
Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

Parallel Maze Solver Using A*
Mohsin Rizvi

Introduction: Mazes and A*

For my project, I implemented a maze-solving program built on top of the A* path-finding algorithm. The
program’s command-line usage is as follows:

mazeSolver <mazefile> <depth> [-show] +RTS -N<depth>

The program takes in a path to a maze file, which is a text file containing a two-dimensional maze. Each
character in the maze represents a maze node or maze tile, which is simply a location in a maze. The valid
characters in the maze file (in additional to newline characters) are as follows:

- An ‘s’ denotes the start node of a maze, where the maze solution must start from.
- A ‘g’ denotes the goal node of a maze, where the maze solution must end up.
- A ‘ ’ (a space) denotes an empty node in the maze, which a maze solution path may go through.
- An ‘X’ denotes a wall node in the maze, which a maze solution path may NOT go through.

All rows in the maze must have the same length. The following is a valid example maze:
X X
X XX
X X X

XX
gXX X X
XXX
XXXX XX X
XXXXXX XX
XXXXXXX Xs
XXXXXX

The program also takes in a user-specified depth, or level of parallelism. By default, the program prints
out the coordinates of the resulting path through the maze. The user may also specify the -show
argument, in which case the program will print back the maze with the path overlaid on top of it. The path
is denoted using ‘.’ characters connecting the start and goal nodes.

The program attempts to find a close-to-optimal path through the maze from the start node to the goal
node. The program refers to maze nodes by their coordinates, with the top-left node of the maze having
coordinates (0, 0). The path may not go diagonally from one node to another; it may only go up, down,
left, or right. The maze must have exactly one start tile, exactly one goal tile, and all empty tiles must be
reachable from all other empty tiles (i.e., there are no “islands” of empty tiles in the maze separated

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

entirely by wall tiles). The output from running the program on the earlier example maze with the -show
argument is as follows:
10x10
start: (9,8)
goal: (0,4)

Path (length 18):
[(9,8),(9,9),(8,9),(7,9),(7,8),(7,7),(7,6),(7,5),(6,5),(5,5),(4,5),(3
,5),(3,4),(3,3),(2,3),(1,3),(0,3),(0,4)]

X X
X XX
X X X

.... XX
gXX. X X
XXX.....
XXXX XX. X
XXXXXX .XX
XXXXXXX.Xs
XXXXXX ...

Note that I changed the characters used to represent maze tiles since my original project proposal, since I
found that the original characters were hard to easily differentiate from each other at-a-glance when
viewing the maze and verifying a solution.

A* Algorithm

A* is an algorithm that seeks to find the shortest path between two nodes in a graph. It utilizes a heuristic
function to estimate the distance from any given node to the goal node. The pseudocode for the algorithm
is roughly as follows, given a start node s, a goal node g, and a heuristic function h:

- Create a priority queue pq containing element s with priority h(s). This is also called the open set
- Create a mapping pmap from nodes to their previous nodes in the shortest path found
- Create a mapping gmap from nodes to their shortest path distance from the start node, with s

initially mapping to 0
- While pq is not empty:

- Extract lowest-priority node cur from pq
- If cur == g:

- Recursively use pmap to reconstruct the path from g to s, reverse it, and return
the reversed version

- For each neighboring node n of g:

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

- If n is not a key in gmap or gmap[cur] + 1 is less than gmap[n]:
- Set pmap[n] = cur
- Set gmap[n] = gmap[cur] + 1
- If n is not in pq, then insert it with priority gmap[n] + h(n)

- If pq is empty, there is no valid path; return the empty path

Since tiles in the maze are represented using coordinates, I used the Euclidean coordinate distance
between a given node and a goal node as the heuristic value. This is given by the equation

for two nodes with coordinates (x1, y1) and (x2, y2).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

Implementation and Parallelization Strategies

I started off by implementing the serial version of my maze solver. This largely consisted of parsing the
maze file to an internal representation that I could easily use during the actual traversal, including
allowing access to maze nodes by their coordinates, and then implementing the actual A* algorithm that
operates on the maze.

Since A* requires a priority queue to sort nodes by their heuristic value, I used the PSQueue Haskell
package, which implements a priority search queue. I chose to use this package over other priority queue
packages, since it implements a priority search queue with O(log n) lookup time. This made it faster to
check whether maze nodes had already been added to the priority search queue. Additionally, I chose to
use a vector of vectors to represent the two-dimensional grid of maze tiles. I chose this over a more
graph-like representation since the grid of tiles is dense, and it was easier for me to reason about and
construct the internal maze representation. I also chose to use vectors over lists since my algorithm would
rely heavily on accessing nodes by their coordinates in the maze, and vectors allow O(1) access to an
indexed element.

After I had a working serial implementation that passed my test cases, I set out to parallelize it. A* for
finding optimal paths is difficult to parallelize, since it is impossible to know if a path is optimal until
you’ve traversed the entire length of the path from the start to the goal and checked the heuristic values of
all neighboring tiles along the path. In light of this, I spent a bit of time thinking about different strategies
for parallelization and deciding whether they would likely lead to a significant speedup. There were two
main strategies that I felt were most likely to speedup the program the most, which I will refer to as
“multiple starts” and “checkpoint partitioning”. For each of these strategies, the program takes in a
user-specified level of parallelism.

I also considered a third parallelization strategy, where I would do a modified A* search where multiple
threads would process maze tiles from the priority queue in parallel. However, I decided against this as it
required shared access to data structures by different threads, and I was unsure whether it would lead to
any speedup.

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

Parallel Strategy: Multiple Starts

This parallel strategy was inspired by Zaghloul et al [1]. In this strategy, the program would first identify a
series of candidate “pseudo-start” maze nodes near the “true start” node. The amount of pseudo-start
nodes was equal to the user-specified parallelism level. After finding the pseudo-start nodes, I would run
an A* search from each of them, each running on its own thread. I implemented this by using parList
with rseq to evaluate each search in parallel. The resulting path from each search was then stitched
together with the path from the true start to the pseudo-start, and the shortest path to the goal was taken.

While this solution was simple enough to implement, it did not lead to much of a noticeable speedup. I
believe there are two reasons for this:

1) The pseudo-start nodes were generally clustered near each other. Because of this, the searches
were often “bottle-necked” through the same points in the maze, and ended up doing a lot of
identical work.

2) Each thread still needed to do an (almost) full A* search to the goal node, which meant that the
user still has to wait about the same time as it would take a serial A* to finish.

After this strategy failed to yield any impressive results, I went back to the drawing board.

Parallel Strategy: Checkpoint Partitioning

This is a parallel strategy that I came up with after considering why the multiple starts strategy had failed.
In this strategy, I attempt to subdivide the search into a number of subsearches, with the amount of
subsearches being the user-specified parallelism level. My thinking was that by having each thread do a
smaller search, and then combining the results, the program would be able to finish much quicker.

With this strategy, given a user-specified depth, we first come up with depth - 1 “checkpoints.”
These are simply points that are as close to equally spread-out as possible between the start and goal
nodes. These are computed by using the coordinates of the start and goal nodes. After we compute
candidate checkpoint locations, we check the tile type of the candidate checkpoint. If the checkpoint is an
empty tile (i.e., a valid part of a path), then we keep it. If it is a wall tile (i.e., not a valid part of a path),
then we do a breadth-first search from that tile until we find the closest empty tile, and we use that instead.

After we have our list of checkpoints, we prepend the list with the start node, and append it with the goal
node. Next, we create depth overlapping pairs of nodes from this list to represent depth subsections of
a theoretical path. At this point, we run A* in parallel on each pair, with the first member of the pair being
a start node and the second member being a goal node. These A* searches are evaluated in parallel by
using parList with rseq over a list of the node pairs, with each parallel thread handling one pair.

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

After this point, if the goal node is reachable, we can glue the resulting paths together end-to-end to create
a valid path from the start node to the goal node. After my initial implementation of this strategy, however,
I noticed a few things about the resulting paths:

1) There were adjacent duplicate nodes in the final path listing, since one subsection’s goal node
would be the same as the next subsection’s start node.

2) There were points where checkpoints were slightly off the optimal path, and the resulting path
would go out of its way to reach a checkpoint, before doubling-back to its original path.

3) If the goal was unreachable, a partial path was incorrectly returned as a solution, since some of
the subsearches still completed successfully.

To address these, I added a few post-processing steps on the resulting path. These steps remove adjacent
duplicates, remove unnecessary offshoot branches from the path (by checking for non-adjacent duplicate
tiles in the path), and verify that the solution is a valid path (i.e., all path members are adjacent to their
neighboring path members, and the path ends with the ultimate goal node). After I implemented these
extra steps, I found that the resulting path from the start to the goal was correct, and significantly closer in
length to the optimal path.

The Result

I ended up going with checkpoint partitioning as my parallelization strategy, since it led to a far bigger
speedup in my test cases, and the percent increase in path length was minimal relative to the increase in
speed after implementing some optimizations and post-processing steps. In the end, I ended up with a
program that successfully computes a path from the start tile to the goal tile in parallel, and it generally
does it very fast when given more cores (see “Performance” below for more information on speed). To
reiterate, the program takes a user-specified level of parallelism via a command-line argument, and the
user can also specify an optional -show flag to print out the resulting path rendered on the maze (as
opposed to the default, which just shows a list of the coordinates that make up the path).

Note that due to the nature of the checkpoint partitioning strategy, the path found when using parallelism
is not guaranteed to be optimal (i.e., the shortest possible path), since some of the checkpoints may be
slightly out of the way. However, I felt that this was a reasonable tradeoff to make, since parallelization
made the program much faster, the resulting paths were not terribly longer than optimal, and I was able to
take some steps to mitigate the increase in path length. Additionally, if there are disjoint (i.e.,
nonreachable) parts of the maze, then it is possible for the checkpoint parallelism strategy to incorrectly
say that no path exists if one of the checkpoints is not reachable from the start and/or goal nodes. Because
of this, the user-supplied maze should not have disjoint sections.

Testing

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

Initially, I started by drawing a few maze files by hand to handle a few different edge cases as I worked on
the serial version of my maze solver. After starting the parallel implementation, however, I realized that I
would need very large mazes to more clearly measure the performance difference from using more cores.
To do this, I wrote a small Python3 program (called mazegen.py) to generate mazes with user-specified
dimensions. Using this, I was able to quickly generate large mazes with hundreds of thousands of tiles
that I could use to test performance.

A selection of mazes generated by mazegen.py that I used for testing are included in my submission.
Some of these mazes are hand-modified versions of generated mazes that I edited to test out different edge
cases. The mazegen.py program is also included in my submission and is also pasted in this report
further down.

Performance

The following performance measurements were made on my Windows PC with an Intel Core i5-14600K
processor with 20 cores. Note that all performances noted below are measured by running the program
without the -show option, so that IO costs to print the maze (which may be large) aren’t included in the
measured program runtime. Additionally, I used the maze file 200x1000.txt, which is included in my
submission under the test/ directory. This is a maze with dimensions 200 by 1000 tiles (for a grand total of
200,000 tiles) that I generated using mazegen.py.

The following table and two line charts show the performance of the parallelized program on 1 through 20
cores, including the speedup and path length results when running the maze solver with a given degree of
parallelism.

Degree of Parallelism Runtime (seconds) Path Length

Serial: 1 1.187 1070

2 0.714 1076

3 0.425 1108

4 0.276 1092

5 0.232 1126

6 0.187 1112

7 0.166 1120

8 0.146 1108

9 0.135 1126

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

10 0.127 1140

11 0.117 1118

12 0.110 1142

13 0.104 1174

14 0.112 1140

15 0.105 1168

16 0.115 1182

17 0.112 1158

18 0.114 1150

19 0.114 1208

20 0.103 1222

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

As you can see, the speedup from adding more cores seems to scale linearly until around ~12 cores, at
which point the benefits from adding more parallelism begin to decrease. The path length seems to
continue climbing with more parallelism, though I suspect larger mazes with more space between the start
and goal tiles would lead to less of an increase in path length added per core. That being said, the speedup
from using 12 cores is relatively large compared to the increase in path length from 12 cores (a ~10.7x
speedup compared to a 6% increase in path length), so I think this is a reasonable tradeoff. In a practical
application, I would recommend against running the parallel solution with more than 12 cores against
mazes similar to the one used here for performance measuring.

The below Threadscope screenshot shows core activity across the program runtime when run with 20
cores. As you can see, the workload seems to be fairly well-distributed around the second quarter of the
program’s runtime, but as time goes on most of the threads are waiting on one or two other long-running
threads to finish. Due to the fact that we are parallelizing only by subdividing an ideal path through the
maze, it is likely that the workload distributed to the threads are not actually even. As a result, I suspect
the workload balance would vary a lot by maze when using this parallelization strategy.

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

Code

The code for the parallel maze solver is as follows, including comments on usage and compilation
instructions. This file is also submitted as mazeSolver.hs.

{-
compile with:
$ stack install vector
$ stack install PSQueue
$ stack install monad-par
$ stack --resolver lts-22.33 ghc -- --make -Wall -O mazeSolver.hs -threaded
-rtsopts

run with:
./mazeSolver <mazefile> <depth> [-show] +RTS -N<depth>

My project is a parallel implementation of A* that uses the algorithm to solve
mazes.
As input, it takes the path to a "maze file" which contains an ASCII
representation of a maze.
A maze is a 2-dimensional grid of tiles, where each tile can be one of the
following:
- ”s“ denotes a start tile that may be part of a maze solution
- “g” denotes a goal tile that may be part of a maze solution
- “ “ denotes an empty tile that may be part of a maze solution
- “X” denotes a wall tile that may not be part of a maze solution

A maze must contain exactly one start tile and one goal tile. Paths cannot go
diagonally between
tiles, and all empty tiles must be reachable from all other empty tiles (i.e.,
there are no
"islands"). For example, the following 4x4 grid is a valid maze:
s X
X X
X
g X

My project reads in the maze file, constructs an in-memory representation of a
maze, and runs the
parallelized A* algorithm on the maze. The output from the program is a path
from the
start tile to the goal tile (with the path represented as an array of
coordinates), or a message
indicating that no solution path exists. You can use the "-show" flag to have
the program print

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

out the maze with the path annotated on it. For my A* heuristic function, I use
the distance
between a given tile and the goal tile, computed using the X and Y positions of
tiles in the maze.

Parallelism strategies attempted:
"Checkpoint partitioning": This is a strategy I came up with that I decided to
use in my final
version of the project. This involves finding <depth - 1> "checkpoints" in a
line between the
start and goal tiles, then running A* on each closest pair of points to get
partial paths, before
finally stitching the paths together and smoothing out any redundant "bumps" in
the path. This is
the fastest approach I tried, but can lead to a slightly less optimal path. I
found that the percent
increase in path length was relatively small compared to the percentage speedup
when running
in parallel.

"Multiple starts": Expand outward from the start node until you find <depth>
nodes from
which to do a search to the goal node. Take the resulting shortest path. I
found that this was not
much faster than a serial A* on most mazes, since the nodes I searched from
were not far apart from
each other and ended up doing almost the same work as a serial A* per thread.

For references used, see the "References" section in the report.
-}

import System.Environment
import System.Exit
import Data.Vector as Vec (Vector, foldr, fromList, (!))
import Data.PSQueue as PSQueue
import qualified Data.Map as Dict
import Data.Maybe
import Data.Set as Set (fromList, member)
import Control.Parallel.Strategies

data TileType = Step | Start | Goal | Wall
instance Show TileType where
show Step = " "
show Start = "s"
show Goal = "g"
show Wall = "X"

instance Eq TileType where

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

Step == Step = True
Start == Start = True
Goal == Goal = True
Wall == Wall = True
_ == _ = False

data Node = Node
{ ttype :: TileType
, x :: Int
, y :: Int
}

instance Eq Node where
n1 == n2 = (((x n1) == (x n2)) && ((y n1) == (y n2)))

instance Ord Node where
compare n1 n2 =
compare ((show (x n1)) ++ "x" ++ (show (y n1))) ((show (x n2)) ++ "x" ++

(show (y n2)))
instance Show Node where
show n = show (ttype n)

data Maze = Maze
{ rows :: Vector (Vector Node)
, xlen :: Int
, ylen :: Int
, start :: (Int, Int)
, goal :: (Int, Int)
}

-- uncomment lines from this function to print out the actual maze (without a
path).
instance Show Maze where
show m = do
let line1 = (show (xlen m)) ++ "x" ++ (show (ylen m)) ++ "\n"
let line2 = "start: " ++ show (start m) ++ "\ngoal: " ++ show (goal m)
--let linen = Vec.foldr (\a b -> "\n" ++ (Vec.foldr (\c d -> (show c) ++ d)

[] a) ++ b) "" (rows m)
line1 ++ line2 -- ++ linen

showPath :: Maze -> [(Int, Int)] -> Bool -> [Char]
showPath _ [] _ = "No path exists"
showPath m path show_maze =
"Path (length " ++ (show (length path)) ++ "): " ++ (show path) ++ "\n" ++
(case show_maze of

True -> solution
_ -> "")

where

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

solution = Vec.foldr (\a b -> "\n" ++ (Vec.foldr (\c d -> (showWithPath c)
++ d) [] a) ++ b) "" (rows m)

pathset = Set.fromList path
showWithPath node =
case (ttype node) of
Step -> case (Set.member (x node, y node) pathset) of

True -> "."
_ -> show node

_ -> show node

-- heuristic for A*: coordinate distance to the goal node
h :: Maze -> (Int, Int) -> Double
h m (x', y') = do
let xdiff = (x' - (fst (goal m)))
let ydiff = (y' - (snd (goal m)))
let x2 = xdiff * xdiff
let y2 = ydiff * ydiff
sqrt ((fromIntegral x2) + (fromIntegral y2))

-- deletes adjacent duplicates from a list
dedup :: Eq a => [a] -> [a]
dedup (x:y:zs) =
if (x == y)
then dedup (y:zs)
else x:(dedup (y:zs))

dedup xs = xs

-- given a list, deletes all elements between nonadjacent duplicates in the
list.
-- for example, smooth [1, 2, 3, 4, 5, 2, 3] == [1, 2, 3].
-- this is used to improve paths returned by the parallel A*.
smooth :: Ord a => [a] -> [a]
smooth as = smoothHelper Dict.empty (0 :: Int) as []
where
smoothHelper _ _ [] q = map (\(a, _) -> a) (reverse q)
smoothHelper dict i (x:xs) q =
if (Dict.member x dict)
then do
let from = fromJust (Dict.lookup x dict)
smoothHelper dict (i + 1) xs (filter (\(_, b) -> b <= from) q)

else smoothHelper (Dict.insert x i dict) (i + 1) xs ((x, i):q)

-- generate <depth> pairs of start and goal nodes to use for parallelizing the
algorithm.
checkPoints :: Maze -> Int -> Node -> Node -> [(Node, Node)]
checkPoints m depth start goal = do
let x1 = x start

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

let x2 = x goal
let y1 = y start
let y2 = y goal
let xdiff = abs (x1 - x2)
let ydiff = abs (y1 - y2)
let xdiv = div xdiff depth
let ydiv = div ydiff depth

let xop = if (x1 < x2) then (+) else (-)
let yop = if (y1 < y2) then (+) else (-)
let candidatePoints = [n | i <- [1..(depth - 1)], let x = x1 `xop` (xdiv *

i), let y = y1 `yop` (ydiv * i), let n = findNodeByIndex m (x, y)]
let middle = dedup (take (depth - 1) (map (\a -> nearestPoint [a])

candidatePoints))
zip (start:middle) (middle ++ [goal])
where
nearestPoint (n:ns) =
if ((ttype n) == Wall)
then nearestPoint (ns ++ (allNeighborsOf m n))
else n

nearestPoint [] = goal

-- verifies that a path is legal (i.e., that all adjacent steps are one step
apart),
-- and that it ends with the goal
verifyPath :: [(Int, Int)] -> Node -> Bool
verifyPath [] _ = False
verifyPath xs goal = (not (Prelude.null xs)) && (snd (Prelude.foldr
areNeighbors ((-1, -1), True) xs)) && ((last xs) == (x goal, y goal))
where
areNeighbors a (b1, b2) = (a, b2 && (isNeighborOf a b1))
isNeighborOf (a1, a2) (b1, b2) =
if ((a1, a2) == (-1, -1))
then True
else if ((b1, b2) == (-1, -1))
then True
else elem (a1, a2) [(b1, b2 - 1), (b1, b2 + 1), (b1 - 1, b2), (b1 +

1, b2)]

-- launch a* in parallel to find a path from the start to goal
aStarPar :: Maze -> Int -> [(Int, Int)]
aStarPar m depth =
if (depth <= 1)
then aStar m startN goalN
else do
let path = smooth (concat ((parHelper (checkPoints m depth startN goalN))

`using` parList rseq))

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

if (verifyPath path goalN)
then path
else []

where
startN = findNodeByIndex m (start m)
goalN = findNodeByIndex m (goal m)
parHelper ns = [x | (sn, gn) <- ns, let x = aStar m sn gn]

-- given a maze, a start node, and a goal node, use A* to find the shortest
path
aStar :: Maze -> Node -> Node -> [(Int, Int)]
aStar m startN goalN = do
let oset = PSQueue.singleton startN (h m (x startN, y startN))
let prev = Dict.empty -- maps Nodes to previous Nodes in best path
let gmap = Dict.singleton startN (0 :: Int) -- maps Nodes to Ints
step oset prev gmap
where
step openset prev gmap = do
let (nbinding, openset') = fromJust (minView openset)
let n = key nbinding
if (n == goalN)
then reverse ((x n, y n):(rebuildPath prev n))
else do
let neighbors = neighborsOf m n
let (openset'', prev', gmap') = updateStructures openset' prev gmap n

neighbors
if (PSQueue.null openset'')
then []
else step openset'' prev' gmap'

rebuildPath prev n = if (n == startN) -- returns [(Int, Int)]
then []
else do
let laststep = fromJust (Dict.lookup n prev)
(x laststep, y laststep):(rebuildPath prev laststep)

updateStructures openset prev gmap _ [] =
(openset, prev, gmap)

updateStructures openset prev gmap cur (n:ns) = do
let tmpscore = fromJust (Dict.lookup cur gmap) + 1 :: Int
if (tmpscore < (Dict.findWithDefault 999999 n gmap)) -- reasonable max

heuristic value
then do
let prev' = Dict.insert n cur prev
let gmap' = Dict.insert n tmpscore gmap
let openset' = case (PSQueue.lookup n openset) of

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

Nothing -> PSQueue.insert n ((fromIntegral tmpscore) + (h m (x
n, y n))) openset

_ -> openset
updateStructures openset' prev' gmap' cur ns

else
updateStructures openset prev gmap cur ns

findNodeByIndex :: Maze -> (Int, Int) -> Node
findNodeByIndex m (x, y) = ((rows m)!y)!x

neighborsOf :: Maze -> Node -> [Node]
neighborsOf m n = do
let xv = x n
let yv = y n
let coords = Prelude.filter filterCoords [(xv+1, yv), (xv, yv+1), (xv-1, yv),

(xv, yv-1)]
filter (\a -> (ttype a) /= Wall) (map (\a -> findNodeByIndex m a) coords)
where
filterCoords (a, b) = (a >= 0) && (a < xlenv) && (b >= 0) && (b < ylenv)
xlenv = xlen m
ylenv = ylen m

allNeighborsOf :: Maze -> Node -> [Node]
allNeighborsOf m n = do
let xv = x n
let yv = y n
let coords = Prelude.filter filterCoords [(xv+1, yv), (xv, yv+1), (xv-1, yv),

(xv, yv-1)]
map (\a -> findNodeByIndex m a) coords
where
filterCoords (a, b) = (a >= 0) && (a < xlenv) && (b >= 0) && (b < ylenv)
xlenv = xlen m
ylenv = ylen m

-- returns the indices in the 2D array of nodes with a given TileType. Used to
find
-- the start and goal nodes.
findIndexByType :: [[Node]] -> TileType -> (Int, Int)
findIndexByType [] _ = (-1, -1)
findIndexByType (r:rs) tt = do
case (Prelude.filter (\n -> (ttype n) == tt) r) of
[n] -> (x n, y n)
_ -> findIndexByType rs tt

-- takes in a row of characters, an xlen, a ylen, and returns the maze.
-- would it be worth parallelizing this for big mazes?
buildMaze :: [[Char]] -> Int -> Int -> Maze

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

buildMaze mlines ylen xlen = do
let rows = toRows (zip mlines [0..])
let start = findIndexByType rows Start
let goal = findIndexByType rows Goal
let vecs = Vec.fromList (map (\a -> Vec.fromList a) rows) -- make [[Node]]

into a 2D vector
Maze { rows = vecs, xlen = xlen, ylen = ylen, start = start, goal = goal }
where toRows [] = [] -- this returns [[Node]]

toRows ((l, y):ls) = (map toNode charsWithIndex) : (toRows ls)
where charsWithIndex = map (\(a, b) -> (a, b, y)) (zip l [0..])

toNode (n, x, y) = do
let ttype = case n of

' ' -> Step
's' -> Start
'g' -> Goal
'X' -> Wall
_ -> Step -- Shouldn't happen in a valid maze

Node { ttype = ttype, x = x, y = y }

main :: IO ()
main = do
args <- getArgs
case args of
(filename:depth:xs) -> do
contents <- readFile filename
let mlines = lines contents
let ylen = length mlines
if (ylen == 0)
then die ("Maze is invalid: height is 0")
else return ()

let xlen = length (head mlines)
if (xlen == 0)
then die ("Maze is invalid: length is 0")
else return ()

if not (Prelude.foldr (\a b -> b && ((length a) == xlen)) True mlines)
then die ("Maze is invalid: row lengths vary")
else return ()

let ndepth = read depth
let maze = buildMaze mlines ylen xlen
let path = aStarPar maze ndepth
let show_maze = case xs of

("-show":[]) -> True
_ -> False

putStrLn ((show maze) ++ "\n\n" ++ (showPath maze path show_maze))
_ -> do
prog <- getProgName

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

die ("Usage: " ++ prog ++ " <maze-filename> <depth> [-show] +RTS
-N<depth>")

The small Haskell program I wrote to practice using parList to parallelize evaluating list elements in
parallel is as follows, including compilation and running instructions. Note that this program really
doesn’t compute anything interesting; I just wrote it so I could practice using parList and time the
difference it made in evaluating list elements.

{-
compile with:
$ stack install monad-par
$ stack --resolver lts-22.33 ghc -- --make -Wall -O partest.hs -threaded
-rtsopts

to run in serial:
./partest - <depth>
to run in parallel:
./partest + <depth> +RTS -N<depth>

Note that you should still supply the same <depth> even if running in serial,
since the total
amount of work done is based on the specified depth, even if only using one
thread.

This is a test program I wrote to test out evaluating a list of values in
parallel, which
is a strategy I will eventually use in my final program. It does nothing
interesting,
but I used it to time parallel list operations.
-}

import System.Environment
import Control.Parallel.Strategies

testlist :: Int -> [Int]
testlist depth = do

[x | a <- [0..depth], let x = foldr (+) (0 :: Int) (replicate ((100000000 ::
Int) + a) (1 :: Int))]

main :: IO ()
main = do
args <- getArgs
case args of
[p, depth] -> do
let numdepth = read depth
case p of

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

"-" -> do
let res = testlist numdepth
putStrLn (show (foldr1 (\a b -> if a > b then a else b) res))

"+" -> do
let res = testlist numdepth `using` parList rseq
putStrLn (show (foldr1 (\a b -> if a > b then a else b) res))

_ -> putStrLn("usage error 2")
_ -> putStrLn("usage error 1")

The Python3 program I wrote to generate mazes for testing is below, and is also attached as
mazegen.py. To run the program, you can run “python3 mazegen.py” if you have Python3
installed.

#! /usr/bin/python3
import sys
import random
import queue

INITIAL = '?'
START = 's'
GOAL = 'g'
WALL = 'X'
PATH = ' '

def get_neighbors(of, xlen, ylen):
y = of[0]
x = of[1]
candidates = [(y, x+1), (y, x-1), (y-1, x), (y+1, x)]
return filter(lambda a: (a[0] >= 0) and (a[0] < xlen) and (a[1] >= 0) and

(a[1] < ylen), candidates)

def generate_maze(xlen, ylen, likelihood, unreachable_paths):
maze = [[INITIAL for i in range(xlen)] for j in range(ylen)]
start = (random.randint(0, xlen-1), random.randint(0, ylen-1))
q = queue.Queue()
reachables = []

maze[start[1]][start[0]] = START
q.put(start)

randomly create paths
while len(reachables) == 0: # so we don't create a maze with no other

spaces
while not q.empty():

cur = q.get()
ns = get_neighbors(cur, xlen, ylen)

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

for n in ns:
if maze[n[1]][n[0]] == INITIAL:

if random.randint(0, 100) <= likelihood:
wall
maze[n[1]][n[0]] = WALL

else:
pathway
maze[n[1]][n[0]] = PATH
q.put(n)
reachables.append(n)

pick a reachable goal
goal = reachables[random.randint(0, len(reachables) - 1)]
maze[goal[1]][goal[0]] = GOAL

mark unreachable spots
for y in range(ylen):

for x in range(xlen):
if maze[y][x] == INITIAL:

if (not unreachable_paths) or (random.randint(0, 100) <=
likelihood):

maze[y][x] = WALL
else:

maze[y][x] = PATH
return maze

def print_maze(maze):
for row in maze:

rowstr = "".join(row)
print(rowstr)

if __name__ == "__main__":
arglen = len(sys.argv)
if (arglen != 3) and (arglen != 4) and (arglen != 5):

sys.exit("Usage: mazegen.py <x-len> <y-len> [<wall-likelihood>]
[-no-fill]")

xlen = int(sys.argv[1])
ylen = int(sys.argv[2])
likelihood = int(sys.argv[3]) if (arglen == 4) else 33
unreachable_paths = (arglen == 5) and (sys.argv[4] == "-no-fill")

print_maze(generate_maze(xlen, ylen, likelihood, unreachable_paths))

References

Mohsin Rizvi
COMS 4995 - Parallel Functional Programming
Fall 2024
Final Report

[1] S. S. Zaghloul, H. Al-Jami, M. Bakalla, L. Al-Jebreen, M. Arshad, and A. Al-Issa, “Parallelizing
A* Path Finding Algorithm,” International Journal Of Engineering And Computer Science, vol. 6, no. 9,
pp. 22469–22476, Sep. 2017, doi: https://doi.org/10.18535/ijecs/v6i9.13.

Haskell documentation:
System.Environment documentation:
https://hackage.haskell.org/package/base-4.20.0.1/docs/System-Environment.html
System.Exit documentation:
https://hackage.haskell.org/package/haskell2020-0.1.0.0/docs/System-Exit.html
Data.Vector documentation: https://hackage.haskell.org/package/vector-0.13.2.0/docs/Data-Vector.html
Data.PSQueue documentation:
https://hackage.haskell.org/package/PSQueue-1.2.0/docs/Data-PSQueue.html
Data.Map documentation: https://hackage.haskell.org/package/containers-0.4.0.0/docs/Data-Map.html
Data.Maybe documentation: https://hackage.haskell.org/package/base-4.20.0.1/docs/Data-Maybe.html
Data.Set documentation: https://hackage.haskell.org/package/containers-0.7/docs/Data-Set.html
Control.Parallel.Strategies documentation:
https://hackage.haskell.org/package/parallel-3.2.2.0/docs/Control-Parallel-Strategies.html

https://hackage.haskell.org/package/base-4.20.0.1/docs/System-Environment.html
https://hackage.haskell.org/package/haskell2020-0.1.0.0/docs/System-Exit.html
https://hackage.haskell.org/package/vector-0.13.2.0/docs/Data-Vector.html
https://hackage.haskell.org/package/PSQueue-1.2.0/docs/Data-PSQueue.html
https://hackage.haskell.org/package/containers-0.4.0.0/docs/Data-Map.html
https://hackage.haskell.org/package/base-4.20.0.1/docs/Data-Maybe.html
https://hackage.haskell.org/package/containers-0.7/docs/Data-Set.html
https://hackage.haskell.org/package/parallel-3.2.2.0/docs/Control-Parallel-Strategies.html

