* algorithm

● A* (or A-star) is a generic pathfinding

algorithm for finding a path from one

weighted graph node to another

● Various applications, including video games,

network routing, and robotics

● To use A*, we can think of a grid-based maze

as a dense graph

○ All edges have weight 1

The A* algorithm

● Relies on a heuristic function to estimate a node’s distance to the goal

○ For grid-based mazes, we can use the Euclidean distance to the goal

● Performs a graph search from the start node, adding adjacent nodes to a priority queue

○ Priority is a node’s heuristic value plus the node’s shortest known distance from the start

● Nodes are processed from the priority queue until we find the goal or run out of nodes to

search

Parallelization

● Finding the shortest path is hard to do fast with parallelization

● You don’t know that a route is the shortest one until you’ve inspected all the alternatives

● Especially difficult if threads don’t have access to a shared priority queue

● I tried two strategies for parallelization, each with their own tradeoffs

Strategy 1: multiple starts
● Launch several A* searches from different points at a fixed distance from the start tile

● Take the shortest result from all the searches

● Inspired by existing literature [1]

● Results:

○ The good: Returned an optimal path

○ The bad: slower than a serial search

■ Each thread still did a full search, so nothing gets sped up

[1]

https://www.semanticscholar.org/paper/Parallelizing-A*-Path-Finding-Algorithm-Zaghloul-Al-Jami/8c62a239

505647143e3f04fb20d9e5a748a5e47d

GoalStart
A*

A*

A*

https://www.semanticscholar.org/paper/Parallelizing-A*-Path-Finding-Algorithm-Zaghloul-Al-Jami/8c62a239505647143e3f04fb20d9e5a748a5e47d
https://www.semanticscholar.org/paper/Parallelizing-A*-Path-Finding-Algorithm-Zaghloul-Al-Jami/8c62a239505647143e3f04fb20d9e5a748a5e47d

Strategy 2: checkpoint partitioning

● This idea came from thinking of how to keep each processor from doing a full search

● The idea: first, come up with “checkpoints” along the ideal path between the start and goal, as

if there were no walls in the maze

○ Easy to compute because we have the coordinates of the start and goal

● Next, have each thread compute the path between two checkpoints using a regular A* search

○ Easy to do using parList with rseq
● When threads are finished, stitch together the resulting paths

GoalStart C1 C2 C3

A* A* A* A*

Strategy 2: checkpoint partitioning

● Results:

○ The good: much faster than serial (more on performance soon)

■ Each thread only did a portion of the full search

○ The bad: paths were slightly longer than optimal

■ Sometimes took unnecessary detours to reach checkpoints

■ If a checkpoint isn’t reachable from the start or goal, it fails to return any path

Strategy 2: checkpoint partitioning

● I was able to reduce the path length from detours with post-processing

○ If a tile appeared twice in the final path, remove all tiles between the two occurrences

● Tradeoff of this approach: time to compute vs path length

○ This method is suitable if you’d rather compute paths quickly than get an optimal path

○ Also doesn’t work if there are unreachable parts of the maze

○ Overall, speed improvement was proportionally much greater than the increase in path

length

■ Resulted in an almost optimal path

Parallel performance
● I chose to use strategy 2 (checkpoint partitioning) because of its speed
● On a 200x1000 tile map using up to 20 cores:

Parallel performance

● Processor utilization was very good to a point

○ Using 8 cores led to about an 8 times speedup

○ Speed stopped increasing after about 12 cores

● Speed improvement far outweighed path length increase

○ For 12 cores, observed a 10.7 times speedup and only 6% increase in path length

○ Reasonable for use in applications that need to compute a lot of paths

Processor activity

● Workload was not evenly distributed

amongst processors

● Most processors ended up waiting on

one or two more to finish searching

● With this approach, work distribution

is highly dependent on maze layout

● If we could ensure even work, overall

speed would likely increase

The final program

● Takes in a path to a file containing a maze

and a level of parallelism to use

● Can optionally render the final path over the

maze using the -show option

● For example, ./mazeSolver
test/20x20.txt 8 -show +RTS
-N8

